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Pectin has found extensive interest in biomedical applications, including wound dressing,
drug delivery, and cancer targeting. However, the low viscosity of pectin solutions hinders
their applications in 3D bioprinting. Here, we developed multicomponent bioinks prepared
by combining pectin with TEMPO-oxidized cellulose nanofibers (TOCNFs) to optimize the
inks’ printability while ensuring stability of the printed hydrogels and simultaneously print
viable cell-laden inks. First, we screened several combinations of pectin (1%, 1.5%, 2%,
and 2.5% w/v) and TOCNFs (0%, 0.5%, 1%, and 1.5% w/v) by testing their rheological
properties and printability. Addition of TOCNFs allowed increasing the inks’ viscosity while
maintaining shear thinning rheological response, and it allowed us to identify the optimal
pectin concentration (2.5%w/v). We then selected the optimal TOCNFs concentration (1%
w/v) by evaluating the viability of cells embedded in the ink and eventually optimized the
writing speed to be used to print accurate 3D grid structures. Bioinks were prepared by
embedding L929 fibroblast cells in the ink printed by optimized printing parameters. The
printed scaffolds were stable in a physiological-like environment and characterized by an
elastic modulus of E � 1.8 ± 0.2 kPa. Cells loaded in the ink and printed were viable (cell
viability >80%) and their metabolic activity increased in time during the in vitro culture,
showing the potential use of the developed bioinks for biofabrication and tissue
engineering applications.
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INTRODUCTION

Three-dimensional (3D) bioprinting aims at combining cells and biomaterials to fabricate constructs
layer-by-layer, with biological and physical properties recapitulating those of native tissues to be
restored/replaced (Ashammakhi et al., 2019). Bioprinting of naturally derived polymer-based
hydrogels represents a unique fabrication technology to obtain structures that provide a highly
hydrated microenvironment, biocompatible, biodegradable, and able to promote and guide cell–cell
and cell–extracellular matrix (ECM) interactions (Pereira and Bartolo, 2015; Ng et al., 2019). Despite
the structure being reminiscent of the ECM, natural-derived polymers are generally characterized by
batch-to-batch variability, uncontrolled degradation, and weak mechanical properties (Contessi
Negrini et al., 2021). Printing naturally derived polymer-based hydrogels is consequently still
challenging, as optimization of the mechanical properties and a suitable post-printing crosslinking
strategy must be engineered to fabricate scaffolds with adequate shape fidelity (Mao et al., 2020).
Several naturally derived polymers have been described as potential biomaterial inks/bioinks for
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different applications, including alginate, collagen, gelatin, and
chitosan (Milazzo et al., 2019; Ng et al., 2019), but improvements
in post-printing stability, accuracy, and shape fidelity of printed
structures are still required (Ng et al., 2019). Among naturally
derived polymers used to prepare biomedical hydrogels, pectin
has recently attracted interest thanks to its high molecular weight,
biocompatibility, easy availability, versatility, low cost, and its
ability in mimicking the structure of polysaccharides found in the
ECMs of mammals (Kumar et al., 2013; Mahendiran et al., 2021).

Pectin is a natural heteropolysaccharide extracted from plant
cell walls by chemical or enzymatic processes (Koffi et al., 2013).
Carboxyl groups of pectin can be esterified to form methyl esters.
The degree of esterification DE (low-methoxylated pectin, DE <
50%, and high-methoxylated pectin, DE > 50%) is defined as the
ratio of esterified carboxylic acid groups to the total number of
carboxylic acids and it influences pectin gelling properties and
solubility (Vancauwenberghe et al., 2017; Jacob et al., 2020).
Pectin has been widely investigated for food and
pharmaceutical applications (Munarin et al., 2012), and
recently for biomedical applications, including cell (Mehrali
et al., 2019) and drug delivery (Neufeld and Bianco-Peled,
2017; Zhu et al., 2019; Khotimchenko, 2020), wound dressing
(Rezvanian et al., 2017; Oh et al., 2020), skin (Pereira et al., 2018a;
Türkkan et al., 2018), and bone tissue engineering (Al-arjan et al.,
2020; Markstedt et al., 2015; Nguyen et al., 2015; Zhao et al.,
2016).

Pectin has been recently used for 3D printing applications,
both as biomaterial ink (Banks et al., 2017; Vancauwenberghe
et al., 2017; Vancauwenberghe et al., 2018; Vancauwenberghe
et al., 2019; Stealey et al., 2019) and bioink (Pereira et al., 2018b;
Vancauwenberghe et al., 2019). Advantages in the use of pectin
for 3D printing are related to the shear-thinning behavior, since
its viscosity decreases by increasing the applied shear rate, due to
random coil rearrangement when a higher shear rate is applied,
thus facilitating the extrusion process occurring during printing
(Methacanon et al., 2014; Wang et al., 2014). However, pectin
solutions generally exhibit relatively low viscosity values,
especially at low concentrations (<1% w/v), hindering their
printability (Methacanon et al., 2014; Cui et al., 2020). To
improve pectin printability, its concentration has been
increased to obtain shear-thinning inks (Methacanon et al.,
2014). Alternatively, partial crosslinking via cations addition
has been tested to obtain a suitable flow during the extrusion
and a stable 3D structure after printing (Vancauwenberghe et al.,
2017). However, these strategies might lead to a less permissive
hydrogel microenvironment for cell encapsulation, and single-
component pectin-based inks have been proved to be affected by
printability limitations. Development of multicomponent pectin-
based inks could represent an optimal alternative to improve
pectin printability while maintaining its functionality (Cernencu
et al., 2019; Cui et al., 2020). Multicomponent bioinks represent a
unique approach for the biofabrication of functional and
biomimetic tissue-like constructs (Ashammakhi et al., 2019),
as they allow tuning the properties of the ink/bioinks to
mimic human tissues complexity, by bioprinting multiple cell
types and biomaterials while ensuring precise positioning of the
deposed bioink layer-by-layer.

Here, we develop multicomponent bioinks based on pectin
and TEMPO-oxidized cellulose nanofibers to improve pectin
printability while ensuring a stable and biocompatible printed
scaffold for potential use in tissue engineering. TEMPO-oxidized
cellulose nanofibers were selected for their ability to crosslink in
presence of polycations and nanoparticles (Fiorati et al., 2021),
simultaneously improving the rheological properties of the
prepared multicomponent bioinks. First, we prepared a set of
multicomponent bioinks and selected the most promising ones
by macroscopic evaluation of the printed structures. Then, we
identified the most promising biomaterial inks and optimized the
printing parameters to obtain multi-layered structures with good
shape fidelity. Finally, we preliminary investigated in vitro the
cytocompatibility of the developed bioinks and printing process
to show the potential use of the developed materials in
bioprinting-based tissue engineering applications.

MATERIALS AND METHODS

All materials were purchased from Sigma Aldrich unless
differently specified. Pectin (PEC, from citrus peel, degree of
esterification DE � 37%) was purchased from Herbstreith and
Fox®. Pectin powder was sterilized by immersion in ethanol 70%
v/v, followed by UV irradiation for 15 min. Cellulose nanofibers
were sterilized by autoclaving. Culture medium: Dulbecco’s
Modified Eagle Medium (DMEM), fetal bovine serum (FBS)
10% v/v, glutamine 2 mM, HEPES 10 mM, and penicillin/
streptomycin 1x.

Pectin-TOCNFs Multicomponent Inks
Preparation
Multicomponent bioinks (P-C) were prepared by mixing pectin
and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-
Oxidized Cellulose Nanofibers (TOCNFs). TOCNFs were
synthesized (Supplementary Figure S1) as previously
described (Fiorati et al., 2020). TOCNFs dispersions were
diluted 1:1 with DMEM (final concentrations � 0%, 0.5%, 1%,
and 1.5% w/v). Then, pectin powder was gradually added (final
concentrations � 1%, 1.5%, 2%, and 2.5% w/v), solutions were set
for 4 h, CaCl2 35 mM was added dropwise to partially pre-
crosslink the solutions, and the ink pH was adjusted to 6–6.5
by addition of NaOH. Stirring was maintained until
homogeneous pre-hydrogel inks were obtained. Pectin and

TABLE 1 | Multicomponent pectin and TEMPO-Oxidized Cellulose Nanofibers
(TOCNFs) hydrogels designed by varying the concentrations of the two
components in the final inks. The first part of the name of the ink refers to the pectin
concentration (Px), while the second part refers to the TOCNFs concentration (Cy).

TOCNFs (% w/v)

Pectin (% w/v) — 0 0.5 1.0 1.5
1.0 P1.0_C0 P1_C0.5 P1_C1 P1_C1.5
1.5 P1.5_C0 P1.5_C0.5 P1.5_C1 P1.5_C1.5
2.0 P2_C0 P2_C0.5 P2_C1 P2_C1.5
2.5 P2.5_C0 P2.5_C0.5 P2.5_C1 P2.5_C1.5
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TOCNFs were mixed to obtain a total of n � 16 ink formulations,
by combining different pectin and TOCNFs concentrations
(Table 1).

Characterization and Printing of
Multicomponent Biomaterial Inks
The viscosity of the prepared inks was measured by rheological
tests (Anton Paar MCR 302 Modular Compact rheometer, Anton
Paar GmbH, Austria). Shear rate sweep tests (parallel plates,
diameter Ø � 25 mm) were performed at 37°C by applying a shear
rate ramp from 0.1 to 100 s−1 (Paxton et al., 2017).

Inks were printed using a customized robotic dispensing
extrusion-based 3D bioprinter (KIWI 3D printer, Sharebot
S.r.l., Italy) (Contessi Negrini et al., 2018). Printed models
were designed in SolidWorks, exported as STL files, and finally
converted into G-code files (Slic3r software). Ring models
(Øinternal � 2 cm, Øexternal � 3.6 cm) were printed to assess the
ink’s printability (nozzle diameter � 18 G, writing speed � 5 mm/
s, n � 3). Printed rings were crosslinked in CaCl2 150 mM, and
sample height was measured by a digital caliper. The percentage
printing accuracy (Accuracyh) (Giuseppe et al., 2018) was
calculated by comparing the theoretical height designed by
CAD (htheoretical) to the measured height (hmeasured) of the
printed rings (Eq. 1):

Accuracyh[%] � [1 − ∣∣∣∣∣∣∣htheoretical − hmeasured

htheoretical

∣∣∣∣∣∣∣] × 100 (1)

Inks printed with accuracy ≥95% were selected as suitable for
further investigation; accuracy comprised between 65% and 95%
was considered acceptable; inks printed with accuracy ≤65% were
not further considered.

Bioink Selection and Bioprinting
The cytocompatibility of the selected ink formulations (P2.5-C0,
P2.5-C0.5, P2.5-C1, and P2.5-C1.5, see Results and Discussion)
was investigated by embedding L929 fibroblasts (10 × 106 cells/
ml, ECACC No 85011425) in the hydrogel precursors (n � 3).
After mixing cells with the precursors, hydrogels were crosslinked
and cultured in six-multiwell tissue culture polystyrene (TCPS).
After 24 h, a live/dead staining (propidium iodide 10 μM and
calcein-AM 2 μM) was performed and images (n � 6 per sample)
were acquired by a fluorescence microscope (Olympus BX51W1).
Cell percentage viability was calculated as the ratio of the number
of viable cells (i.e., green cells, Nviable) to the total number of cells
(i.e., green cells + red cells, Ndead; Eq. 2):

Cell viability [%] � Nviable

Nviable + Ndead
× 100 (2)

The P2.5-C1 formulation was selected for bioprinting tests (see
Results). The rheological properties of the ink were investigated by
thixotropy and temperature sweep tests. Thixotropy tests were
performed by applying a constant shear rate (0.1 s−1 for 120 s),
subsequently increased (100 s−1 for 100 s), eventually followed by
a recovery phase (0.1 s−1, 300 s). Temperature sweep tests were
performed by applying a temperature ramp from 10 to 40°C

(5°Cmin−1, 1% strain, 1 Hz; the linear viscoelastic region LVR was
preliminary checked, data not shown). Printing parameters were then
optimized by a serpentine model (Contessi Negrini et al., 2018),
composed of six equally long segments (length L � 20mm), each one
alternated with five shorter segments (L � 4mm). The parameters
were optimized by varying the nozzle diameter (18, 20, and 22 G) and
writing speed (12, 16, 20, and 24mm/s). Optimizationwas performed
by considering the printing accuracy (Accuracyd), calculated by
comparing the theoretical diameter of the CAD design (840 µm
for 18 G, 690 µm for 20 G, 430 µm for 22 G) to the measured
diameter (Celestron Micro360 optical microscope) of the printed
strands (Eq. 3):

Accuracyd[%] � [1 − ∣∣∣∣∣∣∣Dtheoretical − Dmeasured

Dtheoretical

∣∣∣∣∣∣∣] × 100 (3)

Finally, the printability of 3D structures was investigated by
printing four-layer grid structures (20 × 20 mm; pore area � 1.5 ×
1.5 mm); each layer was composed by superimposed serpentine
pattern models, with 0–90° alternate orientation. The nozzle
diameter was set at 20 G; writing speed was varied between 12,
16, 20, and 24 mm/s. The printing accuracy (Accuracya) was
calculated as (Eq. 4):

Accuracya[%] � ⎡⎣1
n
∑n

i�1(1 − |Ai − At|
At

)⎤⎦ × 100 (4)

where At is the theoretical pore area and Ai is the area measured
by optical microscope for the evaluated printed pores (number of
pores i � 45).

In vitro tests were conducted on printed and bulk samples,
obtained as control by hydrogel casting. Printed structures were
designed with disk morphology (Ø � 10 mm, h � 2.5 mm),
printed by using 5 mm/s writing speed and 20 G nozzle
diameter, and crosslinked with CaCl2 150 mM. Stability and
percentage weight variation of the printed structures (n � 3)
were evaluated by swelling tests in DMEM at 37°C, by measuring
the weight in time Wt (up to 3 weeks) of the printed and bulk
structures and comparing it to their initial weight W0 (Eq. 5):

Weight Variation [%] � Wt −W0

W0
× 100 (5)

The solid gel fraction of the hydrogels was calculated after 72 h of
swelling, as the ratio of the dry weight of the samples after swelling to
the dryweight of the samples before swelling tests (n� 3).Mechanical
compressive tests (n � 3) were performed with a Dynamic
Mechanical Analyzer (DMA Q800, TA Instruments). Tests were
conducted at 37°C by applying a load/unload compressive cycle up to
30% strain (preload 0.001 N, 2.5% min−1 load phase, 5% min−1

unload phase) (Michelini et al., 2020).
Finally, bioprinting tests were performed by preparing a

bioink composed by the P2.5-C1 formulation and L929 cells
(10 × 106 cells/ml). Once printing parameters for complex
multilayers structures were optimized by grid printing (see
paragraph above), samples were either printed with a three-
layers serpentine model (nozzle diameter � 18 G, writing
speed � 24 mm/s) or prepared as cell-embedded bulk
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hydrogels. Cell distribution and viability in the hydrogels were
investigated by live/dead staining, as previously described. Cell
metabolic activity was measured by alamarBlue® assay (n � 3) up
to 7 days of in vitro culture (Pimenta de Melo et al., 2019).

Statistical Analysis
Data are expressed as mean ± standard deviation. Data normal
distribution was checked by Shapiro–Wilk test. One-way
ANOVA tests, unpaired t-test, and Mann–Whitney
nonparametric test were performed with GraphPad Prism
software; p < 0.05 was set as statistically significant threshold.

RESULTS AND DISCUSSION

Despite the increasing interest in the use of pectin as biomaterial
(Markstedt et al., 2015; Nguyen et al., 2015; Zhao et al., 2016;
Neufeld and Bianco-Peled, 2017; Rezvanian et al., 2017; Pereira
et al., 2018a; Türkkan et al., 2018; Mehrali et al., 2019; Zhu et al.,
2019; Al-arjan et al., 2020; Khotimchenko, 2020; Oh et al., 2020),
the low viscosity values of pectin solutions at low concentrations
result in poor shape fidelity after 3D bioprinting, thus limiting the
use of pectin as bioink (Methacanon et al., 2014). A potential
solution is represented by the preparation of multicomponent
inks, in which pectin and other polymer(s) can be mixed and
crosslinked to obtain a multicomponent hydrogel to increase
pectin printability while simultaneously maintaining its
properties (Cui et al., 2020).

Here, we designed and prepared multicomponent bioinks
based on pectin and TOCNFs (P-C) to obtain printable
pectin-based bioinks. TOCNFs were selected as additional
component thanks to their ability in enhancing the ink’s high
viscosity and shear-thinning behavior, which improved both
printability and shape fidelity after printing (Martínez Ávila
et al., 2016; Cui et al., 2020; Fiorati et al., 2020). Moreover,
TOCNFs demonstrate adequate biocompatibility (Cui et al., 2020;
Fiorati et al., 2020) and can be used as main component of bioinks
or as reinforcement of multicomponent bioinks (Cernencu et al.,
2019). We first performed preliminary 3D printing studies by
preparing P-C multicomponent hydrogels in distilled water. We
combined different concentrations of pectin (0%, 1%, and 3%
w/v) and TOCNFs (0%, 0.5%, 1%, 2%, and 3% w/v) to print ring
structures (Supplementary Figure S2A). Enhanced printing
accuracy was achieved by increasing either pectin or TOCNFs
concentrations (Supplementary Figure S2B). Addition of
TOCNFs was necessary to print self-standing cylinders that
did not collapse during the layer-by-layer additive process.
However, despite good printing accuracy being achieved, the
prepared hydrogels showed acidic pH of approximatively 3.5
(Supplementary Figure S3A) (Moreira et al., 2013). The acidic
pH and the use of water to prepare the inks heavily affected the
viability of L929 cells encapsulated in the hydrogels
(Supplementary Figure S3B). We then subsequently prepared
our inks in DMEM and adjusted their pH at 6 to 7 to guarantee a
cytocompatible hydrogel (Supplementary Figure S3B).

Despite the first tests allowing us to improve the printability of
the inks prepared in water, low accuracy was achieved when

relatively low concentrations were used. Moreover, correction of
the acidic pH to improve cell viability critically diminished
viscosity and affected the hydrogels’ printability (Moreira
et al., 2013). Thus, we partially pre-crosslinked the inks by
addition of CaCl2 to increase their viscosity and obtain
printable inks (Yu et al., 2016; Vancauwenberghe et al., 2017,
2018). All the inks showed shear-thinning response under shear
rate ramps (Figure 1A), with viscosity values decreasing by
increasing the applied shear rate (Methacanon et al., 2014;
Wang et al., 2014). This shear thinning rheological response
has to be attributed to the pectin polysaccharide structure, where
the reduction in viscosity is given by polymer chains alignment of
transiently elongated coils in the flow direction during the
application of a shear rate ramp as previously described for
pectin and other polysaccharides (Zhang et al., 2013; Wang
et al., 2014; Campiglio et al., 2020). Higher viscosity values
were observed both by increasing the pectin and TOCNFs
concentration. When the same TOCNFs concentration is
considered, increased viscosity characterized hydrogels
prepared with higher concentration of pectin, due to the
higher number of hydrogen bonds formed thanks to the
increased density of hydroxyl groups forcing the mutual
interpenetration between pectin polymer chains.
Interpenetrated pectin molecules limit hydrogel flowing and
viscosity solution increases (Methacanon et al., 2014; Colodel
et al., 2019). This phenomenon can be particularly observed when
low TOCNFs concentrations are considered (0, 0.5% w/v). For
higher TOCNFs concentrations (1%, 1.5% w/v), the relatively
high viscosity achieved by addition of TOCNFs partially masked
the contribution of pectin to the rheological properties of the inks.
Moreover, for all the tested pectin concentrations (Table 1),
addition of TOCNFs led to an increase of viscosity of the inks,
promising for the development of printable multicomponent
bioinks (Markstedt et al., 2015; Sawkins et al., 2015;
Henriksson et al., 2017; Müller et al., 2017; Nguyen et al.,
2017; Cui et al., 2020; Piras and Smith, 2020). Viscosity
increased by the addition of TOCNFs, while the shear
thinning properties of the inks were maintained, given that
nanocellulose-based inks exhibit a high zero-shear viscosity
and shear-thinning behavior even at low polymer
concentration (Martínez Ávila et al., 2016). Moreover,
previous 3D printing studies on nanocellulose-based hydrogels
showed that nanocellulose is a promising ink additive that
effectively improves not only mechanical properties and
flowability, but also enhances chemical and biocompatible
properties of bioinks (Xu et al., 2018).

We then investigated the biomaterial printability to narrow
the set of inks to be tested for printing parameters optimization
and bioprinting, by evaluating the height of the printed cylinders
(Figure 1B) and the capability of self-sustaining their structure
during the layer-by-layer additive procedure (Campos et al., 2015;
Contessi Negrini et al., 2018; Giuseppe et al., 2018). All the
prepared inks were successfully extruded during the printing
process and printed in the desired shape (Figure 1B).
Considering fixed pectin concentrations, an increase in the
height of the printed rings was observed by increasing the
TOCNFs concentration, thus confirming TOCNFs influence in
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increasing the inks’ viscosity and their printability (Figure 1C).
Furthermore, pectin concentration also influenced the inks’
printability since the height of the cylinders increased with
increasing pectin concentration. Similar trends were observed
in studies involving nanocellulose as reinforcement in different
polymer-based composite inks, bringing benefits to rheological
and mechanical properties of printed composite materials
(Cernencu et al., 2019). Addition of nanocellulose to alginate-
based bioinks led to an improved geometrical resolution and a
high shape fidelity, due to the obtained highly viscous, shear-
thinning multicomponent bioink (Martínez Ávila et al., 2016).
Similarly, a macroscopic loss in shape fidelity was observed by
decreasing nanocellulose concentration in alginate-based
bioinks (Heggset et al., 2019). In our work, TOCNFs critically
contributed to enhancing the inks’ viscosity and allowed printing
structures with heights comparable to the theoretical ones
designed by CAD (Figure 2C). Low TOCNFs concentration
gels exhibited height values far from theoretical value, showing a
low printing accuracy (≤65%). As the highest printing accuracy
was achieved by printing inks with 2.5% pectin concentration

(≥95%), this set of inks (P2.5-C1.5, P2.5-C1, P2-C1.5, and P1.5-
C1.5) was selected to further develop the multicomponent
bioinks.

After fixing the pectin concentration (2.5% w/v), we
investigated the influence of the TOCNFs concentration on
the viability of cells encapsulated in the hydrogels. For all the
considered hydrogel formulations, percentage cell viability was
higher than 80% (Supplementary Figure S4). However, a
decrease in cell viability was observed for the highest TOCNFs
concentration tested (P2.5-C1.5, p < 0.05 vs. the other
formulations). The P2.5-C1 ink formulation was selected for
printing parameters optimization and bioprinting tests, due to
the good compromise between satisfactory printing accuracy and
adequate cell viability.

The selected P2.5-C1 ink formulation showed a good viscosity
recovery during thixotropy rheological tests (Supplementary
Figure S5A, left). This formulation showed a constant
viscosity in the initial phase (low shear rate) and in the
subsequent intermediate region. Subsequently, when the shear
rate was decreased, the hydrogel completely recovered its initial

FIGURE 1 | Evaluation of the printability of pectin-TOCNFs inks. (A) Shear rate ramp rheological tests on inks prepared by varying the concentration of pectin (P1,
P1.5, P2, and P2.5) and TOCNFs (C0, C0.5, C1, and C1.5). (B)Macroscopic images of rings printed by varying the multicomponent inks composition (scale bar � 1 cm).
(C) Comparison between the measured height of the printed rings and the theoretical height (dot line); *p < 0.05.
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viscosity values (100%) in 10 s. No significant variation in the
rheological properties of the inks were detected by varying the
testing temperature (Supplementary Figure S5B, right) and the
storage modulus G’ was predominant on the loss modulus G”.

Optimization of the printing parameters was then performed
by varying the nozzle size and the writing speed used to print the
P2.5-C1 ink formulation (Figure 2). Printing accuracy was
evaluated by measuring the diameter of the printed filaments
and by comparing it to the nozzle size. Printing accuracy was
relatively low (<70%) for writing speeds equal to 12, 16, and
20 mm/s, but it was improved (accuracy >75%) when writing
speed was increased for all the considered nozzles (Figure 2A).
The highest values of printing accuracy were obtained by printing
at the maximum tested writing speed (24 mm/s) and were equal
to 86% ± 10%, 93% ± 4%, and 93% ± 1% for 18, 20, and 22 G,
respectively. The achieved accuracy led to a better replication of
the CAD-designed 3D models, since printed ink could be

extruded in defined strands on the printing platform, avoiding
excess of material accumulation during the printing process, as
described for other natural-based polymers printed by extrusion-
based technology (Contessi Negrini et al., 2020; Tian et al., 2021;
Zhao et al., 2021).

Once printing parameters were optimized on serpentine
pattern models, four-layer complex grid structures were
investigated for 3D printing (nozzle diameter � 20 G, writing
speed � 12, 16, 20, and 24 mm/s). For this purpose, 20 G nozzle
diameter was selected to ensure accurate material deposition and
optimal printing accuracy (>75%). Printing accuracy was
evaluated by considering the pore area, a fundamental
parameter to obtain porous scaffolds for tissue engineering
and biomedical applications (Zheng et al., 2020). As for the
previous 2D optimization, the accuracy of the printed scaffolds
in terms of pore geometry was increased by increasing the
printing writing speed (Figure 2B, left). The printing accuracy

FIGURE 2 | Optimization of pectin-TOCNFs inks 3D printing. (A) Printing accuracy evaluated by varying the nozzle size (18, 20, and 22 G) and writing speed (12,
16, 20, and 24 mm/s); *p < 0.05; **p < 0.01; ***p < 0.001. (B)Optimization of the printing of 3D grid structures by varying the writing speed (12, 16, 20, and 24 mm/s, left)
and microscopy images of the obtained 3D printed structures (scale bar � 2 mm, right); **p < 0.01; ***p < 0.001.
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was qualitatively confirmed by the observed morphology of the
printed scaffolds (Figure 2B, right). Pores became
morphologically well-defined at higher writing speeds (20 and
24 mm/s), and the calculated printing accuracy was acceptable
(>75%). Lower writing speeds (12 and 16 mm/s) led to an
undesired accumulation of printed material resulting in
rounded morphology pores. Consequently, pore area decreased
due to filaments spread and merging on each other (Giuseppe
et al., 2018). These printing parameters were then selected to test
the potential use of the optimized ink formulation (P2.5-C1) as
bioink.

In vitro tests were performed to compare the performance of
P2.5-C1 print and bulk hydrogels. The printed ink was stable after
immersion in physiological-like conditions (Figure 3A, left).
Both print and bulk samples were characterized by an initial
weight loss (approximatively 25% of solid gel fraction) that can be
attributed to dissolution of non-crosslinked polymer chains. The
loss of solid fraction was confirmed by gel fraction tests
(Figure 3A, right), which revealed a solid gel fraction of both
print and bulk hydrogels of approximatively 75% after 72 h of
swelling (p > 0.05). After 72 h of immersion, sample weight was

stable for up to 3 weeks, proving the successful obtainment of
crosslinked hydrogel networks stable in physiological-like
conditions. Weight variation at plateau was higher for print
samples compared to bulk hydrogels. The bulk and printed
hydrogel showed typical viscoelastic behavior when
compressed (Figure 3B, left). The elastic moduli of bulk and
print samples were comparable (p > 0.05) and in the range of soft
hydrogels (2.0 ± 0.4 kPa and 1.8 ± 0.2 kPa for printed and bulk
samples, respectively; Figure 3B, right).

Finally, the potential use of the developedmulticomponent ink
biomaterials as bioinks was assessed (Figure 3C). Cells were
evenly homogeneously distributed 3D in the hydrogels both
considering bulk and print samples (Figure 3C, left). Viable
cells (green cells in Figure 3C) were observed in all the
samples, showing the presence of viable cells distributed in the
hydrogels, even after the printing process. The percentage cell
viability was higher than 85% for both print and bulk
formulations (p > 0.05, Figure 3B, top right). After 1 day of
culture, higher metabolic activity was observed for bulk samples
(p < 0.05; Figure 3C, bottom right), possibly due to the shear rate
exercised on cells by the extrusion process. Cell metabolic activity

FIGURE 3 | Pectin-TOCNFs bioprinting. (A)Weight variation (left) and solid gel fraction (right) of the printed and bulk multicomponent hydrogels. (B)Compressive
mechanical properties. Representative stress–strain curves (left) and elastic modulus E (right) of printed and bulk hydrogels. (C) In vitro cytocompatibility tests and
bioprinting. Live/dead staining of cells embedded in bulk and printed hydrogels (left) and percentage cell viability (top right). Metabolic activity, tested by alamarBlue®

assay, of cells cultured in bulk and printed hydrogels (bottom right); ***p < 0.001.
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increased during the in vitro culture for both print and bulk
samples (p > 0.05) up to 7 days of culture.

CONCLUSION

Multicomponent inks obtained using pectin and TOCNFs were
designed and investigated in this work. Optimization of the ink
formulation was achieved by a compromise between the printing
accuracy and cell viability in the developed hydrogels. Geometries
reproducing the CAD design were successfully printed. The
printed scaffolds were stable in physiological-like environment,
showing the successful obtainment of crosslinked pectin-
TOCNFs hydrogels. Viable cells were printed using the
optimized ink formulation and printing parameters, showing
the potential use of the developed biomaterial inks as bioinks
for future biofabrication applications.
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