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Among the greatest challenges in soft sensor development for bioprocesses are variable
process lengths, multiple process phases, and erroneous model inputs due to sensor
faults. This review article describes these three challenges and critically discusses the
corresponding solution approaches from a data scientist’s perspective. This main part of
the article is preceded by an overview of the status quo in the development and application
of soft sensors. The scope of this article is mainly the upstream part of bioprocesses,
although the solution approaches are in most cases also applicable to the downstream
part. Variable process lengths are accounted for by data synchronization techniques such
as indicator variables, curve registration, and dynamic time warping. Multiple process
phases are partitioned by trajectory or correlation-based phase detection, enabling phase-
adaptive modeling. Sensor faults are detected by symptom signals, pattern recognition, or
by changing contributions of the corresponding sensor to a process model. According to
the current state of the literature, tolerance to sensor faults remains the greatest challenge
in soft sensor development, especially in the presence of variable process lengths and
multiple process phases.
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INTRODUCTION

The biologization of the manufacturing industry is leading to more and more processes that were
previously based on chemical synthesis being replaced by biotechnological processes (Buyel et al.,
2017). At the same time, the digitalization of these processes is leading to more transparent, lower-
risk, and more efficient biological manufacturing (Scheper et al., 2021). At the intersection of these
two trends—biologization and digitalization—a multitude of new technologies and approaches have
emerged in recent decades. These include, in particular, advances in the fields of data science as well
as monitoring and control technology for bioprocesses (Steinwandter et al., 2019). With the
introduction of the quality by design (QbD) and process analytical technology (PAT) initiatives,
this development has received institutional support (FDA, 2004; Rathore and Winkle, 2009).

Despite advances in bioprocess monitoring, many relevant process variables are still determined
offline using laboratory analyses. On this basis, a prediction is made about the expected future
behavior of the process. However, this procedure is often not sufficient to effectively react to process
changes, for example, through closed-loop control. The development of soft sensors is a remedy to
this situation.

A soft sensor (“software sensor”) is a combination of process data (input) and a model that uses
these input data to predict a target quantity (output). It is therefore an indirect measurement. The

Edited by:
Johannes Felix Buyel,

Fraunhofer Society (FHG), Germany

Reviewed by:
Karl Bayer,

University of Natural Resources and
Life Sciences Vienna, Austria

Astrid Duerauer,
University of Natural Resources and

Life Sciences Vienna, Austria

*Correspondence:
Dominik Geier

dominik.geier@tum.de

Specialty section:
This article was submitted to

Bioprocess Engineering,
a section of the journal

Frontiers in Bioengineering and
Biotechnology

Received: 08 June 2021
Accepted: 03 August 2021
Published: 20 August 2021

Citation:
Brunner V, Siegl M, Geier D and

Becker T (2021) Challenges in the
Development of Soft Sensors for
Bioprocesses: A Critical Review.

Front. Bioeng. Biotechnol. 9:722202.
doi: 10.3389/fbioe.2021.722202

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org August 2021 | Volume 9 | Article 7222021

REVIEW
published: 20 August 2021

doi: 10.3389/fbioe.2021.722202

http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2021.722202&domain=pdf&date_stamp=2021-08-20
https://www.frontiersin.org/articles/10.3389/fbioe.2021.722202/full
https://www.frontiersin.org/articles/10.3389/fbioe.2021.722202/full
https://www.frontiersin.org/articles/10.3389/fbioe.2021.722202/full
http://creativecommons.org/licenses/by/4.0/
mailto:dominik.geier@tum.de
https://doi.org/10.3389/fbioe.2021.722202
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2021.722202


input data used for the prediction are typically composed of
signals from hardware sensors and actuators. Dependent on the
degree of process knowledge that is implemented, the prediction
model can be classified as data-driven, knowledge-based, or
hybrid.

The application fields of soft sensors can be distinguished by
the nature of the target quantity (Kadlec et al., 2009). The largest
application field of soft sensors is the online prediction of physical
quantities such as, for example, concentrations of biomass,
substrate, intermediate, or product. These types of soft sensors
are used when online analyzers are not available or economically
feasible for process variables of interest. Further, soft sensors can
be used within supervisory control applications to monitor the
state of the process on a higher level and detect process faults (Liu
et al., 2017; Besenhard et al., 2018; Dumarey et al., 2019). Soft
sensors for process monitoring and process fault detection use
historical process data to derive higher-level, non-physical
process quantities such as latent variables (Kourti, 2005) that
indicate deviations from the normal process conditions. Finally,
soft sensors can be used to detect sensor faults. The soft sensor
here is used to predict the reading of a hardware sensor. A
deviation of the prediction and the hardware sensor reading
indicates a sensor fault (Brunner et al., 2019). The falsified
hardware sensor reading can be reconstructed using the soft
sensor’s prediction.

The development of soft sensors poses several challenges to the
data scientist. These challenges can be assigned to either the data,
information, or knowledge domain. Table 1 lists the most
important challenges together with corresponding solution
approaches. Most of these solution approaches have been
reviewed for the process industry, including phase division
(Yao and Gao, 2009), adaption mechanisms for soft sensors
(Kadlec et al., 2011), JIT learning (Kano and Fujiwara, 2012;
Saptoro, 2014), data synchronization (Ündey et al., 2002), process
fault detection (Venkatasubramanian et al., 2003a;
Venkatasubramanian et al., 2003b; Venkatasubramanian et al.,
2003c), dimension reduction (Pani and Mohanta, 2011), variable
selection (Cawley and Talbot, 2010; Souza et al., 2016; Heinze
et al., 2018), sensor fault detection and fault tolerance (Isermann,
2006; Isermann, 2011; Das et al., 2012), identification of
overfitting (Hawkins, 2004), model maintenance (Wise and
Roginski, 2015), digitalization of expert knowledge (Birle et al.,
2013), and hybrid modeling (Stosch et al., 2014; Solle et al., 2017).

A small number of these reviews address bioprocesses, but in
their majority, they play only a tangential role. Several of the
above approaches are equally applicable to bioprocesses (e.g.,
variable selection, dimensional reduction). However, what needs
an updated review or has not yet been reviewed at all in the
context of bioprocesses are the following three challenges:

• variable process lengths,
• multiple process phases, and
• sensor faults.

Especially for bioprocesses, these challenges often occur in
combination, so that solution approaches are becoming
increasingly complex: Sensor faults, which impede the

reliability of soft sensors, are more difficult to detect or
compensate for in processes with variable lengths and
dynamic behavior (Brunner et al., 2019); data synchronization
(for processes of variable lengths) is more complex for multiphase
processes (Doan and Srinivasan, 2008). The focus of this review is
thus on the synchronous consideration of these three challenges
of soft sensor development. This review aims to critically evaluate
the corresponding solution approaches regarding their
practicality and applicability to bioprocesses. The following
applies here: As simple as possible, as complex as necessary.

This review article is structured as follows. First, an overview
of the status quo in the development and online application of
soft sensors is provided. Here, the typical steps of soft sensor
development and the state of the art in online implementation are
described. The following chapter concerns the challenges in soft
sensor development for bioprocesses from a data scientist’s
perspective, namely, variable process lengths, multiple process
phases, and sensor faults. The corresponding solution approaches
are critically discussed. This chapter is followed by a conclusion
that reveals the greatest remaining research gaps in soft sensor
development for bioprocesses.

SOFT SENSORS: THE STATUS QUO

Soft sensors have become an important tool within the QbD/PAT
framework, as reviewed by Mandenius and Gustavsson (2015),
Randek and Mandenius (2018), and Rathore et al. (2021). One
reason is that they are often the only means of determining
critical process parameters (CPP) or critical quality attributes
(CQA) online at all (Capito et al., 2015; Melcher et al., 2015; Sauer
et al., 2019; Spann et al., 2019; Walch et al., 2019; Pais et al., 2020;
Wasalathanthri et al., 2020a). Making these quantities measurable
by means of soft sensors, in turn, allows CPPs or CQAs to be
closed-loop controlled (Birle et al., 2015; Matthews et al., 2016;
Voss et al., 2017; Brunner et al., 2020; Gomis-Fons et al., 2020).
This type of control, also called inferential control, plays an
important role in the automation of bioprocesses, since by far
not all process quantities to be closed-loop controlled can be
measured directly (Rathore et al., 2021).

As mentioned at the beginning, soft sensors are used to
indirectly measure a target variable by combining a predictive
model with corresponding input data. Process data used as input
to soft sensors can compose differently depending on the
organism (bacteria, yeast, filamentous fungi, mammalian or
insect cells, etc.) used in upstream processing (USP) and the
techniques used in downstream processing (DSP).
Instrumentation of bioprocesses and thus possible input data
for soft sensors have recently been reviewed by several authors
(with varying emphases): Simon et al., 2015 (industrial
application); Biechele et al., 2015 (USP, disposable
technology); Mandenius and Gustavsson, 2015 (price, utility,
and relevance of online analyzers for soft sensor development);
Claßen et al., 2017 (spectroscopic sensors); Wasalathanthri et al.,
2020b (spectroscopic sensors, chromatography, and mass
spectrometry); Gargalo et al., 2020 (spectroscopic sensors,
biosensors, and free-floating wireless sensors). Therefore, only
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TABLE 1 | Overview of the most important challenges and corresponding solution approaches in the development of soft sensors. The challenges are herein broadly
assigned to either the data, information, or knowledge domain.

Domain Challenges Solution approaches Details and most important methods

Data Multiple process phases Phase detection and division Algorithms for phase detection can be based on the shape of process trajectories (e.g., sharp
peak in specific process variable) or the correlation structure of process variables (e.g.,
change in loading matrices of latent variable submodels) (Yao and Gao, 2009; Luo et al.,
2016)

Adaption mechanisms The adaption of the prediction model to multiple process phases can be realized by moving
window, recursive adaption, or ensemble-based methods (Kadlec et al., 2011). Just-in-time
(JIT) learning is a special case of adaptive modeling, because the local JIT models are built
during the online application (Kano and Fujiwara, 2012; Saptoro, 2014)

Variable process lengths Data synchronization Datasets with variable process lengths can be aligned based on: indicator variable
techniques, where a measured or computed variable (e.g., maturity index) indicates the
progress of the process instead of time; curve registration techniques, where batch
trajectories are aligned with respect to process landmarks (Ündey et al., 2002); and dynamic
time warping (DTW), where the data patterns are compressed and expanded so that similar
features are aligned

Time-variant and nonlinear
behavior

Adaption mechanisms A prediction model for time-variant data with nonlinear behavior needs to be adaptive rather
than static. Adaptive modeling approaches include moving window, recursive adaption, and
ensemble-based methods (Kadlec et al., 2011) as well as JIT learning (Kano and Fujiwara,
2012; Saptoro, 2014)

(Multi)collinearity Dimension reduction Latent variable methods (principal component analysis (PCA) or partial least squares (PLS)
variants) intrinsically lead to a dimension reduction and thus eliminate (multi)collinearity (Pani
and Mohanta, 2011)

Variable selection A sound variable selection can reduce (multi)collinearity. Approaches for variable selection
include stepwise regression (e.g., backward elimination, forward selection), penalization of
model complexity (e.g., based on least absolute shrinkage and selection operator), and
through expert knowledge (e.g., a variables’ variance is known to be just due to noise or
control error and is thus excluded from model inputs) (Cawley and Talbot, 2010; Souza et al.,
2016; Heinze et al., 2018)

Information Process deviations or faults Enlarge training data pool The training data pool can be enlarged by the inclusion of datasets of various fault scenarios
and the whole design space instead of only the operating space. Cases that are not covered
in the training data pool will lead to unreliable extrapolation of the prediction model

Process fault detection Methods of process fault detection can be classified as based on quantitative models,
qualitative models and search strategies, and on process history (Venkatasubramanian et al.,
2003a; Venkatasubramanian et al., 2003b; Venkatasubramanian et al., 2003c)

Sensor faults Sensor fault detection Sensor faults can be detected via various approaches (Das et al., 2012): symptom signal
estimation, where the residual between the original and calculated (predicted) sensor reading
indicates a sensor fault (Isermann, 2006; Isermann, 2011); multivariate statistical process
control (MSPC), where faults are detected by the contribution of each input variable to
underlying statistics of an empirical process model (e.g., PCA or PLS variants); and pattern
recognition, where supervised or unsupervised learning algorithms are used to differentiate
between faulty and non-faulty sensor data

Fault tolerance Fault tolerant soft sensors compensate for faults of inputs to the prediction model by a
reconstruction of those inputs (Isermann, 2006; Isermann, 2011). Ensemble-based methods
can potentially be used to discard or underweight sub-models with faulty model inputs

Overfitting Identification of overfitting Overfitting can be determined during model evaluation via internal cross-validation (e.g.,
leave-one-out, k-fold, stratified, or time-series cross validation) and external (holdout)
validation (Hawkins, 2004)

Controlling model
complexity

Model complexity can be controlled and thus overfitting can be reduced by a sound variable
selection (see above)

Deterioration of model
performance

Model maintenance In cases where the performance of the prediction model deteriorates due to unseen events
(not yet included in the training data pool, e.g., changes in the production strain or seasonal
changes in media components), the training data pool and sometimes also the model
structure need to be updated (Wise and Roginski, 2015). In all other cases (similar events
already included in the training data pool), adaptive modeling approaches such as recursive
adaption and ensemble-based methods (Kadlec et al., 2011) as well as JIT learning (Kano
and Fujiwara, 2012; Saptoro, 2014) can be used to maintain the prediction model

Knowledge Implementation of expert
knowledge

Digitalization of expert
knowledge

Expert knowledge can be digitalized via fuzzy-logic-based approaches in the form of a rule
base (Birle et al., 2013) or via first-principle models (Ohadi et al., 2015; Tahir et al., 2019)

Hybrid modeling Data-driven modeling can be combined with knowledge-based approaches to make use of
available expert knowledge (Stosch et al., 2014; Solle et al., 2017). Hybrid modeling often
results in a combination of the advantages and compensation of disadvantages of the two
approaches
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a compact selection of the most important process variables and
analyzers, respectively, is given in this article. Typical online
process data are composed of at least the following readings: flow
rates, (differential) pressure (Krippl et al., 2021), temperature,
pH, stirrer speed, pO2, off-gas CO2/O2, and conductivity. Often,
this standard instrumentation is supplemented by advanced
measurement principles, such as turbidity (transmission,
transflexion, reflection), impedance, pCO2, high performance
liquid chromatography (Dumarey et al., 2019), flow cytometry,
in-situ microscopy, ultrasound, biosensors, proton-transfer-
reaction mass spectrometry (Berbegal et al., 2020), and, last
but not least, various spectroscopic techniques, such as
ultraviolet–visible, near- or mid-infrared (Capito et al., 2015;
Sauer et al., 2019; Walch et al., 2019; Wasalathanthri et al., 2020a;
Cabaneros Lopez et al., 2021), 2D fluorescence (Melcher et al.,
2015; Bayer et al., 2020), Raman (Matthews et al., 2016; Voss
et al., 2017), and nuclear magnetic resonance (Kern et al., 2019).

As mentioned, the choice of analyzers used for monitoring and
control depends on the used production organism. In
mammalian bioprocesses (e.g., Chinese hamster ovary cells),
for example, the cell concentration is in most cases
significantly lower than in microbial bioprocesses (e.g., Pichia
pastoris, Saccharomyces cerevisiae, Escherichia coli). Further,
metabolite concentrations, which are particularly relevant in
mammalian bioprocesses such as ammonium and lactate
(Matthews et al., 2016), are relatively low. Due to higher
growth rates, the cultivation time is typically shorter for
microbial than for mammalian bioprocesses. For the
development of soft sensors, special challenges may therefore
arise for the respective expression system: First, the accuracy of
the reference and online measurements limits the accuracy of the
resulting soft sensors, which can take effect when analyte
concentrations are low. Second, faster processes require higher
measurement frequency according to the Nyquist–Shannon
sampling theorem (microbial: ca. 20–120 h−1 (Voss et al.,
2017; Cabaneros Lopez et al., 2021); mammalian: ca.
0.5–12 h−1 (Ohadi et al., 2015; Matthews et al., 2016)). This
must be considered when specifying the prediction frequency
of the soft sensor. Especially with the complex preprocessing
necessary for spectroscopic data (see next section), the
computational power can limit the prediction frequency of the
soft sensor (Afseth et al., 2006).

Following this description of possible input data to a soft
sensor, the subsequent section shows step by step how to develop
a soft sensor. Afterwards, the state of the art in online
implementation of soft sensors is shown, i.e., how the soft
sensor is concretely used for online prediction.

Workflow of Soft Sensor Development
The development of soft sensors has been reviewed by several
authors. Systematic approaches to soft sensor development have
been presented by Fortuna et al. (2007), Kadlec et al. (2009), and
Souza et al. (2016) for the process industry and by Haimi et al.
(2013) for wastewater treatment plants. They all show a similar
workflow. However, the focus of these review articles is on data-
driven modeling approaches, and knowledge-based modeling
approaches are for the most part neglected. Khatibisepehr

et al. (2013) present a systematic workflow for soft sensor
development based on Bayesian methods, which inherently
combine knowledge-based and data-driven modeling.

The basic workflow used as a framework in this review article
generally assumes a hybrid use of knowledge-based and data-
driven approaches (Figure 1). The core of soft sensor
development is setting up and evaluating the prediction
model. Besides these mandatory steps, the workflow is
nonrigid: It depends on the individual case (degree of process
knowledge, noisiness of inputs, need for model maintenance, etc.)
whether all steps are conducted to the full extent.

The first step in soft sensor development is to evaluate the
available raw data in terms of outliers and patterns in the
datasets. Outlier analysis is important to identify samples or
measurements that distinctly stand out from the rest of the data.
An initial correlation analysis between model input and output can
provide a matrix of correlation coefficients (e.g., Pearson’s), which
helps to assess relationships among the data. When interpreting the
results of correlation analysis, however, one must keep in mind that
correlation is not equivalent to causality. The correlation analysis can,
in combination with available process knowledge, already be
employed to preselect information-bearing model inputs (Melcher
et al., 2015; Bidar et al., 2018). These analyses provide the basis for the
selection of suitable data preprocessing and modeling methods.

The purpose of data preprocessing is to transform the raw
input data into a form that minimizes the effect of noise and
outliers while preserving the information content. Methods of
data preprocessing include formatting, centering, scaling (e.g., to
variance), and—specifically for spectroscopic data—baseline
correction and peak alignment (Afseth et al., 2006; Matthews
et al., 2016; Voss et al., 2017). Signal processing by smoothing and
filtering (e.g., Hampel filter (Pearson et al., 2016)) can help to
reduce noise and eliminate outliers. However, it is important to
note that all preprocessing measures applied during model
establishment must also be executable online.

Process knowledge can be implemented into the soft sensor
model. Knowledge-based model parts such as first-principle
models (Ohadi et al., 2015; Steinwandter et al., 2017;
Pappenreiter et al., 2019; Tahir et al., 2019; Krippl et al., 2021)
can be employed to develop a more accurate and robust model.
Process knowledge in the form of linguistic expressions can be
digitalized using approaches based on fuzzy logic, as reviewed by
Birle et al. (2013).

After these preceding steps, the actual correlation—the core of
the soft sensor algorithm—is established. This correlation model
maps the process data X (input) to the target quantity y (output)
using model coefficients b. In its simplest, linear form, this model
can be formulated as:

y � bX. (1)

If more than one target quantity is predicted with the same
model, the vector y in Eq. (1) is replaced by the matrix Y .

Taking into account the application fields of soft sensors
described above, y can be a physical quantity that can be
measured only offline (online prediction), a higher level,
non-physical quantity (process monitoring and process fault
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detection), or the reading of a hardware sensor (sensor fault
detection). Various modeling techniques have so far been applied
for soft sensor development, including variants of multiple linear
regression (MLR; Jenzsch et al., 2006), partial least squares
regression (PLSR; Sokolov et al., 2015; Voss et al., 2017; Zheng
and Song, 2018; Walch et al., 2019; Cabaneros Lopez et al., 2021),
principal component regression (PCR; Zhu et al., 2018), artificial
neural networks (ANN; Paquet-Durand et al., 2017; Zhang et al.,
2020), and support vector regression (SVR; Voss et al., 2017;
Meng et al., 2019). The choice of the right modeling method
depends on the degree of (multi)collinearity, nonlinearity, and
the availability of process knowledge.

The model is typically trained, i.e., b is determined, using
historical data Xhist and yhist (exception: just-in-time (JIT)

learning), so that yhist � bXhist . Subsequently, the resulting
model needs to be evaluated in terms of goodness-of-fit,
predictivity, and robustness (OECD, 2014). Here, the received
model is used to predict the target quantity ŷhist , so that
ŷhist � bXhist . After training and model evaluation, b can be
used together with online process data Xon to predict the
target quantity ŷon, so that ŷon � bXon.

For the robustness of the developed model, it is crucial that the
model has neither too many nor too few model inputs nor too
high nor too low model complexity, respectively (Figure 2).
Methods to determine the optimal model complexity have
been reviewed by several authors (Cawley and Talbot, 2010;
Souza et al., 2016; Heinze et al., 2018).

Even with a robust and sufficiently accurate soft sensor, model
quality or prediction performance, respectively, usually
deteriorates if the process characteristics change (Kano and
Fujiwara, 2012). Therefore, the maintenance or recalibration of
soft sensors—just as for hardware sensors—is necessary in
practice to preserve the quality of their prediction
performance. In this context, model maintenance refers to the
(automatic) adaptation of models in the event of changing system
conditions. For the prediction models of a soft sensor, this means
that the model parameters and, if necessary, the entire model
structure (e.g., number and type of input variables) must be
adapted over time.

Which programming environment or software solution is
used to develop soft sensors in practice? Soft sensor
development in the academic environment typically takes
place in a programming language of choice such as Matlab
(The MathWorks Inc.), Python, or R. The corresponding
programming environments provide steadily growing libraries
of functions or toolboxes for signal processing, data
preprocessing, and model calibration and validation. Especially
in the industrial environment, software specially developed for
chemometrics is often used for soft sensor development (e.g.,
SIMCA by Sartorius AG; Unscrambler by Aspen Technology
Inc.). Here, the full flexibility of development via program code is
exchanged for a relatively straightforward and guided
development process. Also, many vendors of online analyzers
offer software modules for soft sensor development. In particular,
vendors of spectroscopic sensors should be mentioned here (e.g.,
OPUS suite by Bruker Corp., iC suite by Mettler Toledo Inc.,
GRAMS suite by Thermo Fisher Scientific Inc.), but also vendors
of other multivariate sensors (e.g., BlueVis by BlueSens gas
sensors GmbH) offer corresponding software modules. Some
software tools (chemometric and analyzer software) also offer
the option to embed scripts generated via the above-mentioned
programming languages into the soft sensor algorithm. This
allows adding customized functions for signal processing and
data preprocessing as well as developing prediction models that
might not be included in the commercial software tool. Finally,
soft sensors can also be developed on cloud-based platforms (e.g.,
MindSphere by Siemens AG, Predix by General Electric Co.) to
have access to a wide variety of data processing and modeling
tools and to be able to share the developed soft sensors across
plant or company boundaries (Chen et al., 2020; Kabugo et al.,
2020).

FIGURE 1 | Basic workflow of soft sensor development. A loop exists
between model evaluation and optimization and continuous learning;
however, revisions of the first four steps will in many cases be necessary to
develop a sufficiently accurate and robust soft sensor.

FIGURE 2 | Between the poles of underfitting and overfitting. The
observed error (thick, black line) of a predictive model is influenced by the
modeling of random noise (undesired; thin, gray line) and interference (desired;
thin, black line). The optimal model complexity is a trade-off between
these two competing effects and is case-dependent.
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Online Implementation of Soft Sensors
How is a soft sensor used in practice for online prediction? In
theory, the soft sensor is merely a combination of input data and a
prediction model (see definition above). In practice, however,
several additional aspects must be considered if a soft sensor is to
be used for online prediction, i.e., implemented online.

First of all, online implementation of soft sensors requires at
least communication between field (sensors and actuators) and
control level (programmable logic controller and/or process
control system) and in most cases also supervisory level
(supervisory control and data acquisition, SCADA, and/or
other data management system). The data used as inputs to
the soft sensor can originate from various sources (Steinwandter
et al., 2019). Therefore, a standardized communication between
these sources and the software instance in which the soft sensor is
implemented is essential. While a variety of standard
communication protocols exist for communication between
field and control level (4–20 mA, Modbus, Profibus, etc.), it is
communication via OPC UA (open platform communications
unified architecture) that seems to become the predominant
standard for communication in the control and supervisory
level (Chen et al., 2020; Biermann et al., 2021). Recent efforts
even aim at field-level communication using OPA UA
(Veichtlbauer et al., 2017). OPC UA, unlike its predecessors of
OPC classic (data access, alarms and events, historical data
access), allows hardware- and platform-independent
communication.

Once the communication and thus the data flow between field,
control, and supervisory level has been established, the question
arises on which level of the automation pyramid the soft sensor is
implemented. Technically, it is possible to implement soft sensors
directly in the control level. However, the implementation of
scripts directly in the control system is intended for end users
only in exceptional cases and the proprietary language must be
used (Nair et al., 2020). Systems above the control level, on the
other hand, commonly offer the possibility to implement soft
sensors directly or indirectly. In the direct variant, soft sensors are
implemented in the SCADA (e.g., MFCS by Sartorius AG, Eve by
Infors AG, BioXpert by Applikon Biotechnology BV) or other
data management system (e.g., SIMATIC SIPAT by Siemens AG,
synTQ by Optimal Industrial Technologies Ltd., xPAT by ABB
Ltd., Lucullus PIMS by Securecell AG, LabVIEW by National
Instruments Corp.). Here, preprocessing steps and model
calculations can be implemented directly to a certain extent.
More importantly, these software tools often offer the possibility
to communicate with external chemometric or analyzer software
(Matthews et al., 2016; Voss et al., 2017; Dumarey et al., 2019) or
to integrate customized scripts that are executed online
(Besenhard et al., 2018). In this indirect variant, soft sensors
are implemented in real-time capable chemometric (e.g., SIMCA-
online by Sartorius AG (Voss et al., 2017), Process Pulse by Aspen
Technology Inc.) or analyzer software (e.g., CMET by Bruker
Corp. (Wasalathanthri et al., 2020a), iC Quant by Mettler Toledo
Inc. (Wu et al., 2015)) that communicates with the SCADA or
data management system. Here, communication often already
takes place via OPC UA (Kern et al., 2019). In this indirect
implementation, the chemometric or analyzer software

preferentially communicates information (e.g., the predicted
value) rather than data back to the SCADA or data
management system (Luttmann et al., 2012).

The PAT software products mentioned in this section are only
a selection and should not be seen as a recommendation. For a
more comprehensive overview of PAT software, the reader is
referred to Chew and Sharratt (2010). The authors also list
whether the respective software is compliant with regulatory
requirements for electronic records and signatures according
to 21 CFR Part 11 (FDA, 2003).

When soft sensors are implemented in an industrial
environment, they must first undergo an intensive functional
and risk assessment (qualification). A step-by-step guidance for
structured development and implementation has been proposed
by Randek and Mandenius (2018). This guidance considers the
regulatory validation requirements for software including
recommended protocols for installation, operational, and
performance qualification. The validation of software,
especially in the pharmaceutical environment, commonly
follows guidelines such as GAMP 5 (ISPE, 2008), 21 CFR Part
11 (FDA, 2003), or EU GMP Annex 11 (EC, 2010).

CHALLENGES IN SOFT SENSOR
DEVELOPMENT FOR BIOPROCESSES

This chapter concerns the challenges in soft sensor development
for bioprocesses from a data scientist’s perspective, namely,
variable process lengths, multiple process phases, and sensor
faults. For each of these three challenges, the problem
statement is initially outlined. Subsequently, the solution
approaches are critically discussed, linking them to the other
two challenges, wherever possible. Each solution approach is
summarized at the end particularly regarding its practicality
and applicability to bioprocesses.

Variable Process Lengths
Problem Statement
From a process engineering perspective, the end of a bioprocess is
defined either by the expiration of a certain process time or by the
occurrence of a certain process event. Such termination events
can be, for example, the reaching of a target value for the biomass
or product concentration or a specific pattern in the process data
(e.g., a CO2 peak indicating the consumption of a carbon source).

In the case of an event-driven process end, the process length
can vary from batch to batch due to multiple sources of variance.
Besides the typical variance of biological reactions, variance can
be introduced by raw materials (e.g., media or feed), by preceding
processing units (e.g., preculture), or by deviations in the current
process itself.

The variable length of process runs can lead to the following
problems. First of all, it can distort the equal weighting of the
individual datasets during model development and evaluation if
the reference data yhist are generated at a constant frequency:
More reference data points for longer processes lead to an
overweighting of longer processes compared to shorter ones.
Secondly, in case a dynamic soft sensor model incorporates
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time as an input variable to compensate for time-variant
behavior, variable process lengths lead to another problem:
Model performance may deteriorate to the extent that the rate
of process progress deviates (i.e., the process is too fast or too
slow) from the historical data that were used to train the model.
Thirdly, in multiphase processes, the sources of process variance
described above can lead to deviations in the time of occurrence
of process events (Ündey et al., 2002). If this issue is not
accounted for, the adaptation of a soft sensor to process
phases could be impeded.

Various methods of data synchronization have been developed
to address the challenge of variable process lengths. Data
synchronization has two goals, as illustrated in Figure 3 for a
fictional process variable: on the one hand, to bring all process
datasets to the same lengths (Figure 3B); on the other hand, to
ensure that the relevant process events (landmarks) coincide
(Figure 3C).

The three techniques used most commonly for data
synchronization are discussed in the following: indicator
variable, curve registration, and dynamic time warping
(DTW). The goal of all these methods is to find a warping
function h that replaces the time t on the abscissa and thus to
obtain synchronized process data Xsync (Ramsay and Silverman,
2005):

Xsync � X[h(t)]. (2)

As part of soft sensors that are adaptable to variable process
lengths, the synchronization algorithm needs to be executable
both offline during model development (for Xhist and yhist) as well
as during the online application (for Xon).

As with all, the choice of the data synchronization method is
highly dependent on the process being monitored (Rato et al.,
2016; Rato et al., 2018). It should also be noted that, regardless of
the method used for data synchronization, all subsequent levels of
the monitoring algorithm (soft sensor prediction, fault detection,
etc.) depend for better or worse on the robustness and accuracy of
the synchronization method used.

Indicator Variable Techniques
In this method, the time scale is replaced by an alternative scale,
the indicator variable. The indicator variable can be either a real
(physical) process variable or an estimated process progress, often
referred to as maturity index or percent completion. Process
variables that are used as termination criteria for the process or as
trigger variables for an automation system are particularly
suitable as indicator variables (Ündey et al., 2003; García-
Muñoz et al., 2011). Examples of process variables suitable as
indicator variable are decrease of substrate concentration (Ündey
et al., 2002), cumulative feed volume (Ündey et al., 2003),
bioreactor volume, and biomass concentration (Rato et al.,
2016). Regardless whether a real process variable or a maturity
index is used, the indicator variable should ideally progress
strictly monotonically, continuously, and smoothly and have
the same start and end value (e.g., 0 and 100 % maturity) for
all process runs (Nomikos and MacGregor, 1995; Ündey et al.,
2002; Ündey et al., 2003).

When developing a prediction model for the maturity index,
the percentage of process progress is calculated for the training
data, e.g., by a simple linear transformation. The model requires
monotonically progressing variables that correlate with process
progress. Examples of the use of a maturity index for data
synchronization in bioprocesses can be found in Krause et al.
(2015) and Brunner et al. (2019). Both studies demonstrate how a
maturity index based on a PLS model can be used to determine
process progress online and thus enable adaption to the time-
variant behavior of biological batch processes. Only through
information about the process maturity was it possible to
detect sensor faults in the respective bioprocesses.

Ündey et al. (2003) addressed the challenge of variable process
length for a multiphase process, namely a simulated fed-batch
penicillin fermentation with two phases (batch and fed-batch
phase). They proposed using separate indicator variables for each
process phase to compensate for the variable lengths of the

FIGURE 3 | Data synchronization of a query curve (gray, thick line)
related to a reference curve (black, thin line) of a fictional process variable with
landmarks L1, L2, and L3 and process end E (dashed line): (A) Initial situation
with variable E and variable L1, L2, and L3; (B) Synchronization of E but
no coincidence of L1, L2, and L3; (C) Synchronization of E, L1, L2, and L3.
The landmarks L1, L2, and L3 represent typical curve features, namely a local
maximum, a local minimum, and a trend reversal, respectively. The trigger
event for this fictional process to end (E) is the reaching of a plateau after L1,
L2, and L3 have been reached.
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phases. As a result, the authors were able to construct tighter
control limits for an MSPC model, which in turn enabled faster
fault detection. A similar approach was presented by García-
Muñoz et al. (2003) for an industrial drying process with three
process stages. It was shown that incorporating warping
information—i.e., “the information that comes out of an
alignment” (García-Muñoz et al., 2003)—resulting from the
stage-by-stage alignment can improve a quality prediction model.

In summary, indicator variables are suited for data
synchronization of bioprocess data under the condition that
there is a minimum understanding of the temporal behavior
of the process variables. If this knowledge is available and
especially if the process variable used as the indicator variable
is used as termination criterion for the process, there is no more
robust and simple method than this. Problems with the
prediction of the maturity index can occur if the input
variables of the model change fast in certain process phases
and slowly in others. This is not uncommon, especially in
USP (lag vs. exponential phase). Even if this is considered by
using a non-linear model, the resolution of the input variables
restricts the relative accuracy in “slow” process phases. This
resolution is determined by the sensors and actuators used. In
cases where it is difficult or impossible to find or calculate an
indicator variable that comes close to the above-mentioned
requirements (strictly monotonically progressing, etc.), curve
registration techniques or DTW should be considered. Finally,
it must be stressed that indicator variable techniques are per se
designed to be independent of any landmarks. These structural
features, which are especially helpful for multiphase processes, are
ignored during data synchronization and thus cannot be
exploited. Data synchronization with indicator variable
techniques is therefore limited to the scenario shown in
Figure 3B.

Curve Registration Techniques
Within functional data analysis, curve registration is referred to as
the process of aligning one function curve to another (Ramsay
and Silverman, 2005). In this sense, the term curve registration
does not differ from the term data synchronization, only that it
refers specifically to functional data. The process data are seen as
observations of an underlying continuous function (Ündey et al.,
2002). The curves are aligned with respect to their structural
features, referred to as landmarks. These landmarks can be
certain levels, extrema (minima, maxima), or trend reversals
(see L1, L2, L3, and E in Figure 3). The relevant landmarks
are identified using process knowledge and/or numerical
computations, such as first and second derivative, respectively,
and zero crossing (Ündey et al., 2002; Ramsay and Silverman,
2005). After matching the landmarks between reference and
query, the sections between the landmarks are warped, which
in the simplest case means that they are resampled linearly.

Williams et al. (2001) and Ündey et al. (2002) used curve
registration to align the process data of a simulated fed-batch
penicillin fermentation. For the alignment of multivariate data,
the authors suggest first aligning all process data with respect to
the landmarks of the most important variable (determined, e.g.,
via process knowledge). In the second step, a principal

component analysis (PCA) is carried out and the process
variables are aligned with respect to the landmarks of the first
principal component. The second step is repeated until the
landmarks converge. In these studies, it was shown that curve
registration provides relatively smooth variable trajectories after
the alignment compared to DTW; in this way, fewer false alarms
occurred with MSPC-based fault detection. In one other of the
few examples from the bioprocess field, Andersen and Runger
(2012) used landmarks of a pharmaceutical batch fermentation
process for data synchronization. The significant landmarks were
automatically identified as the zero crossings of a continuous
Gaussian wavelet transformation (Bigot, 2006). Afterwards, the
resulting curve segments were warped linearly and piecewise for
each segment.

In summary, curve registration techniques allow not only the
alignment of variable lengths—as with an indicator variable—but
also the alignment of curve features. Scenario C in Figure 3 can
therefore be achieved. Since the features of many process
variables occur simultaneously at phase transitions, curve
registration techniques are particularly suitable for multiphase
processes (Ündey and Çınar, 2002). However, applications of
curve registration for bioprocesses are rare. The existence of this
niche in the field of bioprocesses can at most be explained by the
circumstance that the indicator variable technique is more
intuitive and comparatively easy to implement and DTW can
be used with less fine tuning.

Dynamic Time Warping
DTW, initially developed for speech recognition (Sakoe and
Chiba, 1978), was proposed for the synchronization of process
data by Kassidas et al. (1998). Since then, it has become one of the
most widely used methods for this purpose. Reasons for this are
that not only variable process lengths but also landmarks can be
aligned using DTW. Scenario C in Figure 3 can therefore be
achieved, just as with curve registration. DTW expands,
contracts, or translates the time axis of the datasets in such a
way that the shape of the variable trajectory is largely preserved,
landmarks coincide in time and all datasets have a uniform
number of measuring points. The basic sequence of DTW
algorithms is as follows: First, the distance matrix (e.g.,
Euclidean) between the instants of the reference and the query
time series is calculated. Then the warping path is searched for
that minimizes the sum of distances and at the same time
considers several boundary conditions (local, global, endpoint).
Using this warping path, the query time series is aligned to the
reference time series by expanding, contracting, and translating.

Since its introduction for data synchronization, the original
DTW algorithm has been varied in several ways to address issues
such as singularities. Singularity in this context refers to the
mapping of a single point of the reference time series to multiple
points of the query time series or vice versa. Derivative DTW
(DDTW) uses local derivatives of the time series instead of raw
data and was proposed for overcoming singularities (Keogh and
Pazzani, 2001). DDTW compared to DTW tends to align more
based on shape rather than magnitude (Spooner et al., 2018).
Since numerical derivation often leads to an amplification of
noise, a Savitzky-Golay filtering step can be implemented in the
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DDTW algorithm to make the alignment more robust (Zhang
et al., 2013).

For process data that show sections with many successive
landmarks (feature-rich) and then again sections with few
landmarks (feature-poor), a fixed warping resolution is often
not sufficient. Therefore, a dynamic warping resolution was
proposed by Gins et al. (2012). This is achieved by a
combination of correlation optimized warping (COW; Nielsen
et al., 1998; Fransson and Folestad, 2006) for feature-poor and
DDTW for feature-rich sections (hybrid DDTW).

The difficulty with the online application of DTW is that a
partially complete dataset (query) needs to be aligned with a
complete dataset (reference). This issue was first addressed by
Kassidas et al. (1998) and later further elaborated by González-
Martínez et al. (2011). In both studies, the endpoint constraint,
i.e., that the endpoint of the query must equal the endpoint of the
reference, was omitted. This means, however, that the alignment
has to be calculated at each sampling point and each time the
recent history of the trajectory has to be considered. For this
reason, a computationally efficient way of finding the optimal
warping path within a moving window was proposed by
González-Martínez et al. (2011), referred to as relaxed-greedy
time warping (RGTW). Another online application of DTW was
presented by Srinivasan and Qian (2007). They used dynamic
locus analysis (Srinivasan and Qian, 2006) to identify the best
matching signal segment from a reference library by making use
of singular points (landmarks) and thus to determine the state of
the process. For the actual online warping, a greedy version of the
DTW algorithm, referred to as extrapolative time warping (XTW;
Srinivasan and Qian, 2005), was used.

González-Martínez et al. (2014) extended the concept of
DTW (offline application) and RGTW (online application) to
the problem of multiple asynchronisms for a simulated S.
cerevisiae fermentation. Multiple asynchronism in this
context refers to a combination of at least two of the
following asynchronism scenarios: variable process length;
no coincidence or overlapping of key process events; initial
delay or premature termination of a process. The authors
proposed a two-step approach in which the asynchronism
pattern is firstly detected based on the warping information
and secondly batch synchronization is performed based on the
detected pattern.

In the standard DTW procedure (univariate DTW), a single
representative process variable is used as a reference to align all
other process variables. In certain cases, however, univariate
DTW can lead to misleading results; this includes, for
example, a delayed measurement in a bypass (on-line) or the
bioreactor periphery (at-line) compared to the remaining
measurements in the bioreactor (in-line). In these cases,
multivariate DTW (MDTW) should be considered. Two
fundamental variants are distinguished in MDTW (Shokoohi-
Yekta et al., 2015): Either DTW is performed separately for each
of the process variables j, resulting in j potentially different
alignments (“independent” MDTW); or the warping path is
determined via a multidimensional p-norm as cost function,
whereby multiple process variables are included in the
calculation of the distance (“dependent” MDTW). For a

review of MDTW, the reader is referred to Moser and
Schramm (2019).

In summary, DTW and its variants have—at least for
simulated data—proven to be well suited for synchronizing
bioprocess data, both offline and online. No process
knowledge is necessary to develop this preprocessing method.
When dealing with multiple process phases, DTW can be used in
two different ways: first, it can be used to detect process phases
(Gollmer and Posten, 1996); second, it can be used to align data
within a process phase (Doan and Srinivasan, 2008; Spooner et al.,
2018). The use of DTW for these purposes is further described in
the following section. Finally, it should be noted that the warping
information can be used for the classification of deviations from
normal operating conditions, such as sensor faults (González-
Martínez et al., 2013). However, in order to identify the deviating
sensor, each fault scenario of interest must explicitly be included
in the training data pool.

Multiple Process Phases
Problem Statement
From a monitoring perspective, industrial processes can take
place either in multiple processing units (multistage) or in a single
one. A process with a single processing unit (e.g., USP in a
bioreactor) can have multiple operational regimes, such as a batch
and fed-batch phase, and is referred to as multiphase process.
Multiphase processes are often treated analogously to multistage
processes (Yao and Gao, 2009), i.e., different process phases are
treated as if they took place in separate processing units.

The necessity of considering multiple process phases when
developing a soft sensor is obvious: The relationships within the
input data X (multicollinearity) and between the input data and
the target variable y (correlation) can vary substantially in the
individual phases. The challenges discussed in this section refer to
changes in the relationships from X to y that are related to the
process strategy. These include, for example, an induced change
in media composition due to feeding, the start or end of a
starvation phase, long-term changes between oxygen-limited
and non-limited process conditions, or changes in the
temperature setpoint. Changes in the relationships of X to y
that are associated with time-variant and nonlinear behavior are
not within the scope of this review article, although the respective
adaption mechanisms partly overlap. These adaption
mechanisms have been excellently reviewed by Kadlec et al.
(2011).

Only with much greater development effort or available
process knowledge will a global process model attain the same
accuracy and robustness as several submodels for each process
phase. Graphically expressed, the required model complexity (cf.
Figure 2) of a global model is allocated to several less complex
local models. This in turn can make it easier to optimize the
model (Jin et al., 2015), for example, in terms of avoidance of
overfitting.

The main difference between datasets of multistage and
multiphase processes is that in multiphase processes the
individual phase segments must first be identified and often
cannot be precisely separated. The actual modeling step is
therefore often preceded by a phase detection and division
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step. The detection and division is based either on trajectories of
phase-sensitive process variables or on the changing correlation
structure among the process variables (Luo et al., 2016).

Trajectory-Based Phase Detection and Division
The sequence of the most biotechnological processes is not given
by nature, but by process experts. Therefore, if knowledge about
the process sequence is available, it is reasonable to use it for
phase detection and division. The definition of landmarks by
process experts leads to a solution that is both robust and
comprehensible. An example of this can be found in Spooner
et al. (2018), who, in contrast to their previous study (Spooner
et al., 2017), first divided a bacterial fermentation process into two
phases and then aligned the process data of these phases
separately via DTW and DDTW, respectively. The pH and pH
correction agent (flow and cumulative amount) signals were used
to distinguish the phases. Brunner et al. (2020) used the off-gas
CO2 signal to detect the consumption of the carbon source and
thus the end of the batch phase in a P. pastoris fed-batch
bioprocess. To make the detection of this landmark (CO2

peak) more robust, a threshold for the cumulative amount of
pH correction agent was additionally implemented in the phase
detection algorithm.

The role of DTW for data synchronization has already been
described in the previous section. As a means of detecting process
phases, it was first proposed by Gollmer and Posten (1996) for
time-varying fed-batch bioprocesses (E. coli and S. cerevisiae).
With the use of historical time trajectories of CO2 andO2 together
with available process knowledge, six different process phases
were classified. This reference (prototype) was used in the online
application by the DTW algorithm to assign unknown process
data to this pattern and thus detect the previously defined process
phases. Doan and Srinivasan (2008) proposed a variant of DTW
augmented by singular points (landmarks) for the combined
detection and synchronization of process phases. They used
substrate feed and pH as key variables for the detection of
process phases of a simulated fed-batch penicillin
fermentation. Phase changes were considered equivalent to the
occurrence of singular points and were identified using the
methods described in the previous section (Srinivasan and
Qian, 2005; Srinivasan and Qian, 2007). DTW (offline) and
XTW (online), respectively, were then used for data
synchronization within the phase segments.

Especially in USP, phase transitions must be considered, as
biological systems involve living cells, which do not react
instantaneously to environmental changes. Luo et al. (2016)
proposed a framework for adapting process models to a
sequence of multiple process phases while explicitly considering
phase transitions in a simulated fed-batch penicillin fermentation.
They used fuzzy c-means (FCM) clustering for phase detection
and division to account for the gradual transition from one steady
phase to another. The FCM clustering algorithm was constrained
by the temporal sequence of the dataset. Phase-based multiway
PLSmodels were used for prediction in the steady phases, and JIT-
PLS models were used during the transition phases.

In summary, trajectory-based algorithms are suitable for
phase detection and division in cases where a minimum of

process knowledge is available. This knowledge is necessary to
select the phase-sensitive process variables. Provided that suitable
phase-sensitive process variables can be identified, this approach
is more comprehensible than the correlation-based approach.
This is especially due to the fact that the identified phases usually
correspond to operational phases (Yao and Gao, 2009). Finally, it
must be emphasized that DTW is suitable not only for data
synchronization in the case of variable process lengths, as
described above, but also for the detection of multiple process
phases.

Correlation-Based Phase Detection and Division
A difficulty with the methods mentioned so far is to find variables
that are measurable and sensitive to the individual phases (Luo
et al., 2016) and whose trajectories are reproducible and as noise-
free as possible. In the following, methods are presented that
accomplish phase detection and division without the need for
process knowledge. These methods are based on changes in the
correlation structure among process variables.

Camacho et al. (2008) proposed an algorithm based on latent
variable models (PCA or PLS) for the detection and division of
process phases for a S. cerevisiae and a wastewater treatment
process. The whole process dataset is iteratively divided into
incrementally smaller phases. At each iteration step, the
separation point that leads to the maximum improvement of
the explained variance of the PCA or PLS submodel, respectively,
compared to the undivided dataset is identified (Camacho and
Picó, 2006).

Another method to make use of changes in the correlation
structure is to first determine the loading matrices of PCA or PLS
submodels following a moving window approach and then to find
groups in which the underlying variable correlation remains
similar (Lu et al., 2004; Lu and Gao, 2005). These groups can,
for example, be determined by k-means clustering (Lu et al.,
2004).

However, if different operation modes with variable phase and
process lengths are to be considered, the classical moving window
approach leads to misleading results. The reason for this is that in
the online application it is not clear whether the current moving
window coincides with that of the reference (historical data).
Therefore, the described method for phase detection and division
(Lu et al., 2004) was extended by the ability to identify the current
mode of operation (resulting in variable lengths) online. Zhang
et al. (2018) generated a series of moving windows within a
constrained searching range around the current sample. They
then used the k-nearest neighbor rule to identify the most similar
time slices. The time slices found in this way are then used as
described above (loading matrices of submodels, k-means
clustering) to enable online phase detection despite variable
phase and process lengths.

Finally, Gaussian mixture models (GMM) have proven to be
suitable for phase detection and division for a simulated fed-batch
penicillin fermentation (Yu and Qin, 2009; Yu et al., 2013). Here,
each phase is represented by a Gaussian component with distinct
mean and covariance. The posterior probability is used to group
the process data into separate process phases. This concept was
later adopted for a real industrial bioprocess (Mei et al., 2017).
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In summary, for correlation-based phase division, the reduced
effort in implementing process knowledge is compensated with
an increased effort in modeling. Depending on the modeling
method, however, an entirely different division of the process
phases may result and fine-tuning of the latent variable models is
necessary (Luo et al., 2016). Because the correlation structure is of
multivariate nature, the interpretability of the results of the phase
division is limited in contrast to most trajectory-based methods.

Sensor Faults
Problem Statement
Sensor faults are defined as deviations of the observed sensor
reading from the true value (Balaban et al., 2009; Sharma et al.,
2010). They are distinguished according to the type of occurrence
as abrupt (stepwise) or incipient (driftwise) faults (Isermann,
2006) and according to the shape of the deviation as bias,
precision degradation, and complete failure.

During the training phase of soft sensor development, sensor
faults can severely affect the resulting goodness-of-fit and
predictivity. If sensor faults are present in the training data
Xhist and yhist , these deviations may be reflected in the model
coefficient b and the prediction ŷhist . In this case, evaluation
criteria for goodness-of-fit and predictivity (e.g., R2, root mean
squared error) are affected. During the online application of the
soft sensor, i.e., the prediction phase, sensor faults in Xon may
directly affect the prediction of the target quantity ŷon.

The validation of sensor readings prior to their use for quality
control, e.g., via soft sensors, is therefore of crucial importance, as
outlined by Feital and Pinto (2015). A sensor reading is valid if
there are no sensor faults or unconsidered influences on the
measurement, which can occur due to cross-sensitivity to matrix
compounds (matrix effects). Deviations between the observed
sensor reading and the true value thus need to be detected, and a
decision logic needs to classify the observed sensor reading as
reliable (valid) or faulty (invalid). Valid sensor readings can be
used for quality control by means of soft sensors, while invalid
ones can lead to misleading results.

The fault tolerance of soft sensors, or, in other words, a reliable
soft sensor prediction in the presence of sensor faults represents
one of the remaining core challenges in the development of soft
sensors. The reason for this is that the detection and subsequent
compensation of sensor faults alone are difficult to realize, but
they become even more complex when the conditions described
above (variable process lengths and multiple process phases)
occur simultaneously.

This section first discusses various methods of detecting sensor
faults. Afterwards, the approaches for tolerance of soft sensors
towards sensor faults are discussed.

Sensor Fault Detection
When a sensor i that is used to monitor a bioprocess gives faulty
readings, its reliability ri decreases. The aim of sensor fault
detection is to detect these faulty readings and thus indirectly
determine ri. Figure 4 shows four fundamental approaches to
sensor fault detection.

Hardware redundancy uses multiple identical sensors to
derive the occurrence and size of sensor faults in case of a

significant discrepancy among these sensors (as, for example,
in airplanes). Voter structures can be implemented into the fault
detection algorithm to allow a “democratic” decision on which of
the individual sensor values is faulty. If, for example, two of three
sensors give a similar reading and the third reading deviates
significantly, the third sensor is considered to be faulty. For
hardware redundancy, the spatial distribution of the sensors
must be considered, and the costs of the sensors limit this
approach (Stork and Kowalski, 1999). Hardware redundancy
can also be used to determine the type of fault as bias, gain,
precision degradation, complete failure, and noise (Kullaa, 2013).

The other three approaches are based on analytical
redundancy and are described in the following.

FIGURE 4 | Approaches for sensor fault detection: (A) hardware
redundancy; (B) symptom signal methods; (C) methods based on variable
contribution in MSPC model; (D) pattern recognition methods. The index i
refers to one type of sensor for one physical or chemical variable,
whereas m . . . n refers to any other types of sensors. For example, in (A), the
reliability of one turbidity sensor (sensor i) is determined using other turbidity
sensors in the same bioreactor (redundant sensors i). In (B), the reliability of a
turbidity sensor (sensor i) is determined using other sensors such as exhaust
gas, dissolved oxygen, and pH (sensors m . . . n). In (C,D), the entire process
data matrix consisting of the turbidity sensor to bemonitored (sensor i) and the
other sensors (m . . . n) is used as input to the empirical process model (C) and
pattern recognition (D), respectively. Approaches (B–D) are based on
analytical redundancy.
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Symptom Signal Methods
As mentioned in the introduction, soft sensors themselves can be
used to assist in sensor fault detection. Here, the target quantity y
of the soft sensor is the reading of the hardware sensor to be
monitored. A deviation of the prediction ŷon from the original
reading yon beyond a defined threshold value indicates a sensor
fault. The residual between ŷon and yon is referred to as symptom
signal e (Zarei and Shokri, 2014) and can in its simplest form be
formulated as:

e � yon − ŷon. (3)

Several authors make use of state-space models for the
generation of the symptom signal, as described in the
following. Zarei and Shokri (2014) used a nonlinear unknown
input observer to generate symptom signals and thereby to detect
sensor faults in a simulated continuous stirred-tank reactor
(CSTR) process. Alag et al. (2001) proposed a framework for
sensor fault detection based on the symptom signal method
exemplarily for a gas turbine power plant. They proposed a
multi-step algorithm for determining ŷon followed by the
generation and evaluation of the symptom signal. First, a
redundant prediction for each sensor in the network is
generated based on regression methods such as neural
networks (redundancy creation). Subsequently, these
predictions are fused with original sensor readings into a
state-space model based on a Kalman filter approach (state
prediction and fusion). The statistical properties of the
symptom signal are in combination with probabilistic
reasoning finally used to identify both abrupt and incipient
sensor faults. Since a symptom signal is created for each
sensor, the proposed methodology is capable of detecting
multiple sensor faults simultaneously.

Autoassociative neural networks (AANN) were first
introduced by Kramer (1991) for sensor fault detection and
reconstruction in a simulated chemical batch process. They
have proven to be effective in detecting sensor faults in a
fermentation process (Streptomyces virginiae) with variable
process length and multiple process phases (Huang et al.,
2002). AANN are feed-forward neural networks consisting of
an input, an output, and three hidden layers (mapping,
bottleneck, and demapping layer). The outputs of the
bottleneck layer are considered equivalent to the principal
components of a nonlinear PCA (Kramer, 1991). The key
concept of AANN is that the model is trained with fault-free
process data Xhist both as input and output, so that Xhist � Yhist .
The resulting nonlinear model is used for determining online
predictions of the process data, ̂Yon, based on online measured
process data, Xon � Yon; then, analogous to Eq. (3), the residual is
calculated for each variable and used for the detection of sensor
faults. This concept was extended to a complex nonlinear system
with time-delays, namely a multicomponent distillation column
(Perla et al., 2004).

The symptom signal method was used by Brunner et al. (2019)
to detect sensor faults in a P. pastoris batch process. Due to the
time-variant behavior and variable lengths of the batch processes,
an indicator variable (maturity index) is introduced to predict the

process progress online. For each process section, a set of
prediction models for ŷon is generated. A regularization
approach based on binary particle swarm optimization (PSO)
is used to select the 25 best prediction models. The distribution of
the predictions ŷon is compared to a moving window distribution
of yon using the Kullback–Leibler divergence (Kullback and
Leibler, 1951). The divergence between ŷon and yon indicates a
sensor fault and is used to quantify the sensor reliability ri.

Most studies use a fixed threshold for fault detection based on
symptom signals. This can lead to false alarms when unforeseen
events or noise occur in the sensor network data. In these cases, a
time-varying as opposed to a fixed threshold can increase
robustness and minimize the fault detection time, as shown by
Armaou and Demetriou (2008) for simulated chemical processes.
However, if process lengths vary, the threshold needs to adapt
dynamically to process progress and not just to process time. For
this reason, Brunner et al. (2019) proposed a dynamic threshold,
which is calculated by means of the confidence width of ŷon,
which in turn is dependent on the process progress.

In addition to the mere detection of a sensor fault, information
about the type of fault may also be necessary for the potential
subsequent compensation (fault tolerance). To determine the
type of fault as either bias, complete failure, drifting, or
precision degradation, Dunia et al. (1996) developed a concept
in which the symptom signal is generated using a PCA
prediction model.

In summary, symptom signal methods are well suited for the
detection of sensor faults and they are relatively intuitive due to
their similarity to hardware redundancy. The main bottleneck of
this approach is the model for the prediction of ŷon, which is used
for generating the symptom signal. For most bioprocesses, the
model needs to consider time-variant behavior and variable
process lengths. With the exception of AANNs, this model
must be developed separately for each sensor to be monitored.
Themain advantage of the symptom signal method is that there is
a direct reconstruction for the faulty sensor value available. Soft
sensors or control systems, which depend on a reliable sensor
input, can fall back on the reconstructed value and thus be
designed fault tolerant.

Methods Based on Variable Contribution in Multivariate
Statistical Process Control Model
Multivariate statistical process control (MSPC) and its
corresponding empirical process models and control charts are
another method to detect sensor faults. The original idea ofMSPC
is to map a wealth of process data X to one or a few higher-level,
non-physical process quantities y or Y , respectively, such as latent
variables (Kourti, 2005). Deviations between historical, Xhist , and
online process data Xon are detected using control charts based on
the complementary SPE (squared prediction error; sometimes
denoted as Q) and Hotelling’s T2 statistics (Nomikos and
MacGregor, 1995; Liu et al., 2017; Sánchez-Fernández et al.,
2018). Once these test statistics indicate a significant deviation,
the contribution of each input variable in Xon to the test
statistic(s) is calculated. Sensors or variables, respectively, with
a significantly high contribution to the test statistic(s) are
associated with a sensor fault. A general analysis of the
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variable contribution approach is given by Qin (2003). Various
methods for decomposing the test statistics to contributions, such
as complete, partial, or reconstruction-based decomposition,
were analyzed by Alcala and Qin (2011).

Sánchez-Fernández et al. (2018) combined the symptom
signal and the contribution-based method for the detection of
process and sensor faults. Residuals between predictions and
observations for each variable in Xon are used as inputs to a
PCA-based MSPC model. Residuals that are calculated with
faultless training data are used for calculating the thresholds
(control chart limits) for fault detection based on T2 and SPE
statistics. Multivariate and univariate exponentially weighted
moving average control charts are used for the detection of
process and sensor faults, respectively. Two simulated
benchmark processes (Tennessee Eastman process and
wastewater treatment plant) were used for validating the concept.

Another combination of the symptom signal and the
contribution-based method was proposed by Yoo and Lee
(2006) for sensor fault detection. Here, contribution plots
assist in identifying faulty variables. In case the contribution
plots indicate a fault, the original measurement is compared with
a prediction based on a fuzzy PLS model of the corresponding
variable. However, no algorithm was presented on how to derive
the sensor reliability or the fault magnitude and type, respectively.
The concept was evaluated on a real and a simulated wastewater
treatment plant.

Reconstruction-based contributions (RBC) were proposed for
sensor fault detection by Yue and Qin (2001). Here, T2 and SPE
are combined in a fault detection index φ. This combined index
proved to have better detectability both for single and multiple
sensor faults than if the contributions to T2 and SPE are
considered separately (Yue and Qin, 2001; Alcala and Qin,
2009). This concept was adopted by Tôrres et al. (2018) for
pharmaceutical tablet manufacturing. The RBC approach was
extended by Mnassri and Ouladsine (2015) to handle multiple
and more complex sensor faults.

A contribution-based approach to sensor fault detection and
tolerance was developed by Krause et al. (2015) for the
monitoring of a yeast fermentation process. This approach
does not consider the contribution to the test statistics as
described above, but the direct contribution to the model b
and the prediction ŷon, respectively, for fault detection. They
developed a PLS-based MSPC model using an indicator variable
to compensate for variable process lengths. For each process
section, a set of MSPC models is generated and PSO is used for
finding the best models with respect to historical process data
(with normal process behavior). Variable importance in the
projection (VIP) scores (Chong and Jun, 2005) were used to
evaluate the input variables for their contribution (information
content) to the MSPC model. A reduction of the VIP score of a
variable is assigned to a fault of the corresponding sensor.

A problem not to be underestimated in contribution-based
fault detection is the smearing effect (Alcala and Qin, 2011; van
den Kerkhof et al., 2013). Smearing here refers to the “influence of
faulty variables on the contributions of non-faulty variables” (van
den Kerkhof et al., 2013). Faulty variables (i.e., soft sensor inputs)
can thus be concealed, and non-faulty variables can be incorrectly

associated with faults. In contribution-based fault detection,
groups of correlating variables are often displayed as faulty
due to the smearing effect (van den Kerkhof et al., 2013); this
is an obstacle especially for the often multicollinear data of
bioprocesses.

To account for the nonlinearity of CSTR processes, several
authors introduced the kernel PCA (Schölkopf et al., 1998) as a
nonlinear extension of the PCA and adapted the calculation of the
contributions to the T2 and SPE statistics accordingly (Cho et al.,
2005; Choi et al., 2005; Alcala and Qin, 2010).

The functional principle of AANN has already been described
above for fault detection using symptom signals. Ren et al. (2018)
proposed a reconstruction-based AANN to detect faults in
nonlinear processes (simulated gas turbine). Both single and
multiple faults could be detected despite the occurrence of
smearing effects. It was further shown that in this case
reconstruction-based AANN is superior to the other
investigated methods (contribution plots-based PCA,
contribution plots-based AANN, and reconstruction-based
PCA) in terms of detection rate.

In summary, methods based on variable contribution currently
represent the largest share among studies on sensor fault detection
in the process industry. The main advantage of these methods is
that the MSPC model can be used both for process and sensor fault
detection. With only one MSPC model it is theoretically possible to
monitor all input variables or sensors, respectively. To the best of
our knowledge, however, there is only one study (Krause et al.,
2015) that shows that, for highly multicollinear bioprocess data,
smearing effects do not prevent successful sensor fault detection.
For multiphase processes with variable process lengths, the MSPC
models used for defect detection can be developed separately for
each phase and a phase-specific indicator variable can be used for
time synchronization (Ündey et al., 2003).

Pattern Recognition Methods
Unsupervised (clustering) and supervised (classification and
regression) pattern recognition has been applied extensively
for bioprocess monitoring (Lourenço et al., 2012; Rodríguez-
Méndez et al., 2016). Also, in the detection of sensor faults by
pattern recognition, a distinction is made between unsupervised
and supervised methods.

In the case of unsupervised pattern recognition, the training
data consist of fault-free process data. The relationships within
the process variables are learned as patterns. A specific deviation
from the fault-free pattern can then be assigned to a specific
sensor fault (Barbariol et al., 2020). In this context, unsupervised
pattern recognition is comparable to the aforementioned
methods based on variable contribution in MSPC models:
First, a deviation from the fault-free standard process is
detected and then it is examined to determine to which
variable the fault can be traced. These two approaches (MSPC
vs. unsupervised pattern recognition) differ less by this
underlying principle than by the modeling methods used
(empirical process model vs. clustering algorithm).

Barbariol et al. (2020) used unsupervised anomaly detection
algorithms to detect faults of a multiphase flow meter. Artificial
faults were added to data of normal operating conditions. The
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type of fault was identified as either complete failure, bias,
precision degradation, or drift by a root cause analysis algorithm.

In the case of supervised pattern recognition, the training data
contain sensor faults. These sensor faults can be artificial or real,
but in any case, they must be labeled according to their reliability
ri or—conversely—their degree of faultiness (1 – ri). Faultiness is
indicated either binarily (fault � true/false) or on a discrete
(Mehranbod et al., 2003) or continuous scale (Guo and Nurre,
1991). Detecting sensor faults becomes a classification problem in
case of binary or discrete faultiness and a regression problem in
case of continuous faultiness. In both cases, labeled faulty data
Xhist represent the inputs and the degree of faultiness (or the
converse: ri) represents the output. These input and output data
are used for training the classification or regression model.

Guo and Nurre (1991) used supervised pattern recognition to
detect and reconstruct sensor faults in a space shuttle main
engine. Artificial random Gaussian noise was added to parts of
fault-free data from normal operation. If the resulting artificial
sensor readings are within the valid range, they are assigned a
reliability of 0.9; if they are outside the valid range, they are
assigned a reliability of 0.1. A feedforward ANN is trained with
the manipulated sensor readings as inputs and the corresponding
labeled reliability as outputs using a backpropagation algorithm
to adjust the weights. In this way, even with a very small amount
of original data, sensors whose readings do not match the rest of
the sensor network can be identified. It was further shown that
supervised pattern recognition is also suitable for the detection of
multiple simultaneous sensor faults (Palmé et al., 2011) even in
the presence of system failures (Romesis andMathioudakis, 2003;
Mathioudakis and Romessis, 2004). In this case, the training data
must cover each of these cases (deviation from normal operation
and multiple sensor faults), which causes the number of training
patterns to increase rapidly.

In addition to the mere detection of faults, Mehranbod et al.
(2003) distinguished between three different fault types (bias,
drift, or noise) by identifying fault patterns in a moving window.
They trained a Bayesian belief network to detect both single and
multiple sensor faults in a polymerization reactor. This concept
was later extended for the time-variant behavior of transient
processes (Mehranbod et al., 2005).

In summary, pattern recognition methods are particularly
attractive because ready-to-use—and in many toolboxes also
auto-tuned—algorithms of machine learning can be applied to
the problem of sensor fault detection without extensive statistical
knowledge. At least in mechanical or chemical processes, efficient
sensor fault detection can be realized with only little original data
from normal operation together with artificial faults (Guo and
Nurre, 1991). Despite this high potential, there are, to our
knowledge, no studies that have explicitly used the previously
trained pattern of sensor faults for their subsequent detection in
bioprocesses. This lack of studies is all the more remarkable as
pattern recognition methods are particularly efficient with such a
high degree of multicollinearity as in bioprocesses.

Sensor Fault Tolerance
In the last sections, three different approaches to sensor fault
detection were described. In the absence of sensor faults, the

model input to soft sensors is considered reliable (online
validation). But what is the use of online validation if the fault
detected in the input data makes the soft sensor prediction
unreliable? We know that something is going wrong, but we
cannot change anything (upper branch in Figure 5). This is where
the fault tolerance of soft sensors comes into play.

In general, modules for fault tolerance can be implemented at
two layers of a soft sensor: at the inputs or in the actual soft
sensor model.

The first variant of fault-tolerant soft sensors is shown in
Figure 5. Here, sensor faults are first detected and, after a decision
logic, they are compensated for by a reconstruction of the faulty
sensor reading. This reconstruction is equivalent to missing data
imputation (Dunia et al., 1996). The outputs of the fault tolerance
module in Figure 5 are the inputs to the soft sensor. The inputs
and outputs of the described fault tolerant soft sensor are
hereinafter referred to as Xon,FT and ŷon,FT . For bioprocesses,
there are, to our knowledge, no studies available that explicitly
address the development a fault-tolerant soft sensor based on
fault detection and reconstruction. However, some authors have
separately described the fault tolerance module shown in
Figure 5, as described in the following.

In the already mentioned study by Huang et al. (2002), an
AANN was used for sensor fault detection by means of a
symptom signal and fault reconstruction in a fermentation
process with variable process length and time-variant
behavior. Examples of sensor fault reconstruction using
AANN in applications other than biotechnology are given
in Kramer (1991), Kramer (1992), and Hamidreza et al.
(2014). Variable contribution statistics (T2 and SPE) in a
MSPC model were used by Lawal and Zhang (2017) to

FIGURE 5 | Concept of a fault tolerance module for creating a fault-
tolerant soft sensor. When a fault occurs in one or multiple variables of the soft
sensor inputs Xon, usually the soft sensor prediction ̂yon is also faulty
dependent on the degree of influence of the variable(s) in the soft sensor
model (upper branch). Fault-tolerant soft sensors are capable of
compensating for faults in the inputs by the following procedure: Initially, the
sensor fault is detected. Then, a decision logic determines whether or not to
reconstruct the faulty sensor reading. This reconstruction results in a fault-free
substitute for Xon, namely, the fault-tolerant inputs Xon,FT . The soft sensor
uses these inputs for the determination of a fault-tolerant output (prediction)
̂yon,FT .
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detect and subsequently reconstruct faulty sensor reading
within a crude distillation unit. In the above-mentioned
study by Guo and Nurre (1991) an ANN was used to learn
the patterns of both fault-free and faulty sensor readings to
detect sensor faults. A separate ANN was trained to
reconstruct the faulty readings.

In the second variant of fault-tolerant soft sensors, the faulty
inputs are not reconstructed but the soft sensor algorithm itself is
responsible for the fault management. For bioprocesses, there is,
to our knowledge, only one study available that explicitly
addresses fault tolerance by adapting the soft sensor models
(Krause et al., 2015). The already described MSPC model
developed by Krause et al. (2015) is capable of giving reliable
predictions ŷon,FT (here: higher-level process quantity) in the
presence of sensor faults. As mentioned, PSO is used to find the
best models with respect to historical process data. When sensor
readings in Xon differ significantly from historical data Xhist , they
are penalized by the PSO cost function. This in turn results in a
drastically decreased contribution of the faulty sensor reading and
thus a fault-tolerant prediction of ŷon. With this approach to
sensor fault tolerance the same has to be considered as with the
entire MSPC concept: Both are ultimately based purely on a
statistically significant deviation from Xon to Xhist and are thus
strongly dependent on the size and quality of the process data
pool for Xhist .

In summary, it must be noted that, with very few exceptions, there
are no studies on fault-tolerant soft sensors for the process industry.With
regard to fault detection before the subsequent reconstruction, all three
methods described above are applicable. However, for the methods of
variable contribution in a MSPC model and pattern recognition
methods, a separate model must be developed to reconstruct the
faulty sensor reading. Symptom signal methods offer the advantage
that the reconstructed sensor reading is directly available.

CONCLUSION

Based on an overview of the status quo of soft sensor development
and online implementation, this review article describes the
challenges of variable process lengths, multiple phases, and
sensor faults, and critically discusses the corresponding
solution approaches. The challenges are considered both
individually and synchronously, and the solution approaches
are evaluated in terms of their practicality and applicability to
bioprocesses.

Variable process lengths: Data synchronization techniques
are employed to ensure that soft sensors provide correct
predictions despite variable process lengths. For data
synchronization, indicator variable techniques and particularly
DTW dominate the bioprocess literature compared to curve
registration techniques. Indicator variables alone can only be
used for the alignment of the entire process lengths. In contrast,
DTW and curve registration techniques can additionally be used
for the alignment of landmarks. Indicator variable techniques
require a higher degree of process knowledge (selection of
appropriate process variables etc.) compared to DTW and
curve registration techniques. DTW is the technique of choice

when a solution is sought that does not require much process
knowledge (compared to indicator variable techniques) and fine-
tuning (compared to curve registration techniques).

Multiple process phases: The basic strategy for coping with
multiple process phases is to divide the process datasets into
individual phase segments and develop separate models for these
segments. For the detection and division of process phases,
trajectory-based and correlation-based methods have been
proposed in the literature. Methods based on the progression
of process trajectories, most notably via DTW, have to date been
proposed more frequently in the bioprocess literature compared
to correlation-based methods. Reasons for this include better
comprehensibility of algorithms, easier interpretability of results,
and coincidence with actual operational process phases in
trajectory-based methods (Luo et al., 2016). On the other
hand, correlation-based methods offer the advantage that they
can be developed almost entirely without process knowledge. The
consideration of phase transitions has so far been described only
for trajectory-based methods (via FCM; Luo et al., 2016); for
correlation-based methods, the consideration of phase transitions
is still lacking.

Sensor faults: If the input to a soft sensor is faulty, there is a
high probability that the output is faulty as well. Despite this
obvious relation, studies on the detection of or even tolerance to
sensor faults in bioprocesses are rare. Methods based on variable
contributions in MSPC models are well established in the process
industry for the identification of sensor faults. Further research is
required to evaluate the applicability of these methods to highly
collinear bioprocesses, as groups of correlating variables are often
displayed as faulty due to smearing effects (van den Kerkhof et al.,
2013). Symptom signal methods have been used to detect sensor
faults and to reconstruct faults in bioprocesses. These methods,
especially AANN, seem to be promising tools for the fault
tolerance of soft sensors. The recognition of previously trained
fault patterns has been used in mechanical engineering for fault
detection, but to our knowledge has not yet been addressed in the
bioprocess field. However, it can be assumed that this branch of
machine learning will also increase in popularity in the field of
bioprocesses due to steadily growing libraries of ready-to-use
algorithms. For all three approaches presented for the detection of
sensor faults (symptom signal, MSPC, pattern recognition) it
could be shown that they are also capable of detecting
simultaneously occurring sensor faults.

Synchronous consideration of the three challenges: The
development of soft sensors for bioprocesses with multiple phases
and variable process lengths has been investigated in several studies
(e.g., Ündey et al., 2003; Luo et al., 2016). As described above,
landmark-based data synchronization is particularly suitable for
multiphase processes. For sensor fault detection for bioprocesses
with variable lengths but without multiple phases individual studies
exist (Krause et al., 2015; Brunner et al., 2019). Regarding sensor fault
detection for multiphase bioprocesses with variable lengths, the
question remains open as to which of the three methods
presented is most suitable. This is because there is to the best of
our knowledge only one study that provides a solution for the
synchronous occurrence of all three challenges for bioprocesses
(Huang et al., 2002).
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The core conclusions of this review article are as follows:

• The choice of methods to handle variable process lengths
and multiple process phases is dependent on the level of
implementable process knowledge.

• The dilemma with sensor fault detection via soft sensors is
that the input to the soft sensor can itself be erroneous.

• There is a clear research gap regarding the validation of the
input data to soft sensors.

• Specifically, approaches to the tolerance of soft sensors to
sensor faults need to be found.

Closing these gaps not only will allow existing sensor networks
to be used more efficiently to monitor bioprocesses but will also
strengthen confidence in soft sensors and PAT.
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GLOSSARY

b model coefficients

E process end

e residual between prediction and original sensor reading

h warping function

i index for sensor of interest

j number of process variables

L landmark

m . . . n indices for sensors other than sensor i

ri reliability of sensor i

SPE squared prediction error (sometimes denoted as Q)

t time

X process data � input to soft sensor

Xhist historical process data

Xon online process data

Xon,FT fault-tolerant online process data

Xsync synchronized process data

y or Y target quantity (vector or matrix) � output of soft sensor

yon online data of target quantity

yhist historical data of target quantity

ŷhist prediction for historical data of target quantity

ŷon or ̂Yon prediction for target quantity (vector or matrix)

ŷon,FT fault-tolerant prediction for target quantity

φ combined fault detection index

AANN autoassociative neural network

ANN artificial neural network

COW correlation optimized warping

CPP critical process parameter

CQA critical quality attribute

CSTR continuous stirred-tank reactor

(D/M)DTW (derivative/multivariate) dynamic time warping

DSP downstream processing

EC European Commission

FCM fuzzy c-means

FDA Food and Drug Administration

GMM Gaussian mixture model

ISPE International Society for Pharmaceutical Engineering

JIT just-in-time

MLR multiple linear regression

MSPC multivariate statistical process control

OECD Organisation for Economic Co-operation and Development

OPC (UA) open platform communications (unified architecture)

PSO particle swarm optimization

RBC reconstruction-based contributions

RGTW relaxed-greedy time warping

PAT process analytical technology

PCA principal component analysis

PCR principal component regression

PLS(R) partial least squares (regression)

QbD quality by design

SCADA supervisory control and data acquisition

SVR support vector regression

USP upstream processing

VIP variable importance in the projection

XTW extrapolative time warping
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