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Finite element (FE) head models have become powerful tools in many fields within
neuroscience, especially for studying the biomechanics of traumatic brain injury (TBI).
Subject-specific head models accounting for geometric variations among subjects are
needed for more reliable predictions. However, the generation of such models suitable for
studying TBIs remains a significant challenge and has been a bottleneck hindering
personalized simulations. This study presents a personalization framework for
generating subject-specific models across the lifespan and for pathological brains with
significant anatomical changes by morphing a baseline model. The framework consists of
hierarchical multiple feature and multimodality imaging registrations, mesh morphing, and
mesh grouping, which is shown to be efficient with a heterogeneous dataset including a
newborn, 1-year-old (1Y), 2Y, adult, 92Y, and a hydrocephalus brain. The generated
models of the six subjects show competitive personalization accuracy, demonstrating the
capacity of the framework for generating subject-specific models with significant
anatomical differences. The family of the generated head models allows studying age-
dependent and groupwise brain injury mechanisms. The framework for efficient generation
of subject-specific FE head models helps to facilitate personalized simulations in many
fields of neuroscience.

Keywords: finite element modeling, personalized simulation, traumatic brain injury, brain stimulation, neuroimage
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INTRODUCTION

Finite element (FE) head models have become powerful tools to simulate brain stimulations with
direct current (tDCS) (Datta et al., 2009; Datta et al., 2012; Huang et al., 2013; Windhoff et al., 2013;
Opitz et al., 2015; Alekseichuk et al., 2019; Li et al., 2020; Wang et al., 2020), magnetic (TMS) (Opitz
et al., 2013), and ultrasound (TUS) (Legon et al., 2014). Such models are also being used to study the
development of neurodegenerative diseases (Fornari et al., 2019; Noël and Kuhl, 2019;Weickenmeier
et al., 2019) and biomechanical consequences of neurosurgery (Weickenmeier et al., 2017; von Holst
and Li, 2014; Li et al., 2015; Ji et al., 2009; Hu et al., 2007; Miller et al., 2010). In particular, FE head
models have been tremendously used to study traumatic brain injuries (TBIs) in the last decades (see
reviews (Giudice et al., 2019; Horstemeyer et al., 2019; Madhukar and Ostoja-Starzewski, 2019)).
Meshing is a first step in generating FE models by discretizing a continuous domain into a finite
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number of elements, e.g., tetrahedral or hexahedral elements.
Generation of FE head models is often time-consuming and
challenging due to its complex geometry, though tetrahedral
elements are relatively easier to generate, e.g., automatic
pipelines have been reported to efficiently generate tetrahedral
head models for simulating brain stimulations (Huang et al.,
2013; Windhoff et al., 2013). Such efficiency is partially attributed
to the well-developed automatic tetrahedral meshing algorithms
within mathematics and computer science (Baker, 2005); it is also
because the involved partial differential equations (PDEs) are less
computationally demanding, permitting a huge number of
tetrahedral elements (up to >10 million (Datta et al., 2009)) to
capture anatomical details of the brain. Thus, personalized
simulations with anatomically detailed subject-specific head
models are largely facilitated in these brain stimulation fields.

In contrast to tetrahedrons, hexahedral elements are much
more challenging to generate (Baker, 2005; Shepherd and
Johnson, 2008) but are preferred in FE head models intended
for studying TBIs (hereafter called head injury models) due to
their higher efficiency for simulating the incompressible brain
under impact (Li et al., 2021). Furthermore, the involved PDEs in
head impacts consist of geometrical, material nonlinearity, and
complex contacting algorithms, which are more computationally
demanding. As a result, many state-of-the-art head injury models
(Zhang et al., 2001; Horgan and Gilchrist, 2003; Kleiven, 2007;
Takhounts et al., 2008; Mao et al., 2013a; Sahoo et al., 2014; Ji
et al., 2015a; Atsumi et al., 2016) use hexahedrons despite the
meshing challenges and have simplified brains to reduce the
number of elements for computational efficiency. For example,
these models have smoothed out brain surfaces and do not have
sulci, and gyri, resulting in fewer elements (often <1 million).
While a simplified representation of the brain is a reasonable
trade-off for computational efficiency, it’s also partially due to the
challenges for meshing techniques (e.g., the blocking technique
(Mao et al., 2013b)) to capture the anatomical details. It is worth
mentioning that the voxel approach is efficient in generating
hexahedrons by converting image voxels to hexahedral elements,
either directly or with smoothing algorithms. However, a known
concern is a less accurate peak strain/stress predicted from such
models, especially on the surfaces due to jaggedness.
Nevertheless, careful choice of sufficiently refined mesh and
result analysis allow such models to provide valuable insights
due to their anatomical accuracy (see discussion in (Li et al.,
2021)). Besides the much less developed automatic algorithms for
generating hexahedrons (Baker, 2005; Shepherd and Johnson,
2008), a necessity to include falx and tentorium to account for
their important structural influence on brain mechanical
responses during impact (Ho et al., 2017) poses an additional
challenge for subject-specific head injury model generation while
both structures are often neglected in head models for simulating
tDCS, TMS, and TUS. A detailed analysis of the current meshing
challenge for head injury models is found in a previous study (Li
et al., 2021).

Therefore, the generation of FE head injury models with
anatomical details remains a challenge and has become a
bottleneck hindering personalized simulations. FE head models
without anatomical details such as sulci and gyri also hinder

studying detailed mechanisms at areas of interest, such as chronic
traumatic encephalopathy (CTE) with pathologies observed at
sulcal depth (McKee et al., 2015). Studies have also shown that the
brain size/shape influences brain mechanical responses
significantly under impact (Kleiven and von Holst, 2002; Li
et al., 2021), suggesting the importance of using personalized
models to study the onset of TBI in real life. Along with the many
existing adult healthy FE head models, there are only a few
elderly, children, and infant models (e.g., (Li et al., 2011;
Giordano et al., 2017; Li et al., 2017; Li and Kleiven, 2018;
Hajiaghamemar et al., 2019; Li et al., 2019; Zhou et al., 2019;
Zhou et al., 2020)). TBIs are influencing all age groups, especially
infants and the elderly are overrepresented (Pedersen et al., 2015).
Thus, it is imperative to investigate efficient approaches for
generating detailed subject-specific head injury models across
the lifespan and for pathological brains to understand the injury
mechanisms and develop preventions.

This study addresses the challenge of generating subject-
specific head injury models with hexahedrons, especially
concerns about mesh morphing, which is an efficient approach
for generating subject-specific models. The approach has been
used in many biomechanics fields on different organs (Couteau
et al., 2000; Castellano-Smith et al., 2001; Fernandez et al., 2004;
Sigal et al., 2008; Bucki et al., 2010; Bijar et al., 2016; Park et al.,
2017), full-body models (Davis et al., 2016; Beillas and Berthet,
2017; Liu et al., 2020), as well as for detailed (Giudice et al., 2020;
Giudice et al., 2021; Li et al., 2021; Montanino et al., 2021) and
simplified brain models (Hu et al., 2007; Ji et al., 2011; Ji et al.,
2015b; Wu et al., 2019). A typical procedure involves image
registration (rigid or affine and followed by nonlinear
registrations), from which a displacement field representing
the geometrical difference between the subject and baseline
model is obtained. The displacement field is then applied to
morph the baseline model, resulting in a personalized model with
updated nodal coordinates while preserving element connections.
The displacement field derived from image registrations should
generally comply with continuum mechanics conditions on
motion, requiring diffeomorphic, non-folding, and one-to-one
correspondence to avoid excessive element distortions (Bucki
et al., 2010).

In particular, deformable image registration-based mesh
morphing has been applied to personalize detailed brain
models of healthy subjects (Giudice et al., 2020; Giudice et al.,
2021; Li et al., 2021; Montanino et al., 2021). However, despite
intensive efforts, inter-subject registration between brains with
significant anatomical differences is still challenging within
neuroimaging field with limited registration accuracy (Kim
et al., 2015). Moreover, when applying image registration for
mesh morphing, there is a higher requirement on the smoothness
of the obtained displacement field to ensure acceptable element
quality in the morphed mesh. Therefore, one major challenge for
using mesh morphing to generate subject-specific FE head
models is how to design an image registration pipeline that
leads to high registration accuracy, meanwhile, not causes
excessive element distortions. In a previous study (Li et al.,
2021), we proposed a hierarchical image registration pipeline
that allows efficient generation of subject-specific headmodels for
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healthy adult subjects. But a pipeline that allows morphing a
baseline model to subjects with significant anatomical differences
is yet to be developed.

Thus, this study aims at developing a personalization
framework capable of generating subject-specific head models
across the lifespan and for pathological brains with significant
anatomical changes. The framework consists of hierarchical
multiple feature and multimodality image registration pipelines,
mesh morphing, and mesh grouping. Six subject-specific head
models are generated to demonstrate its capacity, including a
newborn, 1Y, 2Y, adult, 92Y, and a hydrocephalus brain. The
results show that the framework is robust to generate subject-
specific models across the lifespan and for pathological brains with
significant anatomical changes by morphing a baseline model. This
framework helps to facilitate personalized simulations in many fields
within neurosciences, especially for studying TBIs in which
personalized simulations are hindered due to the meshing challenge.

MATERIALS AND METHODS

Subjects
Images of the six subjects (Figures 1A–F) are acquired from
previously published open-access datasets, except the
hydrocephalus brain is from the author’s previous study. The
baseline ICBM image (Figure 1G) corresponds to the baseline
head model. For detailed preprocessing steps for these images, the
readers are referred to the original studies. A brief description is
found below and summarized in Table 1.

• Images of a newborn (denoted as 0Y afterward), 1Y, and
2Y are obtained from the UNC Infant 0-1-2 atlases

(Shi et al., 2011) constructed based on 95 subjects with
complete 0-1-2Y longitudinal scans of T1W and T2W
images acquired with a 3T MRI scanner. Each atlas
consists of T1W images, tissue probability maps, and
anatomical parcellation maps.

• Image of a single subject from the WU-Minn HCP database
in the 26–30 age group, including T1W and T2W images, was
acquired with a 3T MRI scanner (Van Essen et al., 2013).

• Image of an elderly (92Y) from the Brain Imaging of Normal
Subjects (BRAINS) atlas was created from 48 healthy elderly
subjects within age group 9193Y as detailed by Dickie et al.
(2016). The atlas contains T1W and tissue probability maps.

• Image of a hydrocephalus subject with a mass lesion at the
brain stem front is reused from a previous study (Li and von
Holst, 2013).

• The 1-mm isotropic ICBM 2009c Nonlinear Symmetric
template (Fonov et al., 2009; Fonov et al., 2011) was
constructed based on T1W images from 152 subjects
between 18.5–43.5Y acquired on a 1.5 T MRI scanner.

Baseline FE Head Model
A previously developed FE head injury model (the ADAPT
model) (Li et al., 2021) serves as a baseline in this study,
which is morphed to obtain subject-specific head models. The
ADAPT model has been generated based on and has the same
geometry as the ICBM template. The model includes the brain,
skull, meninges, CSF, and superior sagittal sinus (SSS) (Figure 2).
The brain is divided into primary structures of cerebral gray
matter (GM) (i.e., cerebral cortex), cerebral white matter (WM),
corpus callosum (CC), brain stem (BS), cerebellum GM andWM,
thalamus, and hippocampus. The cerebrum is further divided
into frontal, frontal, parietal, temporal, and occipital lobes; CSF is

FIGURE 1 | Image data used in this study. Axial, coronal, and sagittal views of (A) 40-week-old newborn, (B) 1-year-old, (C) 2-year-old, (D) an adult, (E) an elderly
of 92-year-old, (F) hydrocephalus brain, and (G) the ICBM baseline (the same length scale applies).
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divided into outer CSF and ventricular system including lateral
ventricles and 3rd and 4th ventricles connected by the cerebral
aqueduct. Continuous mesh is used between brain components
throughout the model. The total number of elements in the head
model is 4.4 million hexahedral and 0.54 million quad elements.
The minimum Jacobian in the brain is 0.45. The brain is modeled
as hyper-viscoelastic material to account for large deformations
and strain rate dependence of the tissue. Pia, dura/falx/tentorium
are modeled with nonlinear hyperelastic material using simplified
rubber/foam based on the average stressstrain experimental data
(van Noort et al., 1981; Aimedieu and Grebe, 2004). The model
has been validated against experimental data of close to or injury
level brainskull relative motion, brain strain, and intracranial
pressure. Details of the model development, validation, and
capacity to study brain responses under impact are presented
earlier (Li et al., 2021).

Personalization Framework for
Subject-specific Head Model Generation
The personalization framework consists of image registration
pipelines, mesh morphing, and mesh grouping (Figure 3). Image
registration is an essential part of the framework. A complete
registration pipeline involves hierarchical registrations with
multiple features and multimodality images shown at the
lower row of Figure 3. The sum of dense displacement fields

obtained from each registration step is used to morph the baseline
headmodel to obtain subject-specificmodels. Afterward, theWM
of the morphed brain is regrouped according to the segmented
WM image mask of the subject, resulting in the final subject-
specific model. Details of each component of the framework are
presented in the following subsections.

Registration Pipeline With Multiple Features and
Multimodality Imaging
A complete registration pipeline contains five steps (Figure 3
lower row). First, Demons registration is performed between the
segmented cranial masks of the baseline ICBM (corresponding to
the baseline ADAPT head model) and the subject after being
rigidly aligned, resulting in a transformation, i.e., dense
displacement field gdemo. Second, Demons registration of
features is performed, obtaining gf1, gf2 . . .. Third, Dramms
registration is performed on T1W images inherited from
Demons steps, obtaining gdram. Next, Dramms registration is
performed with multimodality images, obtaining gm1,gm2 . . ..
Finally, brain lesions are handled by more Demons feature
registration steps, obtaining gfn . . .. In all registration steps,
the subject’s image serves as moving image, and the baseline
ICBM image serves as fixed image. Note that features in this study
refer to the segmented binary images of anatomical regions such
as lateral ventricles, corpus callosum, or lesion. The input images
to Demons registration steps are segmented binary masks. Thus,

TABLE 1 | Subjects involved in this study.

Subject ICV (ml) Imaging modality used
for registration

Image sources

0-year-olda 463 T1W (atlas) Shi et al. (2011)

1-year-old 1,015

2-year-old 1,274

adult 1,480 T1W, T2W (single subject in age group “26–30”) Van Essen et al. (2013)

92-year-oldb 1,323 T1W (atlas) Dickie et al. (2016)

Hydrocephalus 1,255 T1W (single subject) Li and von Holst, (2013)

ICBM baseline 1,885 T1W, T2W (atlas) (Fonov et al., 2009; Fonov et al., 2011)

aThe cerebellum in the T1W atlas was stripped in the original database. The available T2W atlas has a cerebellum but is not chosen in this study as per the requirement of the pipeline.
bAtlas of age group 91-93Y denoted as 92Ys throughout this study for simplicity.

FIGURE 2 | The baseline ADAPT head model with major components illustrated. The meshes are not shown for a better illustration.
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these steps capture local anatomical changes between the moving
and fixed images only in size and shape, while subsequent
Dramms registrations capture the internal anatomical
differences within the volumes of the binary image masks. The
practical usage of the registration pipeline is demonstrated in
Application of the Framework for Subject-specific Model
Generation with six subjects.

In particular, for all Demons steps described above, the
diffeomorphic Demons registration algorithm (Vercauteren
et al., 2009) implemented in the open-source software Slicer
3D is used. Dramms registration algorithm (Ou et al., 2011)
implemented as open-source code by the authors (Dramms
version 1.5.1, 2018) is used on MRI images of different
modalities. Note that for all the six subjects, a smoothness
weight, i.e., the -g option (see DRAMMS Software Manual), is
always set to 1.0 in Dramms registration to ensure a smooth
displacement field.

Morphing
The sum of dense displacement fields from all registration steps
(Eq. 1) represents the anatomical differences between the subject
and the baseline ICBM images.

gsubj � gdemo + gf1 + gf2 . . . + gdram . . . + gm1 + gm2 . . . + gfn.

(1)

As the baseline, ADAPT model is in the same space as the
ICBM image; thus, applying gsubj to the baseline head model
(Figure 2) leads to a subject-specific head model of the subject.
For this, the following step is performed to morph the nodes of
the baseline head model to new positions:

xi � Xi + ui, (2)

where Xi is the nodal coordinate of node i, ui is the linearly
interpolated displacement vector at node n from gsubj, xi is the
updated nodal coordinate, together with the same element
definitions as the baseline, forming a subject-specific head model.

Grouping of WM
To capture the subject’s WM, the morphed brain elements
are regrouped based on the segmented binary image of the
subject’s cerebral WM. This is achieved by assigning
brain FE elements as WM based on Cartesian
coordinates of the segmented WM voxels with the
following procedures:

- For each element, all WM voxels inside or intersect to a single
element of the brain are identified based on spatial
coordinates.

- The eight vertices and one centroid of each voxel (i, j, k) are
judged; vertices gain a weight of one if falling inside the
element; the centroid gains a weight of two if falling inside
the element. Weights of the eight vertices and the centroid of
the voxel add up, resulting in a total weighting factor for each
voxel wi,j,k

wi,j,k � ∑
9

m�1
wm

i,j,k (3)
.

- Finally, weights of each voxel belong to the same
label (e.g., the segmented binary image with label A)
added up, obtaining a final weight factor for each label.
The element is grouped to the label with the largest
weight.

wA � ∑
(i,j,k)∈A

wi,j,k. (4)

Figure 4 shows the regrouped WM elements of the morphed
brain enclosed by the reconstructed surface of the
segmented WM.

Evaluation of Personalization Accuracy
To evaluate registration accuracy, the baseline ICBM image
(imgbaseline), which corresponds to the baseline head model, is
warped via the inverse of displacement fields from each

FIGURE 3 | Overview of the personalization framework.
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registration step (g−1
subj) (Eq. 5), resulting in a warped image

(imgwarped) (Eq. 6).

g−1
subj � g−1

fn(g
−1
m2(g

−1
m1(g

−1
dram(g

−1
f2(g

−1
f1(g

−1
demo))))), (5)

imgwarped � g−1
fn(g

−1
m2(g

−1
m1(g

−1
dram(g

−1
f2(g

−1
f1(g

−1
demo(imgbaseline))))))).

(6)

DICE and 95th percentile Hausdorff distance (HD95) between
the imgwarped and subjects’ images are then calculated to evaluate
registration performance. As imgwarped corresponds to the
personalized subject-specific model, both metrics also reflect
the personalization accuracy of the generated subject-specific
models.

To calculate DICE and HD95, automated segmentation is
performed using the software FreeSurfer (version 7.1.0) with the
default brain segmentation pipeline (recon-all) for both the
warped ICBM and subjects’ T1W images. The segmented
binary masks for the whole brain and local regions of cerebral
GM, WM, CC, BS, hippocampus, thalamus, and cerebellum are
used for DICE and HD95 calculation. For the cranial mask, the
metrics are calculated based on manually segmented cranial by
thresholding followed by noise removal. Similarly, one sagittal
slice of CC is manually segmented and used to calculate both
matrices. The use of manual segmentation for both regions is due
to the insufficient quality (not reflecting the actual anatomy) by
recon-all for the current dataset. Note that these segmented
binary masks are only used for DICE and HD95 calculation,
and the quality of the automatic segmentation has no influence
on the subject-specific mesh development process.

DICE
DICE is a single metric to measure the spatial overlap between
images defined as twice the number of elements common to both
sets divided by the sum of the number of elements in each set (Ou
et al., 2014):

DICE(A, B) � 2|A ∩ B|
|A| + |B|, (7)

where A and B denote the binary segmentation labels, |A| and |B|
are the number of voxels in each set, and |A ∩ B| is the number of
shared voxels byA and B. The DICE value of 0 implies no overlap
between both, whereas a DICE coefficient of one indicates perfect
overlap between the warped and the target image.

HD95
Hausdorff distance is defined as

HD(C,D) � max(h(C,D), h(D,C)), (8)

where C,D are the two sets of vertices from two segmented
images

h(C,D) � max
c ∈ C

max
d ∈ D

‖c − d‖. (9)

The 95th percentile Hausdorff distance (HD95) is used
following earlier studies (Ou et al., 2011; Ou et al., 2014).
HD95 ranges from 0 to above; a lower value indicates a better
registration accuracy between the warped and the target image.

Application of the Framework for
Subject-specific Model Generation
A complete registration pipeline is only needed for the most
challenging case; fewer registration steps are sufficient for brains
with small anatomical differences compared with the baseline.
The following three typical subtypes of the pipeline are used to
generate subject-specific models for the six subjects.

Type I This is the basic pipeline containing two steps: Demons
registration of the cranial mask and Dramms
registration of T1W image. This two-step pipeline
has been shown to achieve good registration

FIGURE 4 | Regrouped WM based on subjects’WM image mask for all the six subjects. The red color shows the WM elements, and the white transparent shows
the surfaces reconstructed from the subject’s segmented WM image mask.
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accuracy for six healthy adult subjects (Li et al., 2021).
The capacity of this pipeline is further demonstrated
with a 2Y brain.

Type II Multiple feature steps are added to the Type I pipeline,
allowing align brains with significant anatomical
changes. The capacity of this pipeline is
demonstrated with a hydrocephalus brain using
three feature steps.

Type III Multi-modality imaging registration steps are added
to the Type I pipeline to improve brain alignment as
demonstrated with an adult brain.

2YO Model Generation via Pipeline Type I: Two Steps
First, T1W images of ICBM and the 2Y brain are segmented to
obtain the cranial masks, which are used as input for Demons
registration, from which a dense displacement field gdemo is
obtained (Figure 5). Next, the baseline ICBM T1W image is
warped by g−1

demo. The warped ICBM and subject’s T1W images
are then skull stripped and serve as input for Dramms
registration, obtaining gdram. The two displacement fields add
up gsubj 2YO � gdemo + gdram which is used to morph the baseline
mesh, obtaining the subject-specific head model. Finally, the
baseline ICBM image warped to the subject is obtained via
imgwarped 2Y � (g−1

dram(g−1
demo(imgbaseline))), which is compared

with the T1W image of the 2Y brain to evaluate personalization
accuracy.

Hydrocephalus Model via Pipeline Type II: Multiple
Features
The workflow is similar to the above, but three additional feature
steps are added to capture the enlarged LV, deformed CC, and

brain lesion, resulting in five dense displacement fields that add
up as gsubj hydro � gdemo + gf1 + gf2 + gdram + gf3, which is
used to morph the baseline mesh and obtain a subject-specific
head model (Figure 6). The baseline ICBM image warped to
the subject is obtained via imgwarped hydro �
(g−1

dram(g−1
f2(g−1

f1(g−1
demo(imgbaseline))))), which is compared with

the T1W image of the hydrocephalus subject to evaluate
personalization accuracy.

Adult Brain Model via Pipeline Type III: Multimodality
The workflow is similar to Type I, but an additional
multimodality T2W registration step is performed to further
align the LVs resulting in three dense displacement
fields added up as gsubj adult � gdemo + gdram + gm1, which is
used to morph the baseline mesh and obtain the
subject-specific head model (Figure 7). The baseline ICBM
image warped to the subject is obtained via imgwarped adult �
g−1
m1(g−1

dram(g−1
demo(imgbaseline))), which is compared with the

T1W image of the hydrocephalus subject to evaluate
personalization accuracy.

Pipeline for the 0Y, 1Y, and the 92Y
The 92Y uses Type II pipeline, similar to the hydrocephalus
subject, except only one feature step for LV is used,
i.e., gsubj 92Y � gdemo + gf1 + gdram. Interestingly, the Dramms
registration captures the thinning of CC without the CC feature
step as for the hydrocephalus subject. It could be due to the higher
quality image of the 92Y than the hydrocephalus brain.

The 1Y could use the same pipeline as the 2Y. However, in
this study, an alternative approach is used, using the 2Y as an
intermediate step, i.e., align 1Y T1W (asmoving image) to that of
the 2Y (as fixed image) by Dramms registration, obtaining

FIGURE 5 | Type I pipeline applied for personalizing the baseline ADAPT model to a subject-specific model of a 2Y. The pipeline consists of two steps: (i) Demons
registration with cranial masks; (ii) Dramms registration with T1W image. The displacement field obtained from each step is visualized on the grid together with the warped
baseline ICBM images to show its effect. The final warped ICBM is overlaid with the subject’s image to visualize registration accuracy.
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a displacement field g1Y to 2Y. The final displacement field used
for personalizing the baseline model to the 1Y writes: gsubj 1Y �
gsubj 2YO + g1Y to 2Y, and the warped image is obtained via
imgwarped 1Y � (g−1

1Y to 2Y(g−1
subj 2Y(imgbaseline))).

The 0Y uses the same pipeline as the 1Y by having 2Y as an
intermediate step, i.e., align the 0Y T1W (as moving image) to
that of the 2Y (as fixed image) by Dramms registration. Since
the cerebellum for the 0Y was stripped in the original
database (Figure 1A), a paired T1W image of the 2Y with

cerebellum stripped (readily available in the database) is used for
registration, from which a displacement field g0Y to 2Y is
obtained. The remaining steps for personalization and
image warping are the same as for the 1Y described above.
Note that although the registered images do not have
cerebellum, the obtained displacement field g0Y to 2Y defined
in the entire image space does cover the cerebellum region
despite values close to zero. The displacement field when used
to morph the baseline model that has cerebellum, resulting in

FIGURE 6 | Type II pipeline applied for personalizing the baseline ADAPT model to a subject-specific model of a hydrocephalus brain. The pipeline consists of five
steps: (i) Demons registration with cranial masks; (ii) Demons registration with segmented lateral ventricle (LV) mask for capturing the enlarged LV; (iii) Demons registration
with segmented CC mask for capturing the CC shape; (iv) Dramms registration with T1W image for capturing local brain anatomy; (v) Demons registration to drag back
the skull mesh which is pushed due to the lesion in the cranial mask in step (i). The displacement field obtained from each step is visualized on the grid together with
the warped baseline ICBM images and morphed meshes to show its effect. The final warped ICBM is overlaid with the subject’s image to visualize registration accuracy.

FIGURE 7 | Type III pipeline applied for personalizing the baseline ADAPTmodel to a subject-specificmodel of an adult subject. The pipeline consists of three steps:
(i) Demons registration with cranial masks; (ii) Dramms registration with T1W image; (iii) Dramms registration with T2W image for further alignment. The displacement field
obtained from each step is visualized on the grid together with the warped baseline ICBM images to show its effect. The final warped ICBM is overlaid with the subject’s
image to visualize registration accuracy.
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a final subject-specific model of the 0Y with cerebellum
included.

RESULTS

Subject-specific Head Models and Element
Quality
The generated head models (Figure 8) and cross-sections
(Figure 9) demonstrate the capacity of the framework for
generating subject-specific head models with significant
anatomical differences; all morphed from a baseline model.
Especially, the extensively enlarged LVs and the varying
shapes of CC in the hydrocephalus and the elderly 92Y brain
are captured (Figures 10, 11). The element quality for the models

is listed in Table 2, showing that most brain elements (95.9 ±
1.5% on average for the six subjects) have a Jacobian over 0.5,
and the minimum Jacobian in all the six head models is above
0.13 (in the hydrocephalus brain). In this study, the mesh quality
is considered satisfactory when at least 95% of the elements have a
Jacobian over 0.5.

Personalization Accuracy
The baseline ICBM image (Figure 10A) is warped to the six
subjects. The warped images (Figure 10B) and subjects’ images
(Figure 10C) are compared to evaluate registration accuracy. The
segmented binary masks of the final warped baseline and subjects
are overlaid to further visualize personalization accuracy
(Figure 11A). The evaluated masks include cranial, brain, and
six local brain regions. The boxplots of the DICE and HD95 are

FIGURE 8 | Six subject-specific head models generated including the 0Y, 1Y, 2Y, adult, 92Y, and a hydrocephalus brain (the same length scale applies).

FIGURE 9 | Six subject-specific models are aligned together, showing the generated models have widely varying intracranial volumes (upper row) and significant
anatomical differences as exemplified with lateral ventricles and corpus callosum (lower row).
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presented in Figure 11, with values listed in Tables 3, 4. The
average DICE scores are all >0.9 for the cranial mask, the brain,
cerebellum, CC, being 0.97, 0.90, 0.89, and 0.94, respectively.
Since the cerebellum for the 0Y subject image has been stripped,
the evaluation of registration accuracy is without this region. The
average DICE score for LV is 0.80. DICE score can be improved
by incorporating multimodality step, e.g., with T2W image that
has higher contrast for CSF/LVs. For example, the pipeline for the
adult subject adding the T2W multimodality step improves
personalization accuracy than previously achieved (see
Supplementary Appendix S1). The DICE values are
comparable to that achieved in neuroimaging field (Ou et al.,

2014) despite the higher requirement on the smoothness of
displacement field for satisfactory element quality in the
personalized head FE models.

Hydrocephalus and the Elderly Brain:
Importance of the Feature Step and the
Higher Requirement on Displacement
Smoothness for Mesh Morphing
The mesh after each morphing step shown in Figure 12 illustrates
the effect of the feature steps, which allow capturing subject’s cranial
shape (Figure 12A), enlarged LVs (Figure 12B), CC (Figure 12C),
as well as pushing back of the skull mesh (Figure 12E), while local

FIGURE 10 | (A) T1W image of the ICBM baseline; (B) ICBM baseline warped to the six subjects; (C) T1W image of the six subjects. Transverse, sagittal, and
coronal cross-sections are captured for each brain.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org October 2021 | Volume 9 | Article 70656610

Li Head Model Personalization

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


TABLE 2 | Element quality of the baseline ADAPT model and the six subject-specific head models generated by morphing.

Head
model

Element quality index

Jacobian ≥0.5 Warpage (°) ≤30 Skew (°) ≤60 Aspect ratio ≤8 Min. angle (°) ≥30 Max angle (°) ≤150

percent min percent max percent max percent max percent min percent max

ADAPT 98% 0.45 92% 111.76 99.9% 69.95 99.9% 6.62 99.8% 17.98 99.9% 161.94

Personalized models

0Y 96% 0.34 92% 112.60 99.9% 70.93 99.9% 7.99 99.9% 14.58 98.0% 168.41
1Y 97% 0.31 92% 111.99 99.9% 69.68 99.9% 8.20 99.9% 16.23 99.0% 167.85
2Y 97% 0.36 92% 110.26 99.9% 67.19 99.9% 6.64 99.9% 16.39 99.0% 166.38
Adult 93% 0.17 90% 139.66 99.9% 74.43 99.9% 10.09 99.0% 8.95 98% 215.91
92Y 96% 0.15 94% 121.81 99.9% 78.53 99.9% 16.09 99.0% 5.56 98% 177.29
Hydrocephalus 95% 0.13 91% 118.31 99.9% 77.71 99.9% 11.07 99.0% 7.80 97% 176.79

FIGURE 11 | T1W image of the subject is overlaid with the segmented binary masks of the warped baseline, including the cranial mask, the brain, and local brain
regions of the cerebellum, hippocampus, thalamus, CC, BS, and lateral ventricles (A). Boxplots of DICE and 95HD. The boxplots show the median, minimum, and
maximum values shown (B).
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brain structures are captured by Dramms registration (Figure 12D).
The meshes from these intermediate steps are morphed from the
baseline ADAPT head model with displacement fields obtained via
the image registration pipeline shown in Figure 6.

To further illustrate the importance of the feature
registrations, a parametric pipeline without the LV feature step
is performed for the 92Y brain, i.e., a complete pipeline writes
gsubj 92Y � gdemo + gdram and imgwarped 92Y �
g−1
dram(g−1

demo(imgbaseline)) (Figure 13). The results show that
the Dramms registration, even using the largest allowable
smoothness weight (g � 1), leads to FE mesh with negative
Jacobian in some elements. For example, one FE element at the
frontal horn of the LVs with a Jacobian (JFE � 0.5) in the baseline
mesh (Figure 13A, right upper), when morphed by the parametric
pipeline resulting in a negative Jacobian (JFE � -0.05) (Figure 13C,
right upper). In contrast, when morphed by the original three-step
pipeline, the same element has a positive value (JFE � 0.31)
(Figure 13B, right upper). This parametric pipeline also results in
lower registration accuracy than the three-step pipeline (Figures
13A,B). This example also demonstrates the higher requirement
on the smoothness of displacement than in the neuroimaging field
when only Jacobian of the displacement field (Jimg) is of concern
(more detailed analysis presented in Supplementary Appendix S2).

DISCUSSIONS

This study presents a personalization framework for the efficient
generation of subject-specific head models. The framework
consists of hierarchical multiple feature and multimodality
imaging registration pipelines, mesh morphing, and mesh
grouping. The registration pipeline achieves competitive
registration accuracy despite a higher requirement on the
smoothness of the displacement field concerning the element

quality of the morphed mesh. The Demons feature registration
steps capture significant anatomical differences, allowing a good
initialization before applying Dramms registration to further
capture the inter-subject anatomical details. The Dramms
registration step with multimodality imaging further improves
brain alignment. As a final step of the framework, mesh grouping
of WM according to the subject’s image mask allows
incorporating subject-specific WM directly. The framework is
successfully applied to subjects across the lifespan and a
hydrocephalus brain with significant anatomical changes,
achieving competitive personalization accuracy. The results
demonstrate that the framework can personalize the baseline
head model to brains with significant anatomical differences,
resulting in subject-specific models ready for personalized
simulations without manual repairing. To the knowledge of
the author, this is the first study aligning such a broad scope
of brain images suitable for mesh morphing.

The efficiency of the hierarchical two-step pipeline combining
Demons and Dramms (Type I) has been previously assessed with
six healthy adult subjects that have high-quality T1W images (Li
et al., 2021). In this study, an extended pipeline is proposed for
obtaining high-quality alignment across heterogeneous data of
lifespan and for pathological brains with significant anatomical
changes by introducing multiple feature steps as demonstrated
with the hydrocephalus (Figure 12) and the 92Y brain
(Figure 13). The registration accuracy for these more
challenging cases is comparable with the six healthy adults,
with average DICE scores for the cerebellum, CC, and brain
all above 0.89. Notably, the average DICE score for LV for the six
subjects in this study is 0.80, higher than that of the six adult
subjects (0.71) (Li et al., 2021). Note that the same adult subject in
an early study (Li et al., 2021) (subject ID 771354) is used here by
adding T2W multimodality registration step (Type III). T2W
images with higher contrast for CSF/LVs improve personalization

TABLE 4 | HD95 for the six subjects.

Subject ID Cranial Brain Cerebellum Hippocampus Thalamus CC BS LV

0Y NaN 10.06 NaN 10.21 7.14 1.0 NaN 2.22
1Y 3.24 5.41 4.5 1.71 2.24 0 5.01 1.41
2Y 2.34 4.10 4.61 1.41 2.0 0.5 4.37 1.41
Adult 3.3 3.56 4.95 2.12 2.0 1 5.00 2.92
92Y 2.24 3.0 3.56 2.62 2.34 0 6.96 3.56
Hydrocephalus 1.41 3.87 5.61 3.56 2.64 0.5 6.47 4.35
Average 2.51 5.0 4.65 3.61 3.06 0.50 5.56 2.65

TABLE 3 | DICE coefficients for the six subjects.

Subject ID Cranial Brain Cerebellum Hippocampus Thalamus CC BS LV

0Y NaN 0.82 NaN NaN 0.60 0.92 NaN 0.78
1Y 0.96 0.93 0.89 0.83 0.89 0.96 0.79 0.85
2Y 0.98 0.92 0.90 0.85 0.90 0.94 0.84 0.83
Adult 0.97 0.91 0.88 0.77 0.88 0.90 0.73 0.68
92Y 0.97 0.91 0.91 0.73 0.80 0.97 0.84 0.90
Hydrocephalus 0.99 0.88 0.86 0.66 0.80 0.92 0.65 0.78
Average 0.97 0.90 0.89 0.77 0.81 0.94 0.77 0.80
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accuracy compared with previous results (see Supplementary
Appendix S1). The mesh grouping step incorporates subject-
specific WM directly, which is important for infant models to
accurately capture the rapid transition between GM and WM in
early infancy. Thus, the promising performance demonstrates the
potential of the framework to personalize the baseline model to
almost any brains with significant anatomical changes. Besides
hydrocephalus, personalized models for brains with other
structural changes such as decompressive craniotomy with
brain expanded outside the skull (Holst et al., 2012) can also
be achieved.

Inter-subject registration between brains with significant
anatomical differences is still challenging in neuroimaging field
and has limited registration accuracy (Kim et al., 2015); even
more challenging is to apply image registration for mesh
morphing due to the higher requirement on the smoothness

of the obtained displacement fields concerning element quality of
the morphedmesh. There is often a trade-off between registration
accuracy and element quality, and higher registration accuracy
tends to worsen element quality according to the experience with
the six subjects in this study. Especially, FE elements become
invalid if their Jacobian become negative, which are not accepted
by most FE analysis software. While in neuroimaging field, for
physically plausible morphing, only positive Jacobian
determinant of displacement field is to be ensured, which is
often a looser requirement than FE Jacobian (see detailed analysis
in Supplementary Appendix S1). Despite the higher
requirement, this study achieves competitive registration
accuracy compared with that reported in the neuroimaging
field (Ou et al., 2014). For example, a previous study reported
Jaccard index below 0.6 for all brain regions using popular
deformable registration algorithms for inter-subject

FIGURE 12 | Morphed FE meshes after each of the five steps for the hydrocephalus subject.

FIGURE 13 | Parametric pipeline for the 92Y without the LV feature step compared with the default pipeline. The warped baseline image by the parametric pipeline
(B) does not capture the enlarged LV compared with that achieved by the default pipeline (A). The parametric pipeline leads to negative Jacobian in some elements in the
personalized mesh (right figure), although the Jacobian map (Jimg) of the final obtained displacement field is all positive. One representative axial slice is shown with the
minimum and the maximum value of Jimg in the entire brain indicated (C,D).
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registration (Ou et al., 2014), while the average Jaccard index
(converted from DICE according to Jaccard index � DICE/(2-
DICE) (Ou et al., 2014)) for the six subjects is all above 0.66 for all
regions in this study.

The applications of the framework show that different
pipelines can be used depending on the anatomical differences
between the subject and baseline ICBM, as well as the subject’s
image quality and available imaging modalities. For brains that
are similar to the baseline, Type I pipeline with fewer steps is
sufficient, while for brains with significant anatomical differences
compared with the baseline, e.g., the hydrocephalus and elderly
brain, Type III pipeline is needed to achieve a proper alignment.
Furthermore, when T2W images are available, multimodality
image allows better alignment of the brain and CSF/LVs. In
principle, more multimodality registrations can be performed if
available from the subject as the baseline image contains imaging
modalities of T1W, T2W, proton density (PD), and tissue
probability maps. Besides, more feature steps can be
introduced to handle even more challenging cases. Choosing
the proper pipeline for a specific case needs trial and error.
An overall guideline is to start from Type I then add more
registration steps if needed. Note that the multiple feature
steps can be combined into one image with multiple binary
masks and perform Demons registration at once. However,
one feature in each step, as done in this study, tends to be
more robust. Furthermore, the framework, though
demonstrated with the ADAPT baseline head model, is equally
applicable for personalizing other head models as a baseline, e.g.,
models with tetrahedral elements as commonly used for tDCS,
TMS, TUS, as well as smoothed-voxel brain models.

Compared with existing studies registering adult brains, fewer
studies align infant brains, which are more challenging partially
due to the rapid development of brain anatomy within the first
year, especially T1W images are inversed with densities. Not only
more challenging for registration algorithms but also the evaluation
of performance is also more difficult as most segmentation
algorithms are developed based on adult images, such as
FreeSurfer. It’s worth noting that the lowest registration
accuracy in all brains is for the thalamus in the 0Y; a visual
check shows FreeSurfer automatically segmented thalamus not
accurate enough. Future studies can employ infant Freesurfer
(Zöllei et al., 2020) for more accurate segmentation for infant
brain images, thus allows more objective evaluation of
personalization accuracy. For adult brain mesh morphing,
image registration-based morphing pipelines proposed earlier
show promising performance in generating detailed subject-
specific head models of healthy adult brains (Giudice et al.,
2020; Li et al., 2021) while the framework proposed in this
study allows generating models across the lifespan and for
brains with significant anatomical changes, which can be used
for studying age-specific and groupwise TBIs. Especially, brains
with neurological diseases such as hydrocephalus with extensively
enlarged LVs mimicking the elderly brain may provide a possible
clue for new insights into TBIs. The approach also opens the
opportunity for studying how a potentially vulnerable brain, e.g., a
hydrocephalus patient, may sustain a TBI injury risk under fall
impact, especially hydrocephalus patients who are more prone to

fall. Until today, the biomechanics of TBIs in these groups are
much understudied, partially due to the meshing challenge.

Compared with the many existing studies of TBIs for healthy
adults, the injury mechanisms of infants and children are
understudied. There are few child/infant head models (Li
et al., 2011; Giordano et al., 2017; Li et al., 2017). In addition
to the meshing challenge for adult models, the development of
additional unique features of suture and fontanel plays an
essential role in head impact response (Li et al., 2017).
Previously, mesh morphing has also been used for morphing a
baseline infant head model to different ages using radial basis
function (RBF) to interpolate the displacement field obtained
from land markers the anatomical features of suture and skull
surface (Li et al., 2011). Unlike the image registration-based
morphing, the RBF approach needs manual indentation of
land markers, which is often tedious (Wu et al., 2019). The
RBF approach also does not account for brain anatomies.
Comparatively, the morphed detailed infant brain models in
this study, when combined with the detailed skull and scalp
models (Li et al., 2017; Li et al., 2019), will allow studying brain
injury biomechanics under impact for infant head model for
abusive head trauma with important legal applications for
forensic diagnosis. The newborn infant head models may be
used for studying delivery-related neurotrauma and studying new
intervention approaches for clinical problems.

Some limitations and future works need to be mentioned here.
First, the proposed framework allows efficient generation of
subject-specific head models with competitive personalization
accuracy and satisfactory element quality without mesh
repairing. However, the morphing technique involves manual
intervention when selecting which morphing pipeline to use.
Thus, there could be user-to-user variability based on which
pipelines are chosen and concerns regarding repeatability. For
example, selecting improper pipelines could result in reduced
morphing accuracy, and certain regions may not be morphed
accurately if they are not selected as features by the user. Secondly,
this framework requires segmentation for the Demons steps, which
may need manual effort to ensure accurate segmentation and
would require significant time and effort for large-scale studies.
Nevertheless, considering the challenge of generating subject-
specific head models, this effort is considered acceptable. Note
that this morphing technique generates subject-specific models
from a geometric perspective only and does not account for
subject-specific material properties. Thirdly, the current
framework allows generating head models reflecting the
subject’s internal brain structures, but the major sulci and gyri
lines are not evaluated like most studies in the neuroimaging field.
It should also be noted that the framework does not ensure the
same characteristic lengths among generated models of different
sizes; the infant brains, in general, have smaller elements than that
of an adult model. In this regard, the block-based method has an
advantage that allows adjusting mesh densities to maintain similar
element characteristic lengths (Mao et al., 2013b). Furthermore,
Dramms registration algorithm is chosen for registering brainMRI
images in this study since it has a clear advantage to align largely
different anatomies such as the ventricles in comparison with other
popular registration algorithms (Ou et al., 2014). However, other

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org October 2021 | Volume 9 | Article 70656614

Li Head Model Personalization

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


algorithms, such as implemented in ANTs (Avants et al., 2011) and
DARTEL (Vercauteren et al., 2009), when used within the current
framework, may achieve similar performance, but it is yet to be
investigated. Finally, the framework can be extended to include
more registration steps and other advanced nonlinear registration
algorithms to handle even more challenging cases.
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