
Laminin-1 Peptides Conjugated to
Fibrin Hydrogels Promote Salivary
Gland Regeneration in Irradiated
Mouse Submandibular Glands
Kihoon Nam1,2, Harim T. dos Santos1,2, Frank Maslow1,2, Bryan G. Trump3, Pedro Lei 4,
Stelios T. Andreadis4,5,6,7 and Olga J. Baker1,2,8*

1Bond Life Sciences Center, University of Missouri, Columbia, MO, United States, 2Department of Otolaryngology-Head and
Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States, 3School of Dentistry, University of Utah,
Salt Lake City, UT, United States, 4Department of Chemical and Biological Engineering, University at Buffalo, The State University
of New York, Buffalo, NY, United States, 5Department of Biomedical Engineering, University at Buffalo, The State University of
New York, Buffalo, NY, United States, 6Center of Bioinformatics and Life Sciences, University at Buffalo, The State University of
New York, Buffalo, NY, United States, 7Center of Cell, Gene and Tissue Engineering, University at Buffalo, The State University of
New York, Buffalo, NY, United States, 8Department of Biochemistry, University of Missouri, Columbia, MO, United States

Previous studies demonstrated that salivary gland morphogenesis and differentiation are
enhanced by modification of fibrin hydrogels chemically conjugated to Laminin-1 peptides.
Specifically, Laminin-1 peptides (A99: CGGALRGDN-amide and YIGSR:
CGGADPGYIGSRGAA-amide) chemically conjugated to fibrin promoted formation of
newly organized salivary epithelium both in vitro (e.g., using organoids) and in vivo
(e.g., in a wounded mouse model). While these studies were successful, the model’s
usefulness for inducing regenerative patterns after radiation therapy remains unknown.
Therefore, the goal of the current study was to determine whether transdermal injection
with the Laminin-1 peptides A99 and YIGSR chemically conjugated to fibrin hydrogels
promotes tissue regeneration in irradiated salivary glands. Results indicate that A99 and
YIGSR chemically conjugated to fibrin hydrogels promote formation of functional salivary
tissue when transdermally injected to irradiated salivary glands. In contrast, when left
untreated, irradiated salivary glands display a loss in structure and functionality. Together,
these studies indicate that fibrin hydrogel-based implantable scaffolds containing Laminin-
1 peptides promote secretory function of irradiated salivary glands.
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INTRODUCTION

According to the American Cancer Society, each year more than 80,000 people develop head and
neck cancer in the United States (Siegel et al., 2021). A first-line treatment for head and neck cancer is
radiation therapy (Sroussi et al., 2017), but ionizing radiation typically leads to chronic oral
complications such as xerostomia (i.e., hyposalivation) (Chambers et al., 2004; Grundmann
et al., 2010; Jensen et al., 2010; Pinna et al., 2015; Sroussi et al., 2017; Jensen et al., 2019;
Haderlein et al., 2020; Jasmer et al., 2020). This condition contributes to oral microbial
infections and impairs activities of daily life such as speaking, chewing, and swallowing
(Lovelace et al., 2014; Brook, 2021). Existing treatments for hyposalivation are limited to the use
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of muscarinic receptor agonists (e.g., cevimeline and pilocarpine)
(Braga et al., 2009; Turner, 2016) that induce saliva secretion from
the few remaining acinar cells as well as use of saliva substitutes
(Silvestre et al., 2009; Rocchi and Emmerson, 2020); however,
these therapies target surface-level symptoms and provide only
temporary relief (Jaguar et al., 2017; Jensen et al., 2019; Lung et al.,
2021). Therefore, development of alternative treatments to
restore salivary gland secretory function is critical. Several
experimental therapies including the use of stem cells
(Nanduri et al., 2011; Nanduri et al., 2013; Pringle et al., 2013;
Mitroulia et al., 2019; Su et al., 2020), embryonic organ culture
(Ogawa et al., 2013; Ogawa and Tsuji, 2015; Ikeda et al., 2019),
organ bioprinting (Ferreira et al., 2016; Adine et al., 2018), cell
sheets (Nam et al., 2019a; dos Santos et al., 2020), gene therapy
(Zheng et al., 2011; Baum et al., 2012; Arany et al., 2013) and
bioengineered scaffolds (Peters et al., 2014; Foraida et al., 2017;
Patil and Nanduri, 2017; Nam et al., 2019b) have offered the
promise of more advanced solutions as detailed below.

Regarding stem cells/progenitors, previous studies showed
that c-Kit+ cells, which normally are found in very low
numbers within salivary gland specimens (Nanduri et al.,
2011; Nanduri et al., 2013) can be expanded ex vivo for
restoring salivary gland function; however, further
characterization (e.g., how they incorporate into host tissue as
well as long term secondary effects such as tumorigenesis and
survival rates) must be determined before translating this
approach into humans. Another technology involves the use of
embryonic organ culture transplantation, where embryonic
salivary cells grown in culture can be transplanted in vivo
(Ogawa et al., 2013); nonetheless, a diminished gland size and
an absence of studies showing long-term outcomes following
treatment significantly decrease the utility of this model for
translational applications. Bioprinting strategies have shown
the possibility of assembling glandular compartments (e.g.,
acinar/ductal epithelial, myoepithelial, endothelial, and
neuronal) into salivary gland organotypic cultures; however,
this technology does not mimic the salivary gland native
architecture (e.g., cell polarity and organization (Ferreira et al.,
2016; Adine et al., 2018)). Cell sheets made of salivary gland cells
have demonstrated positive results, as they promote cell
differentiation and tissue integrity in wounded mouse
submandibular gland (SMG) models, yet the main challenge
facing this technology is the need to standardize cell
composition within the sheets and thereby achieve greater
reproducibility (Nam et al., 2019a; dos Santos et al., 2020).
Regarding scaffolds other than the Fibrin Hydrogels (FH),
various biomaterials (Aframian et al., 2000; Sun et al., 2006;
Cantara et al., 2012; Soscia et al., 2013; Hsiao and Yang, 2015;
Yang and Hsiao, 2015) have been shown to promote cell growth
and attachment but the degree of structural organization, as
demonstrated by hollow multi-lumen formation, cell polarity
and functionality, has been modest. Likewise, studies have
shown that human cells grown on a hyaluronic acid-based
scaffold and transplanted into a wounded mouse parotid gland
lead to improved secretory function (Pradhan-Bhatt et al., 2014);
nevertheless, these results included neither monitoring for
degradation of the scaffold nor evidence of new tissue

formation, thus raising concerns with the stability of the
biomaterial and capacity for regeneration, respectively.
Together, these technologies offer the potential for more
advanced solutions to hyposalivation due to head and neck
radiation therapy but have yet to truly deliver.

In response to these needs and challenges, we developed FH
with conjugated Laminin-1 peptides (L1p) A99 and YIGSR that
were used successfully to repair salivary gland tissue in a wounded
SMG mouse model (Nam et al., 2017a; Nam et al., 2017b; Nam
et al., 2019b). To apply these results to a more translational
setting, the goal of the current study is to determine whether
transdermal injection with the L1p A99 and YIGSR chemically
conjugated to FH can promote secretory function in irradiated
salivary glands.

MATERIALS AND METHODS

Materials
Lyophilized human fibrinogen, tris base,
ethylenediaminetetraacetic acid (EDTA), pilocarpine,
isoproterenol, goat serum, hydrochloric acid, hematoxylin,
eosin Y solution, Tween® 20, calcium chloride (CaCl2) and
ε-aminocaproic acid (εACA) were purchased from
MilliporeSigma (Burlington, MA). Rabbit anti-zonula
occludens 1 (ZO-1) antibody, rabbit anti-induced nitric oxide
synthase (iNOS) antibody, Alexa Fluor 488 conjugated anti-
rabbit IgG secondary antibody, Alexa Fluor 568 conjugated
anti-rabbit IgG secondary antibody and Alexa Fluor 568
conjugated anti-mouse IgG secondary antibody were
purchased from Invitrogen (Carlsbad, CA). Rabbit anti-
transmembrane Protein 16A (TMEM16A) antibody and
mouse anti-intercellular adhesion molecule (ICAM-1) antibody
were purchased from Abcam (Cambridge, MA). Rabbit anti-
vascular cell adhesion molecule 1 (VCAM-1) antibody and rabbit
Arginase-1 (Arg-1) antibody were purchased from Cell Signaling
Technology (Danvers, MA). Mouse anti-Na+/K+-ATPase
antibody was purchased from Santa Cruz Biotechnology
(Dallas, TX). Mouse anti-E-cadherin antibody was purchased
from BD Biosciences (San Jose, CA). Phosphate buffered saline
(PBS), DyLight™ 680 NHS-ester, 4′,6-diamidino-2-phenylindole
(DAPI), Triton X-100, sodium citrate, xylene and ethanol were
purchased from Thermo Fisher Scientific (Waltham, MA).
Ketamine and xylazine were purchased from VetOne (Boise,
ID). Insulin syringes (28G) were purchased from BD (Franklin
Lakes, NJ). Peptides were synthesized by University of Utah
DNA/Peptide synthesis core facility, as previously described
(Nam et al., 2016; Nam et al., 2017a; Nam et al., 2017b).

Animals
Female 6-week-old C57BL/6J mice weighing ∼17–20 g were
purchased from Jackson Laboratory (Bar Harbor, ME). Power
analysis was performed to determine mouse numbers using
G*Power 3.1.9.7 software (Heinrich-Heine-Universität
Düsseldorf, Düsseldorf, Germany; http://www.gpower.hhu.de/).
All calculations were conducted using a significance level of 0.05
with 95% power. Then, 105 mice were randomly distributed into
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three groups to receive the following treatments: non-irradiated
(40 mice), irradiated without L1p-FH injection (40 mice), and
irradiated while also receiving the L1p-FH injection (25 mice),
comprising treatment groups 1–3, respectively. All animal usage,
anesthesia and surgeries were conducted with the approval of the
University of Utah Institutional Animal Care and Use Committee
(IACUC) in compliance with the ARRIVE guidelines.

Radiation Treatment
Salivary gland tissue damage is a late degenerative response
observed after radiation therapy (Wu and Leung, 2019; Jasmer
et al., 2020). To confirm L1p-FH regenerative effects in a more
clinically relevant animal model, a widely accepted head and neck
irradiated mouse model was used for this study (Deasy et al., 2010;
Varghese et al., 2018). Briefly, mice were anesthetized with
ketamine (100mg/kg) and xylazine (5 mg/kg) solution
administered intraperitoneally with the head and neck area
positioned over the 1 cm slit of a customized lead shield, thereby
protecting other areas of the body from radiation. SMGs then
received a single 15 Gy radiation dose using a JL Shepherd 137Cs
irradiator (Figure 1A). Animals were allowed to recover for 3 days
and received hydrogel treatment soon after, as detailed below.

Hydrogel Preparation
Peptides and DyLight 680 conjugated fibrinogen were prepared,
as previously described (Nam et al., 2017a; Nam et al., 2017b).
Briefly, two Laminin-1 peptides (A99 and YIGSR) were

synthesized on a peptide synthesizer. Peptides were then
conjugated to the fibrinogen using sulfo-LC-SPDP and
cysteine residue in peptides. In addition, fibrinogen was
chemically labeled with a fluorescent dye through NHS ester
of DyLight 680. Finally, laminin-1 peptide conjugated fibrinogens
and DyLight 680 labeled fibrinogen were dialyzed against
ultrapure water, lyophilized, and stored at −80°C until use.
L1p-FH were prepared similar to previous studies (Nam et al.,
2017a; Nam et al., 2017b) except for the use of exogenous
thrombin (thereby preventing rapid polymerization inside the
syringe) as follows: YIGSR-conjugated fibrinogen (1.2 mg/ml),
A99-conjugated fibrinogen (1.2 mg/ml), DyLight 680 conjugated
fibrinogen (0.1 mg/ml), CaCl2 (2.5 mM) and εACA (2 mg/ml)
were mixed in a tris buffered saline (TBS) solution.
Polymerization of L1p-FH was confirmed from fluorescence in
the SMG of randomly selected mice (Figure 1C).

Transdermal Injection
C57BL/6J mice were anesthetized with 3% isoflurane using an
oxygen flow rate set at 2.0 L/min, and 10 μL of freshly mixed L1p-
FH solution was transdermally injected using insulin syringe (G
28) to irradiated mouse SMGs at post-radiation day 3. L1p-FH
effects were studied at days 8 and 30. Using thrombin prior
transdermal injection causes rapid polymerization of L1p-FH
which clogs the needle. To overcome this issue, the mixture
was applied in a liquid form using endogenous thrombin for
internal polymerization. To confirm scaffold implantation in

FIGURE 1 |Radiation treatment and local L1P-FH delivery used in this study. (A)Mice received a single 15 Gy radiation dose with a customized lead shield having a
1 cm slit aligned to the mouse’s neck. (B) Radiation treatment caused saliva flow rates to be significantly reduced. The symbol (•) indicates non-irradiated group, while
the symbol (■) indicates irradiated group. (C) DyLight 680 conjugated L1P-FH were successfully delivered to the mouse submandibular glands when applied via
transdermal injection. White arrows indicate the site of L1p-FH injection.
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vivo, FH was labeled with DyLight 680 and quantified within
dissected glands using a Bio-Rad Chemi-Doc™ MP imaging
system (Figure 1C).

Hematoxylin and Eosin and Masson’s
Trichrome Stain
SMGs were fixed in 10% formalin at room temperature overnight,
dehydrated in 70% ethanol solution, embedded in paraffin wax
and cut into 3 μm sections. Sections were then deparaffinized
with xylene and rehydrated with serial ethanol solutions (100%,
95% 80, 70 and 50%, v/v) and distilled water. For hematoxylin
and eosin staining, the rehydrated sections were stained with
hematoxylin for 5 min, washed with distilled water for 5 min, tap
water for 5 min and distilled water for 2 min. Next, slides were
stained with eosin for 30 s, washed with tap water for 5 min and
distilled water for 2 min. Finally, hematoxylin and eosin stained
gland sections were dehydrated with 95 and 100% ethanol (v/v),
cleared in xylene and mounted with a xylene-based mounting
medium. As for Masson’s trichrome staining, the rehydrated
sections were re-fixed in Bouin’s solution at 60°C for 1 h then
washed with running tap water for 10 min and distilled water for
5 min. Next, sections were stained with Weigert’s iron
hematoxylin solution for 10 min then washed with running
warm tap water for 10 min and distilled water for 5 min. For
cytoplasm staining, sections were incubated with Biebrich scarlet
acid fuchsine solution for 5 min and washed three times with
distilled water for 2 min. Regarding collagen staining, sections
were incubated in phosphotungstic/phosphomolybdic acid for
15 min, stained with aniline blue solution for 5 min and washed
three times with distilled water for 2 min. Stained sections were
then differentiated in 1% acetic acid solution for 1 min and
washed two times with distilled water for 2 min. Finally,
Masson’s trichrome stained sections were dehydrated with
serial ethanol solutions (95 and 100%), cleared in xylene and
mounted with a xylene-based mounting medium. Finally, the
samples were analyzed using a Leica DMI6000B (Leica
Microsystems, Wetzlar, Germany) to determine tissue
morphology.

Confocal Analysis
For antigen retrieval, the rehydrated and fixed tissue sections
were incubated in Tris-EDTA buffer [10 mM Tris, 1 mM
EDTA, 0.05% (v/v) Tween® 20, pH 9.0] for ZO-1 and
E-cadherin or with sodium citrate buffer [10 mM sodium
citrate, 0.05% (v/v) Tween® 20, pH 6.0] for TMEM16A,
Na+/K+-ATPase, iNOS, Arg-1, VCAM-1 and ICAM-1 at
95°C for 30 min. Next, samples were permeabilized with
0.1% (v/v) triton X-100 in PBS at room temperature for
45 min. Specimens were then blocked in 5% (v/v) goat
serum in PBS for 1 h at room temperature and incubated at
4°C with the following primary antibodies overnight: rabbit
anti-ZO-1, mouse anti-E-cadherin, rabbit anti-TMEM16A,
mouse anti-Na+/K+-ATPase, rabbit anti-VCAM-1 or mouse
anti-ICAM-1. At that time, sections were incubated with anti-
rabbit Alexa Fluor 488 and anti-mouse Alexa Fluor 568
secondary antibodies in 5% goat serum at room

temperature for 1 h followed by 300 nM DAPI staining at
room temperature for 5 min. For M1 and M2 marker
staining, specimens were blocked in 3% (w/v) bovine serum
albumin (BSA) in PBS for 1 h at room temperature and
incubated with primary antibodies (rabbit anti-iNOS or
rabbit anti-Arg-1) at 37°C for 1 h. Then, sections were
incubated with anti-rabbit Alexa Fluor 568 in 3% BSA at
room temperature for 1 h followed by 300 nM DAPI
staining at room temperature for 5 min. Finally, specimens
were analyzed using a STELLARIS Confocal Microscope (Leica
Microsystems, Wetzlar, Germany).

Macrophage Ratio
M1 and M2 macrophage cells were determined using
ImageJ. Specifically, the color threshold was set to isolate the
colocalized signal of nuclei and M1 (Figure 4, white arrows)/M2
(Figure 4, red arrows) positive cells, which were counted and
normalized by area. Statistical significance was assessed using
one-way ANOVA (*p < 0.01) and Dunnett’s post-hoc test for
multiple comparisons to group 2 (irradiated with no L1p-FH
injection at day 30).

Saliva Flow Rate Measurements
Mice were anesthetized with ketamine (100 mg/kg) and xylazine
(5 mg/kg) followed by intraperitoneal injection with pilocarpine
(25 mg/kg) and isoproterenol (0.5 mg/kg). Then, whole saliva was
collected using a micropipette for 5 min and flow rate was
calculated using the following formula:

Saliva flow rate � Stimulated saliva (µL)
Body weight of mouse (g) x collection time (5min)

Statistical Analysis
Experimental data were analyzed using one-way ANOVA and
Dunnett’s post hoc test for multiple comparisons to the non-
irradiated group 1 at day 30. All values represent means ± SD
(n � 5), where p values <0.01 were considered statistically
significant. Finally, these calculations were performed using
GraphPad Prism 6.

RESULTS

A Head and Neck Irradiated Mouse Model
was Achieved
To investigate whether L1p-FH could restore irradiated SMG
structure and function, C57BL/6J mice were subjected to a single
radiation treatment as described in Materials and Methods
(Figure 1A). Mice treated with a single 15 Gy radiation dose
displayed a significant reduction in saliva flow rates as compared
to non-irradiated controls (i.e., from 1.43 to 0.80 μL/g/min, n � 5,
p < 0.01) in the first 8 days and remained steady thereafter until day
30 (Figure 1B). These results demonstrated that the radiation dose
utilized here caused significant loss of salivary secretory function and
can thus be used as a head and neck irradiated preclinical model,
consistent with previous studies (Lombaert et al., 2008; Varghese
et al., 2018; Weng et al., 2018).
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L1p-FH was Successfully Implanted in
Irradiated Mouse Submandibular Glands
Our previous studies showed the biocompatibility of L1p-FH with
host tissue when surgically implanted in a wounded mouse model
(Nam et al., 2017a; Nam et al., 2017b). To avoid an open wound
surgery, we attempted to deliver the L1p-FH to irradiated mouse
SMG via transdermal injection as described in Materials and
Methods. For these experiments, we used a fluorescently labeled
hydrogel using DyLight 680 and successfully implanted L1p-FH in
irradiated mouse SMG via transdermal injection (Figure 1C,
white arrows).

L1p-FH Preserved Epithelial Integrity After
Radiation Treatment
Our previous studies showed that L1p-FH promoted tissue repair
in a wounded SMG mouse model (Nam et al., 2017a; Nam et al.,
2017b; Nam et al., 2019b). To determine whether these effects
occur in the head and neck irradiated mouse model, we randomly
distributed mice in three groups and applied this scaffold as
follows: non-irradiated, irradiated without L1p-FH injection and
irradiated that received the L1p-FH injection, comprising
treatment groups 1–3, respectively (see Material and Methods
section). As shown in Figure 2, group 1 (non-irradiated glands)
displayed intact lobules where the parenchyma was separated by

areas of thin connective tissue at days 8 (Figures 2A,B) and 30
(Figures 2C,D). As for cytologic features, serous acini cells
showed a typical pyramidal shape with basophilic cytoplasm
and basal nuclei. In contrast, mucous cells showed a pale
cytoplasm with flat basilar nuclei, intercalated ducts were lined
by cuboidal and/or flat cells, striated ducts showed cuboidal to
low columnar cells and granular convoluted ducts were lined by
tall columnar cells containing intracytoplasmic eosinophilic
granules. Together, these features indicate that the non-
irradiated glands in group 1 showed the morphology of a
healthy epithelium. In contrast, group 2 (irradiated with no
L1p-FH injection) demonstrated glandular parenchyma
separated by thicker connective tissue strands, ductal areas
with ectasia, intraluminal depositions and increased presence
of fibrosis when compared to controls (Figures 2E,F).
Furthermore, tissue damage was even more severe at day 30
(Figures 2G,H), where SMG showed an extensive disruption of
the lobular architecture as indicated by the replacement of acini
and ducts with sheets of vacuolated cells, adipocytes and fibrosis.
Together, these results indicated that irradiated glands with no
L1p-FH injection (group 2) dramatically lost epithelial integrity.
Remarkably, mice in group 3 (irradiated with L1p-FH injection)
recovered many of the features of healthy glands. For instance, we
observed the presence of serous acinar units with organized
ductal structures surrounded by thin connective tissue strands

FIGURE 2 | Treatment with L1p-FH preserves epithelial integrity when applied after radiation treatment. Hematoxylin and eosin (A,C,E,G,I,K) as well Masson’s
trichrome (B,D,F,H,J,L) staining of mouse submandibular glands from group 1 [non-irradiated, (A–D)], group 2 [irradiated without L1p-FH injection, (E–H)] and group 3
[irradiated with L1p-FH injection, (I–L)] were performed and tissue morphology was analyzed using a Leica DMI6000B. Scale bars represent 100 µm. Representative
image from a total of five mice per group.
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similar to the non-irradiated group 1 at both days 8 (Figures 2I,J)
and 30 (Figures 2K,L). These changes indicate that group 3
(irradiated glands treated with L1p-FH) had a morphology
consistent with a healthy salivary gland epithelium and results
in this section indicate that L1p-FH is a suitable scaffold for
promoting epithelial integrity in irradiated SMG.

L1p-FH Maintained Epithelial Polarity and
Preserved Ion Transporter Expression
To determine whether L1p-FH maintained epithelial polarity in an
irradiated mouse model, we stained the SMG sections with the
apical tight junction marker ZO-1 and basolateral marker
E-cadherin. As shown in Figure 3A, group 1 (non-irradiated
glands) displayed apical ZO-1 (green) and basolateral E-cadherin
(red) after 30 days. However, in group 2 (irradiated glands with no
L1p-FH injection), a mild residual ZO-1 signal was detected at day 8
(Figures 3B,F, blue solid line), and a weaker ZO-1 signal was
expressed at day 30 (Figure 3F, blue dotted line), together with ZO-
1 disorganization (Figure 3C), thereby indicating loss of epithelial
polarity. In contrast, group 3 (irradiated glands treated with L1p-
FH) showed apical ZO-1 and basolateral E-cadherin signals both at
days 8 (Figure 3D) and 30 (Figure 3E), indicating that the scaffold
treatment helps to maintain epithelial polarity (Figure 3F, red line
and red dotted line). Regarding the presence of functional markers,
group 1 (non-irradiated SMG) showed apical TMEM16A
(Figure 3G, green) and basolateral Na+/K+-ATPase localization
(Figure 3G, red) at day 30, consistent with a healthy salivary
epithelium. In contrast, group 2 (irradiated glands with no L1p-
FH injection) showed a moderate TMEM16A signal (Figure 3L,
blue solid line) at day 8 (Figure 3H, green) and weaker TMEM16A
signal (Figure 3L, blue dotted line) at day 30 (Figure 3I, green).
Interestingly, group 3 (irradiated glands treated with L1p-FH)
expressed strong apical TMEM16 (Figures 3J,K, green;
Figure 3L, red line and red dotted line) and basolateral Na+/K+-
ATPase similar to non-irradiated glands, thus suggesting that L1P-

FH treatment helps to maintain epithelial polarity and preserve ion
transport expression, both of which are critical for saliva secretion.

L1p-FH Promoted Macrophage Polarization
Our previous studies indicated that treatment with L1p-FH
promoted macrophage polarization in a wounded SMG female
mouse model (Brown et al., 2020). To determine whether similar
effects occur in an irradiated mouse model, we identified the
presence of M1 and M2 subtypes within the SMG using
macrophage-specific antibodies (i.e., iNOS and Arg-1,
corresponding to M1 and M2, respectively). As shown in
Figures 4A,F, group 1 (non-irradiated glands) expressed iNOS-
positive cells with approximately 0.94 macrophages per
100,000 µm (Sroussi et al., 2017). In contrast, group 2
(irradiated glands with no L1p-FH injection) showed a
significant increase in M1 macrophages (approximately
28.65 iNOS-positive cells) at day 30 (Figures 4C,F). Notably,
group 3 (irradiated glands treated with L1p-FH) showed a
significant decrease of M1 macrophages (approximately
5.92 iNOS-positive cells) at day 30 (Figures 4E,F) compared to
group 2. Regarding the presence ofM2markers, group 2 (irradiated
glands with no L1p-FH injection) expressed Arg-1-positive cells
with approximately 5.92 macrophages at day 30 (Figures 2I,L),
which is not a significant difference from group 1 (Figures 4G,L,
2.60macrophages). Interestingly, group 3 (irradiated glands treated
with L1p-FH) expressed a significant increase of Arg-1-positive cells
at day 30 (approximately 11.37 macrophages, Figure 4K,L).
Together, these results indicate that L1p-FH causes a decrease in
M1 macrophages together with an increase in M2 macrophages in
SMG following radiation treatment.

L1p-FH Increased Saliva Secretion After
Radiation Treatment
Our previous studies indicate that treatment with L1p-FH
enhances saliva secretion in a wounded SMG mouse model

FIGURE 3 | Treatment with L1p-FH maintains epithelial polarity and functional marker expression. Salivary structural and functional marker organization was
analyzed using confocal microscopy with specific antibodies against ZO-1 [green; (A–E)], E-cadherin [red; (A–E)], TMEM16A [green; (G–K)], Na+/K+-ATPase [red;
(G–K)], and DAPI (blue; everywhere). Scale bars represent 100 µm. Yellow-dotted areas indicate fibroblast-like areas. Representative image from a total of five mice per
group. ZO-1 (F) and TMEM-16A (L) positive pixels were analyzed using ImageJ.
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(Nam et al., 2017a; Nam et al., 2017b; Nam et al., 2019b). To
determine whether similar effects occur in an irradiated
mouse model, we treated irradiated SMG with a
transdermal injection of L1p-FH as described in Materials
and Methods. As shown in Figure 5, group 1 (non-irradiated
glands) showed intact saliva flow rates (i.e., 1.43 μL/g/min),
as expected. In contrast, group 2 (irradiated untreated
glands) exhibited a significant reduction in saliva flow

rates (i.e., 0.80 μL/g/min, n � 5, p < 0.01). Notably, group
3 (irradiated glands treated with L1p-FH) showed a significant
increase of saliva flow rates (1.32 μL/g/min, n � 5, p < 0.01) at
day 30, thereby demonstrating that L1p-FH restores saliva
secretion after radiation treatment.

DISCUSSION

Our previous studies indicated that treatment with FH alone
promotes neither cell polarity nor differentiation in salivary
gland epithelium, both in vitro or in vivo (Nam et al., 2016; Nam
et al., 2017a; Nam et al., 2017b; Nam et al., 2019b; Dos Santos
et al., 2021). However, specific L1p sequences (A99:
CGGALRGDN-amide, YIGSR: CGGADPGYIGSRGAA-
amide) proved to be useful for improving salivary gland
regeneration (Hoffman et al., 1998). Specifically, freshly
isolated SMG cells grown on L1p chemically attached to FH
induced lumen formation and secretory function (Nam et al.,
2016). Moreover, L1p-FH promoted salivary gland regeneration
in an in vivo wound-healing mouse model (Nam et al., 2017a;
Nam et al., 2017b), thus leading to increased saliva secretion.
Such functional recovery indicates that FH-based scaffolds can
be used to promote salivary gland function in radiation-induced
hyposalivation. Additionally, we developed a transdermal
delivery system specifically for this study with the aim of
using the patient’s own blood for polymerization to increase
biocompatibility (Froelich et al., 2010; Dietrich et al., 2013) and
having the ancillary benefits of displaying optimal rheological
properties (i.e., softness) and being less invasive than other
delivery methods (i.e., retro-ductal delivery (Nair et al., 2016)
and surgical application (Ogawa et al., 2013)), all of which
indicates a greater degree of clinical applicability for our newly
designed mouse model.

Regarding results of the current study, salivary gland
morphology was significantly improved by L1p-FH

FIGURE 4 | L1p-FH promotes macrophage polarization. Macrophage marker expression was analyzed using confocal microscopy with specific antibodies against
iNOS (A–F), Arg-1 (G–L), and DAPI (blue; everywhere). Scale bars represent 100 µm. White and red arrows indicate iNOS or Arg-1 positive cells, respectively.
Representative image from a total of five mice per group. iNOS (F) and Arg-1 (L) positive cells were analyzed using ImageJ and GraphPad Prism 6. Data represent the
means ± SD of n � 5 mice per condition with statistical significance assessed using one-way ANOVA (*p < 0.01) and Dunnett’s post-hoc test for multiple
comparisons to group 2 (irradiated with no L1p-FH injection at day 30).

FIGURE 5 | L1p-FH increases saliva secretion after radiation treatment.
Mice were anesthetized and stimulated with pilocarpine and isoproterenol at
days 8 and 30 with saliva collected for 5 min. Data represent the means ± SD
of n � 5 mice per condition with statistical significance assessed using
one-way ANOVA (*p < 0.01) and Dunnett’s post-hoc test for multiple
comparisons to group 1 (non-irradiated mice at day 30). The symbol (+)
indicates L1p-FH injection, while the symbol (−) indicates no L1p-FH injection,
and n. s indicates no significant differences from group 1 (non-irradiated mice
at day 30).
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(Figures 2I–L and Figure 3D,E) and saliva secretion
(Figure 5) was likewise restored by day 30 post-radiation;
however, such treatment gains cannot be counted on to persist,
given the residual fibrosis noted (Figure 2L). Additionally,
future studies will use growth factors specifically targeted for
angiogenesis (i.e., VEGF and FGF9) (Nam et al., 2019b) in
response to current results demonstrating L1p-FH promoted
macrophage polarization (Figure 4) but gave rise to no blood
vessel formation (Supplementary Figure S1). Moreover,
should such gains in fact prove persistent (e.g., maintained
over long periods of time), we as yet have limited knowledge of
the mechanisms responsible for this recovery. These issues
notwithstanding, the results to date are important because they
are the first time that L1p-FH has been used in irradiated glands
to restore their form and function.

It is noteworthy to mention three major differences between
our previous studies and the current work. First, our previous
studies used L1p in trimeric form (Dos Santos et al., 2021) and
in combination with growth factors (Nam et al., 2019b), while
the current work employs only monomeric forms and no
growth factors. Next, our previous studies used a more
invasive SMG surgical punch model (Nam et al., 2017a;
Nam et al., 2017b; Nam et al., 2019b) as compared to
currently used transdermal injection implantation method.
Finally, we replaced the SMG wounded mouse model of our
prior studies with a radiation model for greater specificity in
terms of clinical features and increased translational
application.

To expand on this work, future studies will perform
extended saliva secretion studies and track the appearance
of fibrosis at multiple time points via histological studies and
investigate how L1p used here (i.e., A99 (Mochizuki, 2003;
Rebustini et al., 2007; David et al.,2008) and YIGSR (Caiado
and Dias, 2012; Frith et al., 2012; Huettner et al., 2018; Motta
et al., 2019)) bind to specific integrins, thus addressing the
questions noted above in relation to treatment duration and
mechanisms. Finally, should this treatment near the stage of
clinical trials, it would be important to replace the current
single dose of radiation used for proof of concept and early
exploration with more clinically appropriate
fractionated doses.
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