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Colonoscopy is currently one of the main methods for the detection of rectal polyps,
rectal cancer, and other diseases. With the rapid development of computer vision, deep
learning–based semantic segmentation methods can be applied to the detection of
medical lesions. However, it is challenging for current methods to detect polyps with
high accuracy and real-time performance. To solve this problem, we propose a multi-
branch feature fusion network (MBFFNet), which is an accurate real-time segmentation
method for detecting colonoscopy. First, we use UNet as the basis of our model
architecture and adopt stepwise sampling with channel multiplication to integrate
features, which decreases the number of flops caused by stacking channels in UNet.
Second, to improve model accuracy, we extract features from multiple layers and resize
feature maps to the same size in different ways, such as up-sampling and pooling,
to supplement information lost in multiplication-based up-sampling. Based on mIOU
and Dice loss with cross entropy (CE), we conduct experiments in both CPU and
GPU environments to verify the effectiveness of our model. The experimental results
show that our proposed MBFFNet is superior to the selected baselines in terms of
accuracy, model size, and flops. mIOU, F score, and Dice loss with CE reached 0.8952,
0.9450, and 0.1602, respectively, which were better than those of UNet, UNet++, and
other networks. Compared with UNet, the flop count decreased by 73.2%, and the
number of participants also decreased. The actual segmentation effect of MBFFNet is
only lower than that of PraNet, the number of parameters is 78.27% of that of PraNet,
and the flop count is 0.23% that of PraNet. In addition, experiments on other types of
medical tasks show that MBFFNet has good potential for general application in medical
image segmentation.

Keywords: multi-branch feature, fusion network, colonoscopy, medical image segmentation, MBFFNet

INTRODUCTION

Medical image processing is an important part of medical processes. At present, the main research
directions in medical image processing include image segmentation, structure analysis, and image
recognition. Among these, image segmentation is very important for the detection of lesions and
organs, which significantly aids the development of medical automation, reduces the burden on
medical workers, and reduces the incidence of medical accidents caused by human error (Litjens
et al., 2017). In 2018, there were an estimated 4.8 million new cases of gastrointestinal (GI) cancers
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and 3.4 million related deaths worldwide. GI cancers account
for 26% of the global cancer incidence and 35% of all cancer-
related deaths (Arnold et al., 2020). Endoscopy is the gold
standard for GI examinations (Deeba et al., 2019; Li et al.,
2021). Gastroscopy is an examination of the upper digestive
tract, which includes the esophagus, stomach, and the first part
of the small intestine, whereas colonoscopy covers the large
intestine (colon) and rectum. Both tests involve the real-time
viewing of the GI tract using a digital high-definition endoscope.
Endoscopy is resource-intensive and requires expensive technical
equipment and trained personnel (Pogorelov et al., 2017). Both
endoscopy and the removal of potentially pre-cancerous lesions
are essential for the prevention of colorectal cancer. The semantic
segmentation method of artificial intelligence can be used to
assist colonoscopy detection, which can significantly reduce the
risk of misjudgment and the omission of medical workers for
various reasons, resulting in polyp canceration, colorectal tumor
lesions, and colorectal cancer from early to late stages, as well
as delayed treatment (Akbari et al., 2018). It is thus important
to achieve early prevention, early detection, and early treatment.
A large number of experimental studies have shown that early
colonoscopy can reduce the incidence of colorectal cancer by
30% (Haggar and Boushey, 2009). In clinical medical treatment,
the accurate real-time segmentation of polyps is a challenging
task. First, the same type of polyp may be due to different
stages of colorectal cancer and may have a different constitution.
In addition, there may be different sizes, shapes, and colors,
which affects the actual segmentation result (Nguyen et al., 2020).
Second, because polyps and surrounding mucosa possess similar
characteristics, it is difficult to segment the boundary clearly,
and commonly employed segmentation method cannot obtain
ideal segmentation results (Ganz et al., 2012; Bernal et al., 2014).
Third, owing to the specific nature of medical images, it is often
difficult to achieve high accuracy and fast speed simultaneously.
Therefore, commonly used medical image segmentation model
often ignores the size of the model while ensuring accuracy,
resulting in an oversized model and slow segmentation speed; it
is thus unable to provide real-time segmentation for colonoscopy
(Bernal et al., 2012, 2015). Therefore, in medical automation and
to achieve the early prevention of colorectal cancer, it is important
to propose a method that segments polyps with sufficient
accuracy to prevent the missed detection of polyps and to ensure
that the model will not be too bloated, leading to slow speed.

Based on the machine algorithm of manually extracted
features, features such as color, shape, and appearance have
been applied to the classifier to detect polyps (Armato et al.,
2017). Because of the limitation of the expression ability
of manually extracted features, sufficient features cannot be
effectively obtained for classifier classification (Breier et al., 2011),
and there is a high rate of missed detection, which cannot be
effectively applied to accurately segment polyps. However, based
on the depth study of the semantic segmentation method of
the polyp segmentation method, there has been good progress
so far. Armato et al. (2017) used the FCN8 (Long et al., 2015)
semantic segmentation model to split polyps, but because FCN8
cannot effectively retain low-dimension detail characteristics, it
cannot effectively segment polyps and membranes around the

border, so the use of FCN8 polyp segmentation is mistakenly
identified and residual (Xia, 2020). Other semantic segmentation
models are applied to life scenarios, such as PSPNET (Zhao
et al., 2017), and although they use a feature pyramid, retain
as many low-dimensional features as possible, and improve the
boundary extraction effect of FCN8, they still fail to meet the
requirements of precision medicine. Meanwhile, other models,
such as Deeplabv3 (Chen et al., 2017), Deeplabv3+ (Chen
et al., 2018), LinkNet (Chaurasia and Culurciello, 2018), and
FPN (Lin et al., 2017), all have similar problems. In UNet
(Ronneberger et al., 2015), UNet++ (Zhou et al., 2018, 2020),
ResUNet++ (Jha et al., 2019), and U2Net (Qin et al., 2020),
which are medical image segmentation models, the adoption of
more detailed features has a good effect on the polyp boundary
segmentation, but these methods with the characteristics of the
UNet (Ronneberger et al., 2015) method to keep figure overlay
information, model and quantity, and flop count are inevitable.
In real-time polyp segmentation, there is still a disadvantage in
that it is unable to meet real-time requirements. Fang et al. (2019)
proposed a three-step selective feature aggregation network with
area and boundary constraints, which was applied to the precise
segmentation of polyps. Because the relationship between the
area and boundary was considered in this network, excellent
segmentation results were obtained. However, the PraNet (Fan
et al., 2020) model proposed by Fan et al. (2020) adopted the
reverse attention method and achieved excellent results in polyp
segmentation. However, it aimed to achieve segmentation that
was too precise, resulting in a large flow count, which could not
be applied to general computer applications and could not be
popularized on a large scale.

In this study, to better achieve the precise real-time
segmentation task of polyps and considering these problems, we
developed the following strategies:

(1) Avoid the loss of local low-dimensional features by large
up-sampling directly, which leads to the loss of too many
features on the segmenting boundary and the inability to
restore complete edge information.

(2) Avoid superimposing feature information on channel
dimensions only through feature maps to retain feature
information, which will lead to an overbloated feature map
in the last few layers of the feature map, resulting in the
model requiring a large number of calculations.

Based on these strategies, we propose a multi-branching
feature fusion network for polyp segmentation. We first
propagated the context information to the higher-resolution
layer through progressive up-sampling to obtain the preliminary
polyp features. This method followed strategy 1, and we avoided
the channel dimension superposition feature information of
the UNet (Ronneberger et al., 2015) series-related models, and
selected the method of feature graph multiplication to fuse
features, which followed strategy 2. Thus, most of the feature
information was well retained, and the boundary information
could be obtained effectively. The accuracy is equal to that
of UNet (Ronneberger et al., 2015), and the flop count was
effectively reduced. Then, through the feature information of
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another branch, the concat method was adopted to provide more
detailed low-dimensional feature information as a complement
for feature fusion in order to ensure that the accuracy is
slightly better than that of UNet++ (Zhou et al., 2018, 2020),
ResUNet++ (Jha et al., 2019), and other networks, whereas
the actual running speed is much better than other models; in
addition, it has the advantages of high training efficiency and
strong generalization ability. This study makes the following
contributions:

(1) We propose a model improvement approach that provides
effective support for the efficient application of deep
learning models in large-scale medical environments.

(2) An efficient polyp segmentation network is proposed
that can accurately and effectively segment polyp images
without the need for costly computer resources. Real-time
colonoscopy detection can be guaranteed using existing
computer resources.

Our proposed model shows good performance and
generalization ability in a variety of different medical
image datasets and can be extended to the detection of
other medical issues.

In this article, the detailed model structure and parameter
number verification are described in section “Materials and
Methods,” the experimental part of the model is discussed in
section “Experiments,” and a summary of the model is presented
in section “Conclusion.”

MATERIALS AND METHODS

In this section, we first introduce and analyze the advantages
and disadvantages of PspNet (Zhao et al., 2017) and UNet
(Ronneberger et al., 2015) models, and we make a detailed
comparison with this model to provide a better understanding
of our multi-branch feature fusion network (MBFFNet).

Baseline
With PspNet (Zhao et al., 2017), researchers believe that the
existing models have segmentation errors owing to insufficient
context information and global information under different
receptive fields. PspNet model structure diagram as shown in
Figure 1. Therefore, a hierarchical global priority containing
information of different scales between different subareas is
proposed, which is called the pyramid pooling module (Zhao
et al., 2017). Four features of different pyramid scales are
integrated, from the roughest feature in the first-row global
pooling to a single output, and the next three are pooling features
of different scales. After each level, a 1× 1 convolution is used to
reduce the level channel to the original 1/N. Then, it is converted
to the pre-pooled size through bilinear interpolation, and finally,
concatenation is carried out. In this way, the global features are
obtained, the global information of different receptive fields is
obtained, and good semantic segmentation results are obtained.
However, as the pooled information of different scales is directly
converted to the dimensions before pooling by an up-sampling

method, the feature loss of the model is relatively large in the low-
dimensional features. For medical image segmentation requiring
accurate boundary results, although PspNet (Zhao et al., 2017)
has a good overall effect, it is not suitable for application in
medical image segmentation because of its incomplete retention
of fine edge features and the inability to obtain complete
boundary results.

To solve the problem of medical image segmentation and
accurate boundary segmentation, UNet (Ronneberger et al.,
2015) employs a completely different method of feature fusion.
UNet uses VGG16 (Simonyan and Zisserman, 2014) as the
backbone network backbone, and through the different location
of the backbone for the characteristics of the different size
chart, on the four double sampling, and after each sampling
on a layer to obtain the characteristics of the figure for
Mosaic, UNet (Ronneberger et al., 2015), researchers in order
to retain more features, will feature in the channel dimension
stitching together, forming thicker characteristics (Simonyan
and Zisserman, 2014; Ronneberger et al., 2015). It is used in
the same phase in the jumping connections, rather than to
directly supervise and experiences loss with respect to high-
level semantic features. These characteristics of a graph are
a combination of more low-level image edge features and
features with different scales, so the multi-scale prediction
can be performed, making the model on the edge of the
segmentation image restoration have more detailed information.
However, because UNet (Ronneberger et al., 2015) employs
the channel dimension splicing characteristic figure, combining
to form the characteristics of the figure will result in many
similar repeated characteristics, and characteristics of the severe
figure redundancy phenomenon are costly in later calculations,
requiring a large number of calculations and a high flop count,
which affects the speed of the model. The model diagram of UNet
(Ronneberger et al., 2015) is shown in Figure 2.

MBFFNet
Considering the above problems and the advantages and
disadvantages of different models, we proposed the MBFFNet,
which has a better lightweight network structure, and can
simultaneously consider model accuracy and rapid deployment.
Compared with UNet (Ronneberger et al., 2015) and its derivative
versions, MBFFNet has better accuracy and requires fewer
computations. In order to better validate the model of the
network segmentation effect, we adopted the same approach as
UNet (Ronneberger et al., 2015), with the VGG16 (Simonyan
and Zisserman, 2014) network as the backbone, and multiple
branch feature fusion network using the U-shaped structure of
the UNet (Ronneberger et al., 2015) framework. We selected the
Relu activation function to ensure that the model can reduce
the flop count, and we abandoned the UNet (Ronneberger
et al., 2015) channel dimension of the connection method.
MBFFNet did not choose the method of FCN8 (Long et al.,
2015) feature combination and fusion, but chose the method
of feature multiplication for feature fusion. Therefore, there are
two important advantages: (1) it avoids the burden of excessive
computation owing to the excessive feature channels caused by
the direct Mosaic of feature graphs; and (2) as the number
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FIGURE 1 | Pspnet structure.

FIGURE 2 | Unet structure.

of network layers increases, overfitting is easily caused, but
considering that the use of feature information between the
upper and lower layers can solve this problem well. We weighted
the normalized weight to the features of each pixel of the
next layer through a dot product operation. This is no longer
an attention mechanism based on channels, but an attention
mechanism based on the pixel level (Jie et al., 2018). However, it
is inevitable that low-dimensional feature information will be lost
to a certain extent. Although the loss of such low-dimensional
feature information is not serious after our experiment, the
loss of some low-dimensional feature information may prevent
the segmentation of a complete and detailed boundary image

during the precise boundary division of polyps. Therefore, after
using the original U-shaped structure, our model maximizes the
characteristics of the five branches in the figure. Through pooling,
without processing, the bilinear interpolation method is used for
samples of the same size two/four/eight times. This will be an
hourglass-like combination that will sample the functional layers
at different times and then add low-dimensional edge feature
information through convolution after the channel dimension
concat has passed, adding second information to integrate
features with other maps, a complete multi-branch feature fusion
model network structure diagram, as shown in Figure 3. In this
way, we can ensure that the information of low-dimensional
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features is preserved as much as possible and avoid the loss
of low-dimensional features caused by the direct use of single
up-sampling. The continuous pixel-based attention mechanism
makes the model more precise in the segmentation of image
edges and other information. At the same time, it also avoids
the excessive pursuit of keeping feature information of different
scales as far as possible in UNet (Ronneberger et al., 2015), which
adopts feature graphs to add channel dimensions, resulting in too
many channels, the need for too many calculations, and increased
computer burden.

EXPERIMENTS

Dataset
The polyp images used in this section were derived from
the following datasets: ETIS, CVC-ClinicDB, CVC-ColonDB,
Endoscene, and Kvasir. Kvasir is the largest and most extensive
dataset released in 2017, and we selected polyp images from a
subcategory of the Kvasir dataset (polyps). CVC-ClinicDB, which
is also known as CVC-612, consists of 612 open-access images
from obtained 31 colonoscopy clips. The CVC-ColonDB is a
small database containing 380 images from 15 short colonoscopy
sequences. ETIS is an established dataset containing 196 images
of polyps for the early diagnosis of colorectal cancer. Endoscene
is a combination of CVC-612 and CVC300. We integrated these
data and eliminated the fuzzy images and finally obtained 1450
polyp images as the experimental data in this section.

To prove that the proposed model has better generalization
ability, we collected a variety of medical image segmentation
datasets for verification of our model. Common medical images
share certain similarities. Therefore, we selected a larger number
of medical image datasets to verify the robustness of our model.

In addition, our datasets are obtained from publicly available
competitive medical datasets online, follow standard biosecurity
and institutional safety procedures, and can be downloaded
online. The raw data are available in articles, supplements,
or repositories.

Corneal Nerve Dataset
This dataset consists of 30 images from the subbasal corneal
nerve plexus obtained in normal and pathological subjects. Thirty
images were obtained from 30 different normal or pathological
subjects (diabetes mellitus, pseudoextirpation syndrome, and
keratoconus). The instrument used to acquire these data was a
Heidelberg Retina Tomograph II with a Rostock Corneal Module
(HRTII32-RCM) confocal laser microscope.

Liver Dataset
This dataset was provided by the MICCAI 2018 LITS Challenge
and consisted of 400 CT scans. Two distinct labels were
provided for ground truth segmentation: liver and lesion. In our
experiment, we treated only the liver as positive and the other
parts as negative.

Lung Dataset
This dataset was provided by the Lung Image Database
Consortium Image Collection (LIDCIDRI) and was collected by

seven academic centers and eight medical imaging companies. To
simplify the processing, only the lungs were segmented, and the
remaining non-lung organs were treated as the background.

Electron Microscopy (EM) Dataset
This dataset was provided by the electron microscopy (EM)
Segmentation Challenge as part of ISBI 2012. The dataset
consisted of 30 (512 × 512 pixels) continuous slice transmission
electron microscope images of the ventral nerve cord of the first
instar larvae ofDrosophilamelanogaster. Referring to the example
in Figure 3, each image has a corresponding fully annotated base-
instance split map of the cell (white) and cell membrane (black).

Neums Dataset
The dataset was provided by the HE Data Science Bowl 2018
Segmentation Challenge and consisted of 670 segmenting nuclear
images from different patterns (bright and fluorescent). This is
the only dataset in this work that uses instance-level annotation,
where each kernel is colored differently.

Ocular Vascular Dataset
This task is based on the DRIVE dataset, which uses photographs
from the diabetic retinopathy screening program in Netherlands.
The aim was to isolate the blood vessels in the fundus image.

Dataset of Esophageal Cancer
This dataset was provided by the First Affiliated Hospital of Sun
Yat-sen University and comprised a total of 13,240 CT images
(80× 80) labeled by professional doctors. The goal of this dataset
was to segment the esophageal cancer region in the CT image,
with the non-esophageal cancer region as the background.

Experimental Setting
Environment
For the polyp segmentation experiment in this section, the
framework used for the training model was TensorFlow (Abadi
et al., 2016). Using the ADAM optimizer, the initial learning
rate was set to 0.001. The experiment was carried out on a
platform with an Intel (R) Xeon (R) Silver 4208 CPU at 2.10 GHz,
2.10 GHz (two processors), 64.0 GB RAM, Windows 64-bit
operating system, NVidia Titan V graphics card, and 12 GB video
memory capacity. In actual production, we can choose a better
lightweight backbone, such as GhostNet (Han et al., 2020) and
MobileNetv3 (Howard et al., 2017, 2020; Sandler et al., 2018).

Data Enhancement
Considering the polyps, liver, bowel, and medical images
compared to natural images, medical imaging has the following
characteristics. First, compared to a variety of modes, different
imaging mechanisms of different modal medical images also
have different characteristics, such as format, size, and quality,
and it is necessary to better design the network to extract
features of different modes. Second, the shape, size, and position
of different tissues and organs vary greatly. Third, the texture
feature is weak and requires a higher feature extraction module.
Fourth, the boundary is fuzzy, which is not conducive to
accurate segmentation.
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FIGURE 3 | Multi-branch feature fusion network. The backbone initially extracts the features of images, and images with different subsampling multiples are
superimposed in an hourglass image pyramid (subsample images have a size larger than 128, and up-sample images have a size smaller than 128, which is equal to
1 × 1 standard convolution for images with size larger than 128). To maximize the use of cross-channel and cross-resolution image branches, each branch is
up-sampled and multiplied by the previous layer. Finally, the predicted image of the original image size is obtained.

To train our model effectively, we divided the dataset into
an 8:2 ratio. Eighty percent of the datasets were used for model
training and 20% for model testing.

To improve the robustness of the model, appropriate image
enhancement is required for the training image. In this study,
brightness enhancement, scaling, horizontal flip, shift, rotation,
and channel transformation were performed on the training
image. Owing to the limited number of medical images, we could
not use the limitation of commonly used image tasks, so we
chose the most commonly used data enhancement parameters of
existing medical images. The specific proportions and effects are
listed in Table 1 and Figure 4, respectively.

Accuracy Evaluation Index
To fully verify the accuracy of the proposed model, we chose three
evaluation indicators to evaluate the model as a whole in order to
more fully and intuitively prove the effect of our model. Three
metrics are as follows.

mIOU
This calculates the ratio of the intersection and union of two
sets of true and predicted values. This ratio is the sum of true
positive (TP) divided by TP, false positive (FP), and false negative

TABLE 1 | Image enhancement setting parameters.

Operation Proportion

Brightness −0.2 to 0.2

Zoom −0.75 to 2

Horizontal flip 0.5

Shift 0.5

Rotation −0.5 to 0.5

Channel transformation 10

(FN). FN indicates that the prediction was negative, but the
label result was positive; an FP is actually a negative case, and
for a TP, the prediction is positive. In fact, it is also a positive
example, indicating that the prediction result is correct, where pij
represents the number of real values and is predicted to be j, and
k+1 is the number of classes (including the background). Pii is
the number of values predicted correctly, and pij, and pji represent
FP and FN, respectively (Kingma and Ba, 2015). The formula for
calculating mIOU is as follows:

mIOU =
1

k+ 1

k∑
i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

(1)

F score
In an ideal situation, it would be best if both evaluation indexes
were high. However, a high precision generally means low recall,
and high recall means low precision. Therefore, in practice,
it is often necessary to make a trade-off according to specific
circumstances, such as the general search situation. To ensure
the recall rate, the precision rate should be improved as much
as possible. For example, for cancer detection, seismic detection,
financial fraud, and so on, the recall rate should be increased as
much as possible to ensure accuracy. A new index, the F score,
is derived, which comprehensively considers the harmonic value
of precision and recall (Flach and Kull, 2015). The calculation
formula is as follows:

Precision =
TP

TP + FP
+FP (2)

Recall =
TP

TP + FN
(3)

F−score =
(
1+ β2)

·
Precision · Recall

β2 · Precision + Recall
(4)
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FIGURE 4 | Image enhancement renderings.

The Dice coefficient is a set similarity measurement function,
which is usually used to calculate the similarity between two
samples, and its value range is [0,1]. The inclusion of |y ∩ ŷ| is
real labels, and predicting the intersection between

∣∣y∣∣ and
∣∣ŷ∣∣

indicates the number of elements in y and ŷ, respectively; among
them, the coefficient of molecules is 2 because there is a common
element in the denominator between the repeated calculation of
y and ŷ

The loss function (Dice loss) is formulated according to the
Dice coefficient because the real goal of segmentation is to
maximize the degree of overlap between the real tag and the
predicted one, that is, the similarity. However, when the Dice loss
is used, there is severe shock when positive samples are generally
small targets. In the case of only the foreground and background,
once some pixels of small targets are predicted incorrectly, the
loss value will change significantly, leading to a drastic gradient
change. In the extreme case, it can be assumed that only one
pixel is a positive sample. If the prediction of this pixel is correct,
the prediction results of the other pixels will be ignored, and the
loss is always close to 0. The prediction error causes the loss
to approach 1. For the cross-entropy loss (CE loss) function,
CE is a proxy form, and it is easy to maximize optimization in
the network by virtue of its characteristics, which averages the
value as a whole. Therefore, the loss function adopted in our
experiment is to add CE loss based on the Dice loss. This can
compensate for some deficiencies in the Dice loss (Li et al., 2020).
The calculation formula is as follows:

Dice loss with CE

= 1−
2|y∩ ŷ|
|y| + |ŷ|

− [ylog ŷ+ (1− y)log(1− ŷ)] (5)

Model Accuracy on Polyp Datasets
This section discusses an experiment that was conducted on a
dataset of polyps. In order to better verify the effectiveness of
our proposed model on the CT images of polyp tumor lesions,
we determine the effect on polyp segmentation. We compared
popular medical image segmentation semantic segmentation
models: UNet (Ronneberger et al., 2015), UNet++ (Zhou
et al., 2018, 2020), UNet+++ (Huang et al., 2020), U2Net
(Qin et al., 2020), and PraNet (Fan et al., 2020), and we
compared three general semantic segmentation models: PspNet

(Zhao et al., 2017), Deeplabv3+ (Chen et al., 2018), and FCN8
(Long et al., 2015). To increase the reliability of our model,
we added three new semantic segmentation networks: OcrNet
(Yuan et al., 2020), DnlNet (Yin et al., 2020), and PointRend
(Kirillov et al., 2019). For the experiment, the backbone of the
model chooses the VGG16 (Simonyan and Zisserman, 2014)
network as the comparison model. On the validation set data, the
accuracy was analyzed based on two commonly used semantic
segmentation evaluation indexes, mIOU and Dice loss with CE.

We randomly selected four test images from different angles
and analyzed our model using multiple contrast models. The
segmentation results are shown in Figure 5. The results of
PspNet (Zhao et al., 2017), Deeplabv3+ (Chen et al., 2018),
and FCN8 (Long et al., 2015), which are three general semantic
segmentation models on the dataset segmentation effect, are
poorer, produce serious false identification, and cannot effectively
segment the region and segment the area completely, although
the PraNet (Fan et al., 2020) effect is better; however, because
its detection speed is much slower than MBFFNet, it does not
have practical application value and is not suitable for rendering
displays in the four models. As can be seen from the figure, UNet
(Ronneberger et al., 2015), UNet++ (Zhou et al., 2018, 2020),
U2Net (Qin et al., 2020), and UNet+++ (Huang et al., 2020) all
segment relatively good areas and can segment the contour of the
area in which the polyp is located, but the precise boundary of the
polyp cannot be obtained. There are some FN pixels, especially
for small polyps, and the segmentation effect of MBFFNet is
obviously better than that of the other models. OcrNet (Yuan
et al., 2020), DnlNet (Yin et al., 2020), and PointRend (Kirillov
et al., 2019) are semantic segmentation networks, but although
they show relatively excellent performance, they cannot be
properly segmented in the third line of small colonoscopy images,
resulting in their omission. In this study, the multiple branches
feature fusion network MBFFNet is compared with the multiple
model above, although it significantly reduces the number of
calculations and increases the detection speed; however, because
of the way in which multi-branch feature fusion is used, even
small polyps in segmentation, it still makes good corresponding
image edges and accurately determines the image boundary.
Therefore, the MBFFNet is more effective for segmenting polyps.

As shown in Table 2, the evaluation index shows that the polyp
divides the dataset on the test set, multiple-branch fusion network
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FIGURE 5 | Comparison of model effect. The red represents True Positive (TP), indicating that the predicted polyp area is actually a polyp area. Blue represents False
Positive (FP), indicating that the predicted polyp area is actually a non-nuclear area. The green represents FN (False Negative), which means that the predicted polyp
area is actually a polyp area.

MBFFNet mIOU above LinkNet (Chaurasia and Culurciello,
2018), PspNet (Zhao et al., 2017), Deeplabv3+(Chen et al., 2018)
general semantic network segmentation, segmentation, and
medical UNet (Ronneberger et al., 2015), and the optimization
model of the polyp has the same order of magnitude. Image
segmentation results in a reduction in the number of calculations.
The model precision does not decrease, and it can be seen
that the model reduces the UNet (Ronneberger et al., 2015)
redundancy phenomenon, making the model more efficient.
However, in the evaluation index of Dice loss with CE, the loss
value of the MBFFNet is slightly higher than that of medical
networks such as UNet (Ronneberger et al., 2015), and it is
much lower than that of networks such as LinkNet (Chaurasia
and Culurciello, 2018). OcrNet (Yuan et al., 2020), DnlNet (Yin
et al., 2020), and PointRend (Kirillov et al., 2019), which are the
latest semantic segmentation networks, and they show very good
performance in general semantic segmentation and show much
better segmentation performance than FCN8 (Long et al., 2015),
Deeplabv3+ (Chen et al., 2018), and PspNet (Zhao et al., 2017)
for the colonoscopy segmentation dataset. However, because
they focus more on semantic segmentation in common scenes,
the segmentation effect on colonoscopy was lower than that
of our proposed model and other medical image segmentation
networks. This shows that the optimization of the model did not
significantly affect the accuracy. It can be seen that the MBFFNet
reduces redundancy in polyp segmentation, while ensuring that
the accuracy does not change significantly.

Parameter Number Verification
To better verify whether our model reduces the redundancy of
the feature map and the number of parameters and flops of the

model, we calculated the number of parameters and flops of the
MBFFNet and LinkNet (Chaurasia and Culurciello, 2018), FCN8
(Long et al., 2015), U2Net (Qin et al., 2020), UNet++ (Zhou et al.,
2018, 2020), UNet+++ (Huang et al., 2020), PspNet (Zhao et al.,
2017), and Deeplabv3+ (Chen et al., 2018). To better compare
the differences between the model parameters and the number
of computations, VGG16 (Simonyan and Zisserman, 2014) was
used as the backbone for all semantic segmentation networks, and
the same settings were used in all comparison experiments.

The number of parameters of the model mainly depends on
the number of calculations of each convolution kernel in each
convolution layer. Here, the size of each convolution kernel is
kw × kh, the size of the input feature graph is ci, and the number

TABLE 2 | Evaluation index of polyp segmentation mIOU, F-score, and
Dice loss with CE.

Model mlOU F-score Dice loss with CE

UNet (Ronneberger et al., 2015) 0.8883 0.9354 0.1719

LinkNet (Chaurasia and Culurciello, 2018) 0.8711 0.9238 0.1911

U2Net (Qin et al., 2020) 0.8950 0.9398 0.1528

UNet++ (Zhou et al., 2018, 2020) 0.8895 0.9364 0.1642

UNet+++ (Huang et al., 2020) 0.8831 0.9312 0.1827

PraNet (Fan et al., 2020) 0.9347 0.9612 0.1012

PspNet (Zhao et al., 2017) 0.8612 0.8972 0.2453

Deeplabv3+ (Chen et al., 2018) 0.8452 0.8872 0.3214

FCN8 (Long et al., 2015) 0.8563 0.8945 0.2752

DnlNet (Yin et al., 2020) 0.8657 0.9143 0.2064

OcrNet (Yuan et al., 2020) 0.8801 0.9210 0.1953

PointRend (Kirillov et al., 2019) 0.8585 0.9074 0.2153

MBFFNet 0.8952 0.9450 0.1602
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of convolution kernels is the number of channels of the output
feature graph, which is co. Therefore, the calculation formula for
the number of parameters at each convolution layer is as follows:

Param = cicokwkh (6)

The computation of the model is the sum of each convolution
layer. The number of calculations of the convolutional layer is
determined by the number of calculations of the convolutional
kernel in each sliding window and the overall sliding duration.
In each sliding window, the number of calculations of the
convolution operation is approximately cikw kh

, low loh
is the size of

the output feature graph, and the number of sliding times of the
convolution kernel is the number of data of the output feature
graph, that is, colow loh

, so the overall number of calculations is:

Flops = cicolowl
o
hkwkh (7)

Using the above formula, the number of parameters in the
MBFFNet and the comparison model with flops are shown in
Table 3. As can be seen in the table, our MBFFNet was compared
with UNet (Ronneberger et al., 2015) because of the complex
model structure. MBFFNET on FLOPS reduced to 26.79% of
UNET’s FLOPS; compared with U2Net (Qin et al., 2020), the
quantity decreased to 24.67%, and flops to 39.51%. The results
were analyzed and compared with the UNet (Ronneberger et al.,
2015) model, multiple branching feature fusion network, and
there was a significant reduction in the number of parameters of
the model and the flop count, decreasing to a certain extent the
redundancy of the model. Compared with other networks, FCN8
(Long et al., 2015) and other classical semantic segmentation
networks fail to meet the requirements with respect to both
precision and number of parameters. OcrNet (Yuan et al.,
2020), PointRend (Kirillov et al., 2019), and DnlNet (Yin et al.,
2020) have improved their accuracy, but their very high flop
count requires extremely high configurations to achieve excellent
performance, and they can only be applied to workstations
and other environments in the future. In addition, to more
comprehensively show the light weight and popularity of our

TABLE 3 | Analysis of the number of parameters and the number of calculation.

Model Training
time (h)

Param (M) Flops (B)

UNet (Ronneberger et al., 2015) 12 24.89 56.33

LinkNet (Chaurasia and Culurciello, 2018) 3 11.53 1.23

U2Net (Qin et al., 2020) 18 96.25 40.24

UNet++ (Zhou et al., 2018, 2020) 20.5 36.16 135.24

UNet+++ (Huang et al., 2020) 16 18.27 211.09

PraNet (Fan et al., 2020) 13 16.16 20.37

PspNet (Zhao et al., 2017) 11.5 15.11 25.57

Deeplabv3+ (Chen et al., 2018) 16.5 134.27 27.78

FCN8 (Long et al., 2015) 78.5 30.34 6390

DnlNet (Yin et al., 2020) 15.5 50.13 50110

OcrNet (Yuan et al., 2020) 5 70.35 40530

PointRend (Kirillov et al., 2019) 37.5 47.69 14640

MBFFNet 5.5 23.74 15.09

model, we added the convergence time of the training model to
the evaluation index of the model. It can be seen that although our
model did not achieve the fastest convergence, its training time
was much lower than that of UNet (Ronneberger et al., 2015),
UNet++ (Zhou et al., 2018, 2020), and other networks.

To obtain a more intuitive understanding of the effects of
different models, we used the flop count as the abscissa and
mIOU as the ordinate, and we built a coordinate graph with
the number of parameters to show the size of the model, as
shown in Figure 6. From Figure 6, we observe that when the
model is closer to the upper left corner, the model has a higher
mIOU and a lower flop count. Although PraNet (Fan et al.,
2020) possesses excellent mIOU precision, the high flop model
in terms of the comprehensive income ratio is not ideal; further,
although LinkNet (Chaurasia and Culurciello, 2018) has a very
low flow count, the model does not have satisfactory accuracy and
cannot meet the precision requirements of medical treatment, so
it cannot be applied to health care.

Real-Time Analysis of the Model
To verify that the detection rate of our model is improved
when the number of parameters and number of calculations
are significantly decreased, images with sizes of 256 × 256 and
64 × 64 are selected for experiments, and it is determined
whether the model can meet the application standards in
different computing resource environments. According to the
sales data, we choose mainstream graphics cards currently on the
market. GTX1060 represents the graphics card having a midrange
productivity, which is the one with the highest production and
the widest coverage at present. The 2060s is the midrange and
top end graphics card and is the one expected to be most in
use in the next 20 years. To meet the requirements of our
model, it can be used in a wider range of medical environments
worldwide to effectively prevent colorectal cancer and accurately
separate polyps and adenomas. To test the actual operation effect
of MBFFNet and considering the equipment environment in
economically underdeveloped areas, we added the R5-3600 with
an AMD platform and the I7-8750H CPU environment with an
Intel platform, which are commonly used at present. In addition,
considering that our proposed model will be applied on a large
scale in medical environments, we did not choose traditional
segmentation networks with poor segmentation results, such as
Deeplabv3+ (Chen et al., 2018), PspNet (Zhao et al., 2017), and
LinkNet (Chaurasia and Culurciello, 2018); nor did we choose
PraNet (Fan et al., 2020) with poor real-time performance to
conduct related experiments.

First, we selected a common medical image size of 256 × 256
as a test, and the test results are presented in Table 4. It can
be seen that at 256 × 256, our model runs much faster in the
CPU environment than other U-shaped networks; at its actual
running speed, FPS is 100% higher than UNet (Ronneberger
et al., 2015), UNet++ (Zhou et al., 2018, 2020), etc. In a GPU
environment, the actual segmentation approaches 30 FPS, even
on today’s midproductivity graphics cards; in real life, 30 FPS can
achieve a smoother detection effect to the naked eye to meet the
real-time requirements. However, other semantic segmentation
models with better medical segmentation effects cannot meet
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FIGURE 6 | Comparison between the accuracy of different models and flop count.

the real-time requirements. Although LinkNet (Chaurasia and
Culurciello, 2018) has an excellent actual operating performance,
its segmentation performance fails to meet the precision
requirements. In accuracy verification, the LinkNet model
(Chaurasia and Culurciello, 2018) cannot effectively segment
the polyp boundary.

Subsequently, we conducted FPS test experiments on 64 × 64
images, and the experimental results are listed in Table 5. In
the 64 × 64 image, our model can meet the real-time test
requirement of 30 FPS even in a CPU environment, and the actual
running fluency FPS is higher than that of other medical image
segmentation networks. Thus, it can be seen that in existing
common computer resources equipment, MBFFNet can meet the
requirements of real-time observation of medical observation,
even in economically underdeveloped areas. For low computer
resources, it is seen that even in the case of infrequently used
graphics resources configuration, our proposed model can also
guarantee the real-time segmentation of polyps.

Based on the experiment results, it can be seen that owing to
the advantages of low flop count, our model displays excellent

TABLE 4 | 256 × 256 polyp image segmentation FPS.

Model AMD Inter 2060Super 1060

Unet (Ronneberger et al., 2015) 4 3 45 21

LinkNet (Chaurasia and Culurciello, 2018) 19 16 115 88

U2Net (Qin et al., 2020) 2 2 23 14

UNet++ (Zhou et al., 2018, 2020) 2 2 22 10

UNet+++ (Huang et al., 2020) 2 1 16 8

MBFFNet 8 7 55 28

The image size is 256 × 256. AMD represents the FPS test on the CPU of
the AMD platform (R5-3600), Inter represents the FPS test on the CPU of Intel
platform (I7-8750H), 2060Super represents the FPS test in the GPU environment
of the 2060Super graphics card, and 1060 represents the FPS test in the GPU
environment of the RTX1060 graphics card.

real-time performance in an environment with low computer
resources, while the advantages of our model are very significant
in environments with lower computer resources. Under the
current computer resources, our model MBFFNet has been able
to deal with a variety of different conditions of accurate basic real-
time polyp segmentation and achieved a relatively good effect.

Model Generalization Experiment
For all of the experiments in this section, we chose the same
experimental environment and image processing method as the
polyp segmentation dataset in Dataset. The final evaluation
indexes mIOU, F score, and Dice loss with CE were also evaluated
based on validation set data. We chose U2Net (Qin et al., 2020),
UNet++ (Zhou et al., 2018, 2020), and UNet+++ (Huang et al.,
2020) as the semantic segmentation models for medical images;
PraNet (Fan et al., 2020) as the semantic segmentation model
for polyps; and PspNet (Zhao et al., 2017), Deeplabv3+ (Chen
et al., 2018), and FCN8 (Long et al., 2015) as the comparison
model for the experiment. For the demonstration, we selected
the test sample for liver lesion segmentation, and the sample
segmentation image is shown in Figure 7. It can be seen

TABLE 5 | FPS segmentation of 64 × 64 polyp images.

Model AMD Inter 2060Super 1060

Unet (Ronneberger et al., 2015) 20 19 152 90

LinkNet (Chaurasia and Culurciello, 2018) 84 68 138 141

U2Net (Qin et al., 2020) 13 14 31 23

UNet++ (Zhou et al., 2018, 2020) 10 11 98 55

UNet+++ (Huang et al., 2020) 9 9 90 68

MBFFNet 33 31 163 112

The image size is 64 × 64. AMD stands for the FPS test on AMD CPU (R5-3600),
Intel stands for the FPS test on an Intel CPU (I7-8750H), 2060Super stands for the
FPS test in the GPU environment on a 2060Super graphics card, and 1060 stands
for FPS test in the GPU environment on an RTX1060 graphics card.
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FIGURE 7 | Segmentation effect of liver lesions.

FIGURE 8 | Comparison between the accuracy of different models and Flop count.

that, compared with other models, MBFFNet retains the edge
feature information better, which makes the boundary of liver
lesion segmentation clearer and more accurate, and ensures the
accuracy of medical images.

According to the analysis of the experimental results, similar
to the results of colonoscopy segmentation, our model is better
than PraNet (Fan et al., 2020), Deeplabv3+ (Chen et al.,
2018), FCN8 (Long et al., 2015), and other general semantic
segmentation models in various medical image segmentation
datasets, but it is slightly better than UNet (Ronneberger et al.,
2015), UNet++ (Zhou et al., 2018, 2020), and U2Net (Qin et al.,
2020) and basically equal to UNet+++ (Huang et al., 2020).
The segmentation results of the model are worse than those
of PraNet (Fan et al., 2020). As these medical models can all
achieve good segmentation effects, mIOU, F score, Dice loss
with CE, and other indicators show excellent effects in intestinal
cancer, liver cancer, DSB2018, lung, and other datasets, with
little difference. In the face of a more complex medical image
segmentation environment, for example, only in the eye blood

vessels and ISBI2015 datasets can PraNet (Fan et al., 2020) show
relatively good results. It can be seen that the PraNet (Fan
et al., 2020) model can achieve a good segmentation effect in a
very complex segmentation environment, but its extremely large
flop count makes it impossible to carry out an effective real-
time segmentation model in a generally productive equipment.
However, our MBFFnet model retains edge feature information
owing to multi-branch feature fusion. In most circumstances,
it can achieve excellent segmentation results and has good
generalization ability, which is sufficient to deal with most of
the image segmentation, and because our model with network
model structure is compact and lightweight, it enables very
convenient deployment in most of medical environments, lesion
image segmented (see the Appendix for detailed experimental
results in Tables A1–A3). Because the ultimate purpose of this
study is to find a network that can be applied in practice and that
considers both speed and precision, it is not ideal to talk about
precision without speed alone. Therefore, the ratio of mIOU, F
score, and Dice loss with CE to flops was taken as the index of the
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new measurement model. It can be seen from mIOU (per flops)
and F score (per flop) that our model has the highest return under
the same computing resources (the higher the better), whereas the
loss indicator indicates a faster and more stable convergence (the
lower the better). The effect diagram is shown in Figure 8.

CONCLUSION

In this article, an MBFFNet is proposed to achieve the accurate
and real-time segmentation of liver lesion images. A U-shaped
structure such as UNet is used to gradually fuse shallow features
with high-dimensional features. The method of superposition
of feature graphs used by UNet is abandoned in the process
of feature fusion, but the multiplication of feature graphs is
chosen for feature fusion. A feature map with five branches is
used, and then a pyramid feature map similar to PspNet is used
to fuse the feature as a supplementary feature of the feature
information. Finally, the two groups of features are fused to
obtain the final segmentation result, and the experimental results
show that the algorithm in the segmentation polyp area achieved
the same results as the UNet segmentation results regardless of
the polyp area size. In addition, it can complete the segmentation
edge details such as features, get a better segmentation effect,
and significantly reduce the network number and number of
calculations, and it improved the real-time performance of the
polyp of semantic segmentation model segmentation; at the
same time, the segmentation experiments on other medical

images show that MBFFNet has good robustness in medical
image segmentation.
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TABLE A1 | mIOU evaluation index of multi-class medical image segmentation.

Model mIOU

DSB2018 Lung Eye blood vessels ISBI2015 Liver cancer Intestinal cancer

UNet (Ronneberger et al., 2015) 0.9078 0.9691 0.8106 0.8020 0.9854 0.9641

LinkNet (Chaurasia and Culurciello, 2018) 0.8983 0.9166 0.7457 0.7711 0.9803 0.9279

U2Net (Qin et al., 2020) 0.9126 0.9732 0.8070 0.8031 0.9854 0.9609

UNet++ (Zhou et al., 2018, 2020) 0.9108 0.9697 0.8083 0.8023 0.9849 0.9733

UNet+++ (Huang et al., 2020) 0.9134 0.9715 0.8077 0.7995 0.9858 0.9707

PraNet (Fan et al., 2020) 0.9453 0.9897 0.8762 0.8862 0.9903 0.9801

PspNet (Zhao et al., 2017) 0.7892 0.9568 0.5464 0.4891 0.9667 0.9551

Deeplabv3+ (Chen et al., 2018) 0.7871 0.9661 0.5449 0.4890 0.9721 0.9623

FCN8 (Long et al., 2015) 0.9041 0.9815 0.6687 0.7172 0.9853 0.9645

MBFFNet 0.9132 0.9704 0.8127 0.8061 0.9884 0.9709

TABLE A2 | Multi-class medical image segmentation F-score evaluation index.

Model F-score

DSB2018 Lung Eye blood vessels ISBI2015 Liver cancer Intestinal cancer

UNet (Ronneberger et al., 2015) 0.9502 0.9842 0.8872 0.8864 0.9926 0.9815

LinkNet (Chaurasia and Culurciello, 2018) 0.9446 0.9803 0.8379 0.8657 0.9900 0.9616

U2Net (Qin et al., 2020) 0.9527 0.9864 0.8846 0.8873 0.9926 0.9798

UNet++ (Zhou et al., 2018, 2020) 0.9519 0.9845 0.8855 0.8865 0.9923 0.9863

UNet+++ (Huang et al., 2020) 0.9532 0.9855 0.8851 0.8846 0.9928 0.9850

PraNet (Fan et al., 2020) 0.9732 0.9912 0.9213 0.9274 0.9912 0.9883

PspNet (Zhao et al., 2017) 0.8729 0.9778 0.6350 0.6223 0.9828 0.9712

Deeplabv3+ (Chen et al., 2018) 0.8714 0.9827 0.6337 0.6170 0.9857 0.9653

FCN8 (Long et al., 2015) 0.9478 0.9906 0.7722 0.8278 0.9925 0.9671

MBFFNet 0.9604 0.9839 0.8895 0.8928 0.9926 0.9851

TABLE A3 | Dice loss with CE evaluation index for multi-class medical image segmentation.

Model Dice Loss with CE

DSB2018 Lung Eye blood vessels ISBI2015 Liver cancer Intestinal cancer

UNet (Ronneberger et al., 2015) 0.1264 0.0548 0.2222 0.3310 0.0146 0.0377

LinkNet (Chaurasia and Culurciello, 2018) 0.1423 0.0714 0.3258 0.3822 0.0215 0.0779

U2Net (Qin et al., 2020) 0.1191 0.0471 0.2344 0.3327 0.0148 0.0411

UNet++ (Zhou et al., 2018, 2020) 0.1213 0.0547 0.2248 0.3202 0.0151 0.0276

UNet+++ (Huang et al., 2020) 0.1199 0.0514 0.2351 0.3331 0.0144 0.0307

PraNet (Fan et al., 2020) 0.0921 0.0321 0.1453 0.2145 0.0101 0.0219

PspNet (Zhao et al., 2017) 0.3046 0.0743 0.6231 0.8119 0.0351 0.0801

Deeplabv3+ (Chen et al., 2018) 0.3068 0.0565 0.6285 0.8169 0.0290 0.0792

FCN8 (Long et al., 2015) 0.1318 0.0350 0.4485 0.4874 0.0145 0.0407

MBFFNet 0.1303 0.0638 0.2545 0.3254 0.0130 0.0303
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