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Sign language (SL) motion contains information about the identity of a signer, as does

voice for a speaker or gait for a walker. However, how such information is encoded in the

movements of a person remains unclear. In the present study, a machine learning model

was trained to extract the motion features allowing for the automatic identification of

signers. A motion capture (mocap) system recorded six signers during the spontaneous

production of French Sign Language (LSF) discourses. A principal component analysis

(PCA) was applied to time-averaged statistics of the mocap data. A linear classifier then

managed to identify the signers from a reduced set of principal components (PCs).

The performance of the model was not affected when information about the size and

shape of the signers were normalized. Posture normalization decreased the performance

of the model, which nevertheless remained over five times superior to chance level.

These findings demonstrate that the identity of a signer can be characterized by specific

statistics of kinematic features, beyond information related to size, shape, and posture.

This is a first step toward determining the motion descriptors necessary to account for

the human ability to identify signers.

Keywords: person identification, human movements, feature extraction, motion capture, machine learning,

statistics, sign language

INTRODUCTION

Sign languages (SLs) are the natural languages used in Deaf communities. SL users express
themselves by producing a continuous stream of movements with numerous body parts, such as
hands and arms and eye gaze, facial expressions, and torso. With the advent of motion capture
(mocap) systems, it has been possible to develop virtual signers (or signing avatars) with high
naturality and comprehensibility, by replaying movements of real signers (Lu and Huenerfauth,
2010, 2014; Gibet, 2018). However, it has now been shown that deaf observers can identify
signers from point-light displays (PLDs) of their movements, beyond cues related to appearance,
clothes, or morphology (Bigand et al., 2020). This observation questions the possibility to produce
anonymized, non-identifiable, content with virtual signers. Compared to the auditory domain
where a speaker can remain anonymous by modifying specific voice characteristics, little is known
about the motion features that characterize the identity of a signer. This problem is crucial given
that SLs have no written form. For deaf persons whose first language is a sign language, reading
written content means reading a second language, which is not always mastered (Holt, 1993).
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Professional journals that provides accessible content in SL,
such as Media’Pi! in France 1, have raised the need for novel
technological tools to allow signers to remain anonymous when
expressing themselves (e.g., for sharing anonymized testimony).
For all these reasons, technological barriers must thus in
order to provide.

Visual perception studies were the first to provide evidence
that human motion conveys important information about the
moving person, using PLDs. PLDs isolate information given by
motion cues from information given by other characteristics,
such as shape or other aspects of the body of a person
(Johansson, 1973). Using PLDs, studies have demonstrated that
human observers were able to extract critical information from
motion, such as actions (Johansson, 1973), gender (Kozlowski
and Cutting, 1977; Mather and Murdoch, 1994), or emotional
state (Atkinson et al., 2004). Similarly, behavioral studies have
used PLDs to show that the identity of familiar individuals can
be inferred from human movements, such as walking (Cutting
and Kozlowski, 1977; Loula et al., 2005; Troje et al., 2005),
dancing (Loula et al., 2005; Bläsing and Sauzet, 2018), clapping
(Sevdalis and Keller, 2009), or producing SL (Bigand et al., 2020).
Moreover, Baragchizadeh et al. (2020) recently demonstrated that
motion cues also allow for the perceptual discrimination of the
identity of unfamiliar people.

Beyond the overall ability of humans to infer identity from
motion, only a few perceptual studies have aimed to determine
the cues that allow for the identification. According to Troje et al.
(2005), removing the size of walkers and shape information from
PLDs had only a low impact on human identification accuracy,
which was still five to six times above chance level. These results
suggest that most of the information used for identification is
conveyed by motion kinematics. The nature of such kinematic
cues remains relatively unclear up to now. According to Troje
et al. (2005) and Westhoff and Troje (2007), gait frequency
may not play a major role in identification. The most critical
information for identification seems to be conveyed by the
first harmonic and the amplitude spectrum of walking patterns
(Westhoff and Troje, 2007). In addition to human perception
measurements, other approaches, such as machine learning,
can provide further insights along this line. Some machine
learningmodels have been successfully trained to identify walkers
(Zhang and Troje, 2005) and dancers (Carlson et al., 2020) from
mocap data. Both studies concluded that most of the critical
information for identity was conveyed by motion kinematics,
as for the automatic gender classification of gait (Troje, 2002).
Further investigation is needed to better understand the role of
kinematic cues in the perception of the identity of an individual,
in particular for SL. One specific aspect of SL is to be governed
not only by biomechanic rules, but also by linguistic ones, which
may thus reveal SL-specific signatures for the identity of signers.

In American and Croatian Sign Language, Malaia and Wilbur
(2012) andMalaia et al. (2013) have demonstrated that kinematic
features (e.g., peak speed, instantaneous acceleration) of verb
signs were affected both by predicate type (telic/atelic) and
the position of the sign within the sentence (medial/final).

1https://media-pi.fr/

This suggests that kinematics may convey relevant information
about both semantics and prosody. In French Sign Language
(LSF), Catteau et al. (2016) have outlined kinematic strategies
of interpreters (e.g., acceleration peaks of the whole-body joints)
to convey prosodic variation. The study of LSF mocap from
elderly signers has also suggested that specific kinematics, such
as signing rate, may provide a prosodic characterization for the
age of a signer (Blondel et al., 2019). However, up to now, neither
approaches using perceptual measures nor machine learning
methods have attempted to determine the parameters of SL
motion that convey the identity of a signer.

Identity is a time-invariant property that humans can
recognize from different utterances of the same individual. This
makes time-averaged statistics a particularly suited description
to extract identity-specific features. In the auditory domain,
Latinus and Belin (2011) have shown that the dissimilarities
of speakers, across brief vowel utterances, were well explained
using the average fundamental frequency of phonation (F0) and
the average first formant frequency (F1). The role of statistics
for categorical discrimination of sounds has been shown with
human behavioral data in McDermott et al. (2013), revealing that
discrimination of sounds improved with longer excerpts, notably
for the recognition of a single speaker. Converging evidence
has been provided by machine learning of human motion: a
linear regression model trained by Tits (2018) has been able to
accurately predict the level of expertise from gesture in Taijiquan,
based on the mean and SD of position and velocity. Moreover,
Carlson et al. (2020) recently demonstrated that the identity of a
dancer may be encoded by the covariance of three-dimensional
movements between specific body markers.

The present study aimed to determine the information
that allows for identifying signers in LSF. We used machine
learning to determine the parts of motion information that
are responsible for the identification. For that aim, we (1)
evaluated to what extent a machine learning model managed to
identify six different signers from statistics ofmocap utterances in
spontaneous LSF; (2) assessed the distinct roles of structural and
kinematic information in the model identification, by gradually
normalizing the mocap data according to size, shape, and posture
of the signers; (3) further examined the identity-specific features
extracted by the model when trained on posture-normalized
mocap data.

MATERIALS AND METHODS

Motion Capture Corpus
The data used in the present investigation were taken
from a previously reported study (Bigand et al., 2020). In
brief, each of six deaf native and fluent signers had freely
described the content of 25 pictures (as shown in examples in
Supplementary Material 1) using LSF. The dominant hand of
all signers was the right hand. Using a mocap system equipped
with 10 cameras (Optitrack S250e), the data consisted of the
upper-body movements recorded at 250 fps in three dimensions.
Further details (e.g., picture content, type of SL discourse, and
mocap equipment) are available from the original mocap corpus
(Benchiheub et al., 2016a,b). From the 25 mocap recordings,
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FIGURE 1 | The 19 upper-body markers in the “T” reference posture.

only 24 were taken into account in the present study, as one
of them was not available for one signer. Moreover, from the
27 original body markers, we derived 19 virtual markers that
optimally describe the major joints of the body. As shown in
Figure 1, the derived markers were (L = left, R = right, F = front,
B = back): (1) pelvis, (2) stomach, (3) sternum, (4) LB head, (5)
LF head, (6) RB head, (7) RF head, (8) L shoulder, (9) L elbow,
(10) LB wrist, (11) LF wrist, (12) LB hand, (13) LF hand, (14) R
shoulder, (15) R elbow, (16) RBwrist, (17) RFwrist, (18) RB hand,
(19) RF hand.

The positions of all markers were defined in reference to
the pelvis (used as the origin) and low-pass filtered using a
fourth-order Butterworth filter with a cutoff frequency of 12
Hz, following recent estimations of SL kinematic bandwidth
(Bigand et al., 2021). From each of the 24 original recordings,
one mocap recording unit with a duration of 5 s was extracted
from the beginning of the utterance, irrespective of the semantic
content. Each mocap recording unit was thus related to a
different SL utterance. This resulted in 24 mocap examples
per signer, of 5 s duration each (as shown in examples in
Supplementary Materials 2–7).

Normalizations of Structural Features
Two classes of information can be distinguished when studying
the perception of movements: structural and kinematic
information. Motion-mediated structural features were defined
by Troje et al. (2005) as the invariant information specifying
the structure of the body that is put into motion. For instance,
structural features reveal information about the average
posture, and the anthropometric characteristics of the body
of a person. For structural features to be perceived, PLDs
must be in motion. Motion-mediated structural features thus
differ from static information, which can be perceived from
a static PLD image. However, although they are inferred

from moving PLDs, structural features also differ from
kinematic ones, which refer to the motion of the body
markers themselves.

To evaluate the distinct roles of structural and kinematic
information in identification, the original mocap data (referred
to as “ORI”) used in the present study were gradually normalized
in three steps (illustrated in Figure 2), with respect to size (SI),
shape (SH), and posture (POST) of the signers, respectively. The
shape was defined as the individual lengths of the body segments
of a signer, such as shoulder width, arm length, or dimensions
of the head. Posture was defined as the average position of
the body markers of a signer (i.e., how the signer holds his or
her body) over all mocap examples. Compared to the two-step
normalization procedure proposed by Troje et al. (2005), the
three normalization steps proposed here allowed us to distinguish
the role of postural information from the one of size and shape,
which latter are related to the dimensions of the body of an
individual, regardless of his or her average posture.

- Size normalization (SI): Reference “T” postures were recorded
for each signer (Figure 1). An overall reference “T” posture
was computed by averaging across the six signers. The slope of
the regression between each reference posture and the overall
reference posture was then computed. These slopes defined
relative sizes (Troje et al., 2005) for each signer: 1.000, 1.075,
0.924, 1.003, 0.996, and 1.003. After dividing the position
coordinates of the signer by their sizes, they all had the same
size. This normalization kept intact shape (i.e., the relative
positions of the articulations).

- Shape normalization (SH): New reference “T” postures were
computed from the size-normalized data of each signer.
New overall reference “T” posture was defined. Shape-
normalized data were obtained by subtracting individual
reference postures from each frame, then adding the overall
reference posture. After that transformation, all signers had
the same reference “T” posture (i.e., same relative positions of
the articulations).

- Posture normalization (POST): This last normalization was
applied to shape-normalized data, which are also size-
normalized. Posture-normalized data were obtained by
subtracting the average posture of each signer (averaged over
all their mocap examples) from each frame, then adding the
average posture computed over all signers. After these three
normalizations, all signers had the same size, same shape, and
same average posture.

Feature Extraction: A Statistical-Based
Approach
The machine learning workflow is displayed in Figure 3. The
mocap data of the pelvis marker were ignored as it was set as
the origin, which leads to zero vectors. The position and velocity
of the 18 other markers were used as temporal features. Velocity
was estimated by time differentiation of the mocap position
coordinates (ORI, SI, SH, or POST). Then, we measured the
statistics of these temporal features.
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FIGURE 2 | The three cumulative steps of normalizations of structural features. The stick figures correspond to a given frame of the description of the first picture by

Signer 3. For each step, the normalized and non-normalized stick figures are compared.

FIGURE 3 | Schematic representation of the steps used in the machine learning model for identification.

Based on previous research investigating the perception of
auditory and visual textures (Portilla and Simoncelli, 2000;
McDermott and Simoncelli, 2011), we measured the first
four moments of position and velocity (Equation 1), and
covariances of velocity between body markers (Equation 2).
The first four moments of position and velocity described their
statistical distributions, which may vary from one individual
to another, as shown for expert gesture analysis (Tits, 2018).
For instance, for the position, the mean provides information
about the average posture of the signers, and the SD provides
information about the amplitude of their movements. For
velocity, SD provides information about the amount of velocity
the markers of a signer in any of the three dimensions.
Although the interpretation of the other moments is more
challenging, their role in the identification was tested, similarly
to McDermott and Simoncelli (2011). Moreover, the covariance
of velocity allowed for quantifying the extent to which any
two markers covaried with each other, in two directions.
This latter statistic has been shown to allow for automatic
person identification from dance movements (Carlson et al.,
2020).

For each mocap example, the triangular part of the covariance
matrix was reshaped into a vector of length 1,431 and
concatenated with the moments of position and velocity, of
length 53 each. The concatenated statistics constituted the
feature vector used in the person identification model. By
definition, posture-normalized data had the same mean position
so this latter statistic was not included in the POST condition.

The computation of the first four moments (Equation 1) and
covariance (Equation 2) is detailed as follows:

M1,k = µk =
1

T

T
∑

t=1

xk(t),

M2,k = σk =

√

√

√

√

1

T

T
∑

t=1

(xk(t)− µk)2,

M3,k =

1
T

∑T
t=1(xk(t)− µk)

3

σ 3
k

,

M4,k =

1
T

∑T
t=1(xk(t)− µk)

4

σ 4
k

− 3

(1)

xk is the temporal feature (position or velocity) of a marker, along
one of the three directions. k ∈ [1, 54].

Ci,j =
1

T − 1

T
∑

t=1

(xi − µi)(xj − µj) (2)

xi,j are temporal features related to two markers. µi,j is the mean
of the feature. i, j ∈ [1, 54].

Person Identification
To predict the identity of the signer, principal component
analysis (PCA) followed by a classifier was used. PCA was
applied to the motion statistics (contained in a matrix either
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of length 144 × 1,863 for ORI, SI, and SH; or 144 × 1,809
for POST) and provided uncorrelated principal components
(PCs) (or eigenvectors), which are linear combinations of the
original statistics:

D = d0 + XV (3)

The matrix D contains the original statistics of all examples,
vector d0 contains the average statistics across examples, matrix
X contains the coefficients of the original statistics of all examples
in the PC space and matrix V contains the PCs (or eigenvectors).

This data-driven method allowed extracting candidate
components for the characterization of identity, without a priori
hypotheses on the statistics. It also allowed for dimensionality
reduction, enabling us to retain a reduced number of PCs. The
number of retained PCs has often been chosen based on the
amount of variance they explained (Zago et al., 2017a). In the
present study, the number of selected PCs was chosen so that it
maximized identification accuracy, by testing the model with an
increasing number of PCs (based on the descending order of the
variance they explained). This follows the approach proposed by
O’Toole et al. (1993) who have shown that for face identification,
higher-order PCs, which explain only few variances, capture
identity-specific features while most of the variance is covered by
low-order PCs.

On the reduced set of PCs, a classifier was trained. We
have tested the differences in performance between different
classifiers, notably between linear and non-linear ones. As a
model comparison is beyond the scope of the study, we present
the classifier that reported the highest performance, that is
multinomial logistic regression 2. For the prediction of each
signer, a logistic regression model was trained, as defined in
Equation 4.

P(S = s) =
eβs.X

∑6
k=1 e

βk.X
(4)

X is the vector containing the coefficients of the test data in
the PC space, the vector βk contains the regression coefficients
optimized for the identification of signer k during the learning
step, and S is the signer variable. The signer s reaching the highest
probability in the model is defined as the predicted signer.

A leave-one-out cross-validation was conducted: the model
was trained on N-1 (23) mocap examples for each signer, and the
remaining mocap example was used as the test example (i.e., an
unknown example that themodel must identify as the production
of the signer). All examples were used as test example so the
model was tested 24 times and performance was computed as an
average across these iterations. Using this cross-validation step,
we assessed to what extent the classifier learned idiosyncratic
movement statistics that generalize to new mocap examples.

Finally, to better understand the motion statistics that allowed
for identification, we scrutinized some discriminant PCs (i.e.,
PCs that contributed to a significant increase in identification

2Averaged over ORI, SI, SH and POST data, multinomial logistic regression

reported a 92.7% (std=3.5%) accuracy, whereas an RBF kernel SVM reported a

85.8% (std=2.7%) accuracy.

FIGURE 4 | Average correct identifications of the model, as a function of the

normalizations of structural features. ORI, original motion; SI, size-normalized;

SH, shape-normalized; POST, posture-normalized. Dashed horizontal line

indicates the chance level. Error bars indicate SE. Significant differences

between normalizations: *p < 0.05, **p < 0.01.

accuracy) in terms of the original statistics they described. First,
the general statistical patterns dn of each PC were described
as the absolute value of the PC (Vn) (Equation 5). Based on
these descriptions, we then proposed some interpretation of
the motion information these PCs might contain. Second, the
optimized regression coefficient that the classifier assigned to a
given PC for the identification of Signer k was projected onto the
PC (Equation 6). The resulting statistical patterns dn,k provided
further insights about the differences between signers along the
given PC (Vn).

dn = |Vn| (5)

dn,k = βn,kVn (6)

Vn is the n
th PC (or eigenvector) of the PC space, the scalar βn,k is

the optimized regression weight assigned toVn by the classifier to
identify signer k. dn and dn,k are vectors containing the statistical
patterns (e.g., of length 1,809, in POST condition).

RESULTS

The Role of Structural and Kinematic
Features
Correct identifications of the model as a function of the
normalizations are shown in Figure 4. A repeated measures
one-way ANOVA with normalization (with its four levels: ORI,
SI, SH, and POST) as within-test factor was run on correct
identifications. As the assumption of sphericity was violated
(Mauchly’s test, p < 0.05), a Greenhouse-Geisser correction
was applied (ε = 0.61). The main effect of normalization was
significant [F(1.83,42.07) = 5.46, p < 0.01, η2 = 0.19]. Bonferroni-
adjusted post-hoc tests were performed to test for differences
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FIGURE 5 | Correct identifications of the model from POST motion, as a function of the number of principal components (PCs), used. The first 24 PCs contributed to

most of the correct identifications of the model (79.2%). The highest accuracy (86.8%) was obtained with 69 PCs.

between normalizations. They revealed a significant increase
of identification accuracy from POST (mean = 86.8%) to SH
(mean = 93.8%, p < 0.05), SI (mean = 95.1%, p < 0.01) and
original motion (ORI, mean = 95.1%, p < 0.01). No significant
difference was found between original, size normalization, or
shape normalization (p > 0.05).

The Identification Accuracy of the Model
for Posture-Normalized Motion
Figure 5 displays the correct identifications of the model when
trained on POST mocap data. The number of retained PCs
varied from 1 to 144 (which corresponds to the number of
mocap examples across signers) (for further details about how
the PCs were retained, see Methods). The highest accuracy of
86.8% was obtained using 69 components. The first component
alone allowed for a 38.9% average correct identification. The
first 24 components alone contributed to most of the correct
identifications, with a 79.2% accuracy. Components 59–69 then
contributed to most of the increase toward the highest accuracy,
from 77.8 to 86.8%.

Table 1 presents the confusion matrix of the model trained
with 69 components, which leads to the highest identification
accuracy. It specifies the predictions for each signer, across
the 24 examples. One sample Student’s t-tests revealed that
identification performance was above chance level (16.7%) for
all signers [p < 0.001, Signer 1: t(23) = 9.33, d = 1.91, Signer
2: t(23) = 10.27, d = 2.59, Signer 3: t(23) = 18.99, d = 4.69,
Signer 4: t(23) = 7.47, d = 1.53, Signer 5: t(23) = 8.58, d = 2.19,
Signer 6: t(23) = 18.99, d = 4.69]. No confusions were significant
between signers (p > 0.05). The lowest performance of themodel
occurred for Signer 4, with a 70.8% accuracy.

Kinematic Features of Importance
To further understand which kind of information is useful for
signer identification from POST motion, we examined the PCs

TABLE 1 | Confusion matrix displays the percentage of identifications of the

model, averaged across the 24 test examples (for posture-normalized motion).

Signer 1 Signer 2 Signer 3 Signer 4 Signer 5 Signer 6

Signer 1 79.2*** 0 0 8.3 12.5 0

Signer 2 0 87.5*** 4.2 4.2 0 4.2

Signer 3 0 4.2 95.8*** 0 0 0

Signer 4 8.3 8.3 4.2 70.8*** 4.2 4.2

Signer 5 16.7 0 0 0 83.3*** 0

Signer 6 4.2 0 0 0 0 95.8***

Accuracy values significantly above chance level are shown in bold: ***(p < 0.001).

used by the classifier. The identification model was run on the
whole dataset with the 69 components, which allowed reaching
the highest performance. Discriminant PCs were described
following equation 5 (as shown in Methods). The statistical
patterns (referred to as dn in Equation 5) of some highly
discriminant PCs are displayed in Figure 6. PC1, PC2, and PC4
contributed to 38.9%, 10.4 and 7.6% of the cumulative correct
identification, respectively (Figure 5).

Principal component 1 mainly described relationships
between movements along vertical (Z) and anteroposterior
(Y) axes, except between hand markers along the Z-axis and
head markers along the Y-axis (Figure 6C). It also described
differences in standard deviations of the position and velocity
for all body joints along the Y-axis (Figure 6A), and for the
trunk and head along the Z-axis (Figure 6B). PC2 was mostly
related to movements along the mediolateral (X) (Figure 6D)
and Z-axes (Figure 6E). Covarying movements of the head with
the right hand along the X-axis (Figure 6F) are characteristic
of this PC and the right hand with the left hand along Z and
X axes, respectively (Figure 6G). PC4 did not describe global
movements along with one of the three axes, compared with PC1
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FIGURE 6 | Discriminant PCs for signer identification. Left: moments (columns: std, skew, kurtosis) of position, for all markers (rows). Middle: moments (columns:

mean, std, skew, kurtosis) of velocity, for all markers (rows). Right: covariance of velocity between markers (rows and columns). Markers are sorted from 1 to 19 as

presented in the Methods along X, Y, and Z axes. Some patterns of importance are highlighted. For the sake of clarity, the specific moments and body markers are

displayed only for these patterns of importance. PC1: Std of position (A) and velocity (B) along Y and Z axes, for all markers; (C) Covarying movements between all

markers along Y and Z axes. PC2: Std of velocity along X (D) and Z (E) axes, for all markers; (F) Covarying movements between the right hand, and trunk, and head

markers, along X-axis; (G) Covarying movements between the right hand markers along Z-axis, and the left hand markers along X-axis. PC4: (H) Covarying

movements between the right hand markers along the Y-axis, and all other markers along the X-axis.
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FIGURE 7 | Classifier weights of PC1 for Signer 1 and Signer 2. Similar to Figure 6 for Signer 1 (left) and Signer 2 (right): moments (columns: std, skew, kurtosis) of

position for all markers (rows), moments (columns: mean, std, skew, kurtosis) of velocity for all markers (rows), the covariance of velocity between markers (rows and

columns). Markers are sorted from 1 to 19 as presented in the Methods along X, Y, and Z axes. Coefficients correspond to the logistic regression weights optimized

for each signer. Blue represents positive weight values, while red represents negative ones. The three patterns of importance are highlighted: Std of position (A1) and

velocity (B1) of all body markers for Signer 1; Std of position (A2) and velocity (B2) of all body markers for Signer 2; (C1) Covariance of velocity between all body

markers along Y and Z axes for Signer 1; (C2) Covariance of velocity between all body markers along Y and Z axes for Signer 2.

and PC2. Instead, it mainly characterized relationships between
movements along the X and Y axes, particularly regarding the
right hand (Figure 6H).

These PCs, either combined or independently, can be used to
discriminate between individual signers. For instance, Figure 7
displays the idiosyncratic statistical patterns (referred to as dn,k
in Equation 6) of some signers, along PC1. According to PC1,
the movements of Signer 1 presented little relationship between
anteroposterior and vertical axes (Figure 7C1), and low variation
in position and velocity, along anteroposterior and vertical
axes (Figures 7A1,B1). By contrast, Signer 2 characterized by a
strong relationship between between anteroposterior and vertical
axes (Figure 7C2) and high variation in position and velocity,
along anteroposterior and vertical axes (Figures 7A2,B2). These
discriminant PCs convey the motion signature of the identity of
each signer, and they can be scrutinized in terms of the original
statistics. These findings mean that identity can be inferred from
simple statistics of kinematic features, with consistent accuracy.

DISCUSSION

The present study demonstrates that mocap data convey critical
information to allow for robust identification of signers using
machine learning, as previously shown for walking (Zhang
and Troje, 2005) or dancing (Carlson et al., 2020). PCA
followed by a linear classifier managed to correctly identify
signers from the statistics of their movements recorded during
the free description of pictures in spontaneous LSF. Even
when deprived of structural information about the signers,
the model reported 86.8% accuracy, over five times higher

than the chance level. These results are consistent with prior
findings on the human ability to identify individuals from
walking (Cutting and Kozlowski, 1977; Troje et al., 2005;
Westhoff and Troje, 2007) and dancing (Loula et al., 2005;
Bläsing and Sauzet, 2018) movements. In particular, this is in
line with recent behavioral evidence that humans can identify
signers from PLDs of their movements in LSF (Bigand et al.,
2020). Compared to the latter visual perception study, which
measured the human ability to identify signers, the present
study trained a machine learning model, which successfully
identified signers from statistics of mocap data. Although with
a feature analysis, Bigand et al. (2020) have shown that the
size and shape of the body of signers may not have played a
major in the accuracy of participants to identify, the machine
learning approach taken in the present study allowed for the
further determination of the specific features that allow for
the identification.

The second outcome of the present study is that kinematics
alone allow for robust identification of the signers. Removing
size and shape information did not affect the performance of the
model. Normalizing the mocap data with respect to the postures
of signers led to a decline in identification accuracy. Nevertheless,
the remaining identification accuracy was significantly above the
chance level. The minor role of anthropometric differences in
identifying individuals from their movements is consistent with
prior behavioral studies on gait (Troje et al., 2005; Westhoff
and Troje, 2007) and LSF (Bigand et al., 2020). Interestingly,
the impact of the average posture of signers on the correct
identification of the model was similar to the impact reported
by Troje et al. (2005) on human observers, causing a decrease
of about 10% of accuracy. The remaining ability of the model
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to identify signers without any of these structural cues confirms
that kinematics alone are sufficient to achieve identification, as
previously suggested by Troje et al. (2005) and Westhoff and
Troje (2007) for walking.

Further analyses of the contribution of kinematic features
to the identification of the model revealed identity-specific
characteristics of the motion of signers. In general, discriminant
PCs described specific kinematic statistics in all three dimensions.
For instance, PC1, PC2, and PC4, which accounted for 54.9%
of correct identification, were characterized by movements in
the sagittal, frontal, and transverse planes, respectively. Previous
findings have outlined critical features for gender classification
of gait in the frontal plane, which are, therefore, best visible
in frontal view (Mather and Murdoch, 1994; Troje, 2002).
However, although Troje et al. (2005) have found an overall
advantage for walker identification based on the frontal view,
training on half-profile views allowed for higher performance
when participants had to identify walkers from new viewpoints.
Moreover, no overall advantage for the frontal view has been
reported by Westhoff and Troje (2007), whose gait PLDs were
totally deprived of structural information. Whereas, for now, the
ability of human perceivers to identify signers have only been
studied using frontal views (Bigand et al., 2020), half-profile
and profile views may provide critical information, especially
for kinematics. This observation is consistent with the recent
machine learning model of dancer identification proposed by
Carlson et al. (2020), which reported kinematic features of
importance along all three dimensions.

Similar to Carlson et al. (2020), the discriminant PCs revealed
distinct identity-specific patterns over sensors and dimensions.
For instance, whereas PC1 reflected differences in the kinematics
of all body markers along the anteroposterior axis, differences
along the vertical axis concerned only the trunk (e.g., stomach,
sternum, and shoulders) and head markers. PC1, PC2, and PC4
reported different contributions of each part of the bodies of
signers, often distinguishing groups of markers such as head,
trunk, or hand markers. We also noticed distinct contributions
of the two hands, such as a lower impact of the left hand along
the mediolateral axis in PC2 than the right hand. This may be
due to the motion differences caused by the dominant hand of
the signers, which was the right hand for all of them. Indeed, as
with any other human movements, signers preferably use their
dominant hand when signing, such as for pointing, fingerspelling
(i.e., spelling out isolated words by producing letters with the
hands) or one-handed signs, as this hand provides faster or
more precise performance. Prior studies have highlighted inter-
individual differences in the execution of principal movements
(or eigenmovements) for skiing (Federolf et al., 2014), karate
(Zago et al., 2017a) or pathological gait (Zago et al., 2017b).
However, principal movements are based on frame-by-frame
relations between gestures, while SL movements are hardly
ever synchronized across examples and individuals. Hence, as

previously pointed out by Tits (2018), we outlined here the
advantage of using statistics as motion descriptors for identity,
which is invariant to time and independent of semantic content.

The results of the present study suggest that signers have a
kinematic signature, which is invariant to the semantic content
of their movements in LSF. We were able to characterize this
signature using 24 components extracted from PCA, leading to
a 79.2% identification accuracy. Such a data-driven approach
is particularly interesting in the case of identification as the
discriminant features are mainly idiosyncratic and thus hard to
define a priori for each individual. The other main advantage of
PCA is its invertibility, which makes it possible to recompute
statistics by projecting a linear combination of PCs back into
the original space. These statistics could be manipulated (e.g.
reducing, or exaggerating, the weight of the PCs of interest)
while resynthesizing pre-recorded SL movements. To achieve
this, we could develop algorithms similar to the ones used
to synthesize sounds with matching statistics (McDermott
et al., 2009; McDermott and Simoncelli, 2011; Norman-Haignere
and McDermott, 2018). This approach would allow for the
visualization of specific PCs, by exaggerating their weight in
the combination of PCs, as previously shown for male and
female gaits (Troje, 2002). Furthermore, being able to control
identity-specific PCs in motion synthesis will provide promising
perspectives toward anonymizing SL motion for virtual signers.
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