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A fundamental question in cartilage biology is: what determines the switch between
permanent cartilage found in the articular joints and transient hypertrophic cartilage that
functions as a template for bone? This switch is observed both in a subset of OA patients
that develop osteophytes, as well as in cell-based tissue engineering strategies for joint
repair. A thorough understanding of the mechanisms regulating cell fate provides
opportunities for treatment of cartilage disease and tissue engineering strategies. The
objective of this study was to understand the mechanisms that regulate the switch
between permanent and transient cartilage using a computational model of
chondrocytes, ECHO. To investigate large signaling networks that regulate cell fate
decisions, we developed the software tool ANIMO, Analysis of Networks with
interactive Modeling. In ANIMO, we generated an activity network integrating 7 signal
transduction pathways resulting in a network containing over 50 proteins with 200
interactions. We called this model ECHO, for executable chondrocyte. Previously, we
showed that ECHO could be used to characterize mechanisms of cell fate decisions.
ECHOwas first developed based on a Booleanmodel of growth plate. Here, we show how
the growth plate Boolean model was translated to ANIMO and how we adapted the
topology and parameters to generate an articular cartilage model. In ANIMO, many
combinations of overactivation/knockout were tested that result in a switch between
permanent cartilage (SOX9+) and transient, hypertrophic cartilage (RUNX2+). We used
model checking to prioritize combination treatments for wet-lab validation. Three
combinatorial treatments were chosen and tested on metatarsals from 1-day old rat
pups that were treated for 6 days. We found that a combination of IGF1 with inhibition of
ERK1/2 had a positive effect on cartilage formation and growth, whereas activation of
DLX5 combined with inhibition of PKA had a negative effect on cartilage formation and
growth and resulted in increased cartilage hypertrophy. We show that our model describes
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cartilage formation, and that model checking can aid in choosing and prioritizing
combinatorial treatments that interfere with normal cartilage development. Here we
show that combinatorial treatments induce changes in the zonal distribution of
cartilage, indication possible switches in cell fate. This indicates that simulations in
ECHO aid in describing pathologies in which switches between cell fates are
observed, such as OA.

Keywords: computational model, signal transduction, IGF, BMP7, PTHrP, chondrogenesis, hypertrophy

INTRODUCTION

Proper development of cartilage is important for the length of our
long bones by anatomical movement of growth plate cartilage and
supple joint movement through formation of articular cartilage.
Cartilage dysregulation occurs in a variety of diseases, including
growth disorders, rheumatic diseases, osteoarthritis, as well as in
chondrosarcomas. To understand cartilage disorders and identify
new biomarkers or therapies, insight into the dynamics of the
cellular networks that control chondrogenesis is necessary.

Cartilage formation is under control of the transcription factor
SOX9, that regulates expression of genes important for the
cartilage phenotype, including collagen 2 and aggrecan
(Goldring, 2012). Mutations in SOX9 are linked to various
diseases, including campomelic dysplasia (Foster et al., 1994).
Also, Sox9 is sufficient for cartilage formation, since Sox9
misexpression produced ectopic cartilage (Healy et al., 1999).
Moreover, loss of SOX9 activity and subsequent decrease in target
gene expression is observed in osteoarthritis (Kim et al., 2013)
and is correlated to osteoarthritis progression (Zhong et al.,
2016a).

In the growth plate, RUNX2 drives proliferative chondrocytes
into hypertrophic chondrocytes, which is a prerequisite for bone
formation. In these cells, RUNX2 aids bone formation by
regulating expression of collagen1, MMP13 and osteocalcin
(Ducy et al., 1997). Runx2 is required for bone formation
(Otto et al., 1997; Komori, 2010). A tight balance between the
activities of these transcription factors is therefore essential for
the correct development and maintenance of cartilage and bone
tissues. The activities of SOX9 and RUNX2 are regulated by an
intricate network of signal transduction pathways, including
IHH, PtHrP, FGF, WNT, BMP, TGFbeta, HIF and IGF
(Kronenberg, 2003; Zhong et al., 2015). Because of the
complexity of the signaling network, it is impossible to predict
the effect of network changes (mutations, overexpression, loss of
function, etc) on the system as a whole.

Computational models based on systems biology principles
may offer general alternatives to time-consuming analytical
laboratory experimentation, because the in silico execution of a
program provides a rapid evaluation of working hypotheses.
Effective models have the potential to 1) reduce the costs of
expensive in vitro and in vivo experiments, 2) prevent animal
suffering, and 3) allow description of biological processes in
humans in which deliberate biological experimentation cannot
be performed apart from highly regimented clinical trials.
Therefore, computational models have the potential to

transform experimental biology by describing and
understanding observations and ultimately to predict cell
behavior and to assist with the design of new biological
experiments. The outcomes of biological experiments will
either validate the model or will identify novel mechanisms
that can be incorporated in the model, and thus
computational modeling enhances the accuracy and predictive
potential of biological concepts (Kumar et al., 2006).

Mathematical modeling of the dynamics of biological
networks permits formal comparisons of new experimental
data to prior knowledge, because formal description of
molecular interactions enables assessment of matches between
network topology and experimental data. However, often a
thorough understanding of specific mathematical languages is
required for optimal use of the available tools.

We have previously described the development of a modeling
tool referred to as Analysis of Networks with Interactive
Modeling (ANIMO) (Schivo et al., 2012, 2014b; Scholma et al.,
2014; Schivo et al., 2016). Because ANIMO centers around a
visual network representation, it renders intuitive generation and
editing of models, and supports the formal exploration of
networks by users without a thorough training in
mathematical formalisms (Pavelin et al., 2012). For this
reason, we have implemented ANIMO as a plug-in to
Cytoscape (Shannon et al., 2003), a widely used open-source
software platform for static visualization of complex networks. In
Cytoscape, the network is drawn as a graph, with nodes and edges
representing molecules and interactions respectively. We have
previously validated the ANIMO modeling tool using both novel
new models and using models that were previously generated
using different mathematical formalisms (Schivo et al., 2012,
2014b; Scholma et al., 2014; Schivo et al., 2016).

While cellular networks are infinitely complex, we applied
ANIMO to build a dynamic protein activity network for articular
chondrocytes referred to as the Executable CHOndrocyte
(ECHO) model. Recently, we showed that ECHO predicts the
chondrogenic differentiation capacity of multiple relevant human
cell types, including pluripotent embryonic and somatic
multipotent mesenchymal stem cells (Schivo et al., 2019).
Here, we show the building of ECHO from a Boolean model
of growth plate cartilage (Kerkhofs et al., 2016). Using model
checking (Bartocci et al., 2009; David et al., 2015; Schivo and
Langerak, 2017) we prioritized model-predictions that were
tested in the wet-lab.

We show that simultaneous inhibition of ERK and activation
of the IGF pathway prevented bone formation while enhancing
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cartilage formation in rat metatarsal explants. In contrast,
simultaneous activation of DLX5 and inhibition of IGF via
GLI2 prevented cartilage formation and inhibited the growth
of metatarsals.

METHODS

Building Models Using the Tool ANIMO
The modeling tool ANIMO, which stands for Analysis of
Networks with Interactive MOdeling, has been developed in a
collaborative project between cell biologists and computational
scientists. The aim was to create a tool that would provide
biologists with the computational support needed to reason on
the dynamics of complex cell signaling networks. To make the
formal analysis layer implemented in ANIMO available to
biologists in a familiar environment, ANIMO is provided as a
plug-in to Cytoscape (Shannon et al., 2003), Supplementary
Figure S1. The network diagram that can be drawn with
Cytoscape’s tools provides the topological information; using
ANIMO we add activity information to the network (Schivo
et al., 2012, 2014b; Scholma et al., 2014; Schivo et al., 2016).
Activity in this case is a very broad term and is used to describe for
example active gene expression, but also post-translational
modifications such as an active kinase that phosphorylates its
target, or a ligand binding to a receptor thereby inducing receptor
dimerization and activation.

Nodes and Interactions
In the network diagram we have nodes, which represent
molecules such as ligands, kinases, mRNA, etc., that are
connected via edges, representing the interactions between the
nodes. Each node in the network represents the inactive and the
active state of the molecule, with the relative amounts of active
molecules as percentage of activity represented by the node color.
For example: a node with activity level of 30 out of 100 can
represent a kinase population, 30% of which is in its “active” state.
Nodes can interact through activations or inhibitions, which
define how an upstream node influences the activity of the
downstream node. This is exemplified as follows: the
interaction A → B (read “A activates B”) indicates that node
A, if active, will increase the activity level of node B. If we add a
second interaction to the example, Cx B (“C inhibits B”), with C
also active, then the activity level of B will change depending on
the activity levels of A and C, and on their quantitative influence.
Node activities range with integer values between 0 and 100,
unless otherwise noted, while interactions are described as
positive or negative influences.

k-Parameters
The influence of an interaction is quantified by a parameter k,
which defines the speed at which that interaction occurs: higher
values of k give faster interactions. These k-values are the only
parameters needed in an ANIMO model. The value of the
constant k can be either given as numeric, or chosen among a
pre-defined set of qualitative estimation, choosing from “very
slow,” “slow,” “normal,” “fast” and “very fast” (Schivo et al.,

2014a). Going back to the example with the interactions A → B
and C x B, suppose we have kA→ B � 0.5 and kC x B � 0.4 and
that both A and C have 100/100 activity. In this case, because
kA→ B > kC x B (i.e., A → B is “faster” than C x B), the activity
level of B will increase over time.

Kinetic Scenarios
In ANIMO, kinetic scenarios based onMichaelis-Menten kinetics
(Michaelis and Menten, 1913; Michaelis et al., 2011) are defined
for each interaction. In biochemical terms, a phosphorylation
reaction catalyzed by enzyme E on substrate S can be
represented as:

E + S + ATP%ES + ATP→ESP + ADP%E + SP + ADP

The same reaction is abstracted in our model by the
corresponding interaction E → S. Each occurrence of the
interaction E → S will increase the activity level of S by one
discrete step (e.g., from 30 out of 100 to 31 out of 100). The rate R
of occurrence of an interaction is defined by the user, who can
choose an abstract kinetic scenario from the three available:

1) R � k × [E]: the rate of occurrence depends only on the activity
level of the upstream node

2) R � k × [E] × [S]: the rate depends on the activity levels of both
participants

3) R � k × [E1] × [E2]: the rate depends on the activity levels of
two user-selected reactants. This scenario can be used to
represent the so-called AND gate kinetics, i.e., the case
when the activity of a downstream node depends on the
simultaneous presence of two upstream nodes. We have
shown that the abstraction proposed here preserves ample
descriptiveness to capture experimental data in meaningful
models (Schivo et al., 2016; Zhong et al., 2017; Schivo et al.,
2019).

Under ANIMO’s Hood: Timed Automata
All models built with ANIMO are analyzed using the
mathematical/formal language of Timed Automata (TA).
Technically, the TA models which we automatically produce
from an ANIMO model are built to approximate a set of
Ordinary Differential Equations (ODEs) in a discrete
manner (Schivo and Langerak, 2017). In order to get a
complete and precise description of how ANIMO models
are translated into TA and how those models approximate
ODEs, we refer the interested reader to our previous work
(Schivo et al., 2012; Schivo et al., 2014a; Schivo et al., 2014b;
Scholma et al., 2014; Schivo and Langerak, 2017), where we
show how nodes and interactions are represented, and how TA
are used to update the activities along the course of a model
simulation.

Node activity levels are represented in the TA model using
integer variables and are updated based on the interactions
influencing them. These integer variables are each managed by
one timed automaton: whenever an automaton reaches its
timeout, the corresponding variable is changed by +1 or −1.
This means that the corresponding activity level either increases
or decreases by 1 at that point in time. The amount of time that
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needs to pass before a timeout is reached needs to be kept
constantly updated and depends on the interactions
influencing the node represented by the automaton.

Consider again the example network made of the nodes A,
B and C, and the interactions A → B and C x B. Note that in
this network only the value of B can change, because no
interaction exists upstream of A or C. This means that
from this ANIMO model we will obtain only one timed
automaton, which will manage B’s activity level. The aspect
of this automaton is very similar to the one represented in
Supplementary Figure S1. The most important location of
the automaton is labelled “waiting” and is used to wait for the
next timeout. This is done by letting time flow and checking
the value of clock c. When c exceeds the threshold T, it is
possible to leave location waiting and reach a special location
(the one with a “C” inside): this allows to update the variable
representing B’s activity level [which is done by function reach
()], reset the clock c, and compute the value of the threshold T
for the next timeout. The new value of T is computed in
function update () taking into account all the interactions
influencing B. In this case, the update formula depends on the
current values of A’s and C’s activity levels, and on the
k-parameters kA → B and kC x B. It is in this function that
our discrete approximation of the ODEs representing the
network (Schivo and Langerak, 2017) is applied. The sign
of the next change to B’s activity level (+1 or −1) is also
decided by the update () function, taking into account the
current conditions. When performing the update we also
move back to the waiting location, and send an output
signal (denoted by !) on the reaching [1] channel: this
allows us to alert any automaton that may depend on B
that its activity level has changed. Note that it is also
possible to leave the waiting location before clock c has
reached its threshold T: this can happen when another
automaton has reached its timeout before the current one.
This event is detected by waiting for a signal on the reaching
[..] channel, using an input action (denoted by ?). In case of
such an event, we reach location “responding”: there, an
update to the value of T can be made to react to the
possibly changed environmental conditions. In our
example, location “responding” would be reached in case
other interactions had changed A’s or C’s activity levels.

Summarizing, an automaton in our TA model can be involved
in two types of events:

- Clock timeout: the value of the managed activity level is
updated, and a signal is sent to all interested automata;

- Change in conditions: other automata have changed
variables that may influence the value of T, so this needs
to be recomputed.

The initial location “start” is used to initialize the threshold T,
using the initial activity levels of the nodes.

Note that the behavior described here is deterministic:
i.e., given a set of k-parameters, the analysis of the TA model
will always return the same result over any number of
simulations. In case non-deterministic behavior needs to be

described, it is possible to introduce non-determinism in an
ANIMO model. However, we chose not to use this feature
when working on ECHO to reduce its complexity.

Here, we provided only an abstract description of how the TA
model works, without going into many of the details that make it
work. To get a more complete picture, we refer to (Schivo and
Langerak, 2017).

From Boolean Models to ANIMO Models
As already mentioned, ECHO is based on a previously existing
Boolean model (Kerkhofs et al., 2012), which was translated into
ANIMO and subsequently refined.

Boolean networks can be translated into ANIMO as follows:
Boolean OR gates, such as (A OR B)→C, will be translated into A
→ C and B→ C. This means that whenever either A or B is active,
C will be activated, so that reaction effects are always additive.
This representation of OR is thus non-exclusive, so C will be
activated also if both A and B are active, but in that case the
activation will proceed faster. A Boolean AND gate can be
explicitly represented with the “AND” approximation
described by scenario 3: with (A AND B) → C, C will be
activated only if both A and B are active.

It is of importance to note that in ANIMO all nodes that are
activated remain active until they are inactivated. To model
inactivation events, such as protein/mRNA degradation,
receptor internalization, dephosphorylation, etc., inhibitory
edges must be added to each node. The parameters for this
inhibition depend on the rate of the biochemical reaction that
is being represented. For example, dephosphorylation is a fast
process, but not faster than phosphorylation as we know that
when we quantify protein phosphorylation by for example
Western Blot, we identify a peak between 5 and 30 min after
cell stimulation that tapers off to zero after one to 2 h.

Combining these basic tools makes the representation of more
complex Boolean formulas also possible, even if not always in a
straightforward manner. Based on the truth table of the Boolean
formula, we made use of “dummy” nodes to define these special
behaviors. For example, to represent the inactivation of the
“Destruction complex” in the Wnt canonical pathway and the
influence that ERK exerts on it, the original model uses the
formula: (1-Dsh)*Min ((1.5 - ERK), 1). To obtain the same effect,
we defined the subnetwork in Supplementary Figure S2: note the
presence of the dummy nodes with fixed value that represent
constitutional activity of the Destruction complex.

k-Parameters in ECHO
Most precise modeling is based on Kd values that are obtained in
purified enzyme reactions (for example Kogan et al., 2012).
However, for many proteins in our network these values are
unknown. In addition, mechanisms such as subcellular
localization and competition with other proteins, are not
considered when determining the Kd values. What most
experimental biologists do know, is the speed of protein
phosphorylation observed in western blot experiments, or
functional assays. We have described for our cells, that
phosphorylation assays measure highest intensities around
15–30 min after stimulation (Scholma et al., 2014; Zhong
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et al., 2017). Work on protein phosphorylation has been
performed since the early 1900s, and enzymatic
phosphorylation of proteins has been described since the
1930s (reviewed in Pawson and Scott, 2005). As such, much
information exists about the speed of phosphorylation.
Textbooks, such as Essential Cell Biology (Alberts et al., 2019)
describe protein phosphorylation as a very fast process. Indeed, a
report using single cell measurements on a microfluidic chip, has
indicated that protein phosphorylation takes place within 30–200 s
after cell stimulation for the proteins measured (Blazek et al., 2015),
with differences between proteins and even the different
phosphorylation sites within the proteins. We therefore chose to
use this knowledge and applied it as follows: Protein
phosphorylation is represented as a “fast” process in ECHO,
thus all phosphorylation reactions, together with reactions with
a comparable speed, are represented with a k-value of 1. Those
reactions that involve gene transcription are represented as “slow”
using a k-value of 0.1. Due to this simplified approach, timing
information is not considered in ECHO: all the in silico
experiments illustrated here are based on letting the model
evolve for a time long enough to let it reach an attractor state.
The attractor states in ECHO are the same three as in the original
model and describe the possible configurations towards which the
model can naturally evolve.We named the attractor states based on
the activity of the two most important nodes: SOX9+ corresponds
to the state where the SOX9 node is active and RUNX2 is not,
RUNX2+ denotes RUNX2 activity and SOX9 inactivity, and Null
describes a state where all nodes in the network are at 0 activity.
Table 1 shows the activity levels of nodes SOX9 and RUNX2 in the
three stable states reached in ECHO.

Model Definition
The description of the model and the simulations is according to
the MIASE descriptions (Waltemath et al., 2011). The model
validation has been shown before in (Schivo et al., 2019). Model
parameters for the AC and GP models have been previously
described (Schivo et al., 2019).

A detailed description of the ANIMOmodelling approach was
published previously (Schivo et al., 2012, 2014b; Scholma et al.,
2014; Schivo et al., 2016), and is shortly illustrated in the previous
sections.

The base version of ECHO (Growth Plate, GP model) was
ported to ANIMO from pre-existing Boolean model and additive
models of the growth plate (Kerkhofs et al., 2012; Kerkhofs and
Geris, 2015; Kerkhofs et al., 2016). We converted the existing
Boolean model into an ANIMOmodel, which we then named the
executable chondrocyte, or ECHO.

The semi-quantitative model on which ECHO is based uses
additive functions to represent Boolean-like logic, with node
activities in the continuous [0,1] interval. This model is
translated into ANIMO’s kinetics by applying the following set
of rules:

• All nodes in ECHO have 100 discrete levels of activity. The
activity level of a node can be interpreted as concentration
on the arbitrary scale from 0 to 100, or as the percentage of
active (e.g., phosphorylated) molecules over the whole
population, depending on whether a node represents a
gene or a protein.

• Two classes of reactions can be identified: slow (e.g., gene
expression) and fast (e.g., post-translational modifications).
If a reaction can be directly identified as belonging to one of
these general categories, the corresponding interaction
strength factor k in ANIMO will be 0.1 and 1.0 for slow
and fast reactions respectively. No precise timing
information was added to the model: e.g.,
phosphorylation reactions are simply faster than gene
expression, but time scales are neither realistic nor
precise. This means that the model cannot faithfully
predict a particular phosphorylation spike to occur in the
first 20 min, nor can it show that a specific gene is expressed
within 4 h. What the model does show is that the
phosphorylation spike occurs much faster than the gene
expression. Because of this absence of timing information,
we preferred to avoid time-bound predictions and
concentrated only on the steady-state results.

• In the original model, the activity of a node that is not
activated is assumed to automatically revert to 0. This
assumption is made explicit in ANIMO by adding a self-
inhibition loop to each node in the network, with k equal to
0.1 or 1.0 depending on the type of reactions influencing the
node (i.e., “slow” or “fast”). Due to this self-inhibition, each
node will gradually revert to 0 activity in the absence of
upstream activations.

• Kinetics that use OR (additive) semantics are translated into
independent edges in ANIMO, with interaction strengths
balanced to match the original model. For example, node
“Ras” is activated from 4 different sources independently
(Wnt, BMP, FGFR1, FGFR3), all with strength k � 0.444.
The self-inhibition of Ras has strength k � 1.0, so having any
one of those four nodes at activity 100 with all others at 0
will lead to Ras activity 44 out of 100;

• Kinetics that use AND semantics are translated with
ANIMO’s AND kinetic scenario, which allows two nodes
to influence the activity of a single target. AnAND interaction
is only active when both upstream nodes are active.

• Reactions involving more complex logic rules were
modelled case-by-case, using dummy nodes when
necessary to faithfully reproduce the behavior of the
original model. As an example, see the dynamics of the
Destruction Complex (DC) in Supplementary Figure S2.
The nodes “DC dummy,” “DC canonical,” “DC
degradation” and their interactions are used to describe
the kinetic formula for the node “destruction complex.”

TABLE 1 | Node activity levels of SOX9 and RUNX2, in the three stable states that
can be reached in ECHO.

Stable state name SOX9
node activity level

RUNX2
node activity level

SOX9+ 88 0
RUNX2+ 0 100
Null 0 0
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• Some proteins in ECHO need to be both expressed and
post-translationally activated to perform their task. In those
cases, a three-node pattern is adopted that allows to
represent the two processes of protein production and
post-translational activation. As an example, consider the
dynamics of Sox9 in ECHO: expression and activation of
Sox9 are controlled separately through the nodes “Sox9
prot” and “Sox9 PTM” respectively. All influences on Sox9
expression affect “Sox9 prot” with “slow” kinetics, while all
post-translational modifications are modelled as influences
on “Sox9 PTM” with “fast” kinetics. Finally, Sox9 activity is
determined by the “Sox9 prot AND Sox9 PTM activate
Sox9” interaction. In this way, Sox9 must be both expressed
and post-translationally activated to be activated and exert
downstream effects. For several proteins, expression and
post-translational activation are regulated separately: AKT,
ATF2, CCND1, Dlx5, Ets1, FGFR1, FGFR3, IGF-1R, Lef/
Tcf, MEF2C, Msx2, PI3K, PPR, RUNX2, SOX9.

The model originally obtained from the translation contained
120 nodes and 343 interactions (see Supplementary Figure S3),
which were simplified by removing the nodes representing
expression or post-translational modification processes that are
not modelled in ECHO. In particular, the “prom” nodes (which
represented promotors on the DNA) have been removed, and the
influences on protein production have been redirected to the
“prot” nodes instead. The resulting first version of the ECHO
model (GP model) contained 92 nodes and 296 edges (See
Supplementary Figure S4). For Parameters of Nodes and
Edges, see Supplementary Table S3). We took this model as a
representation of a growth plate chondrocyte (GP). Through
further adaptations (see below) we obtained an articular cartilage
model (AC). Initial simulations in which all starting activities of
all nodes were randomly initialized revealed three possible stable
states: a SOX9-positive (SOX9+) state, a RUNX2-positive
(RUNX2+) state, and a NULL state in which neither SOX9+

or RUNX2+ was reached (see Table 1). Over 90% of all
initializations arrive at in a Null state in which all nodes
assume the activity value zero (see Table 2). Please note that
the SOX9+ and RUNX2+ states are mutually exclusive.

Validation of the Model
For validating the predictions, either existing literature or wet lab
experiments data can be used. In our case, we wanted to use a
system of developing cartilage, hence we selected rat metatarsals
from 1-day old rat pups. For interested readers, we would like to
refer to (Scholma et al., 2014; Schivo et al., 2016; Khurana et al.,

2021) for a systematic method to generate and validate a
computational model. We selected combinations of treatments
based on the computational model predictions that led to a switch
in SOX9 and RUNX2 active state. Previously, it has been shown
that a week of treatment is enough for observing changes in
longitudinal length and in other parameters of metatarsals, hence
we treated the metatarsals with selected molecules for 6 days
(Landman et al., 2013). Concentrations of molecules were used as
mentioned in (Huang et al., 2001; Zhang et al., 2009; Han et al.,
2011; Govindaraj et al., 2019) and described below.

Metatarsal Culture
Three medial metatarsals per hind leg were carefully dissected out
from 1-day old rat pups (Rj Han: WI Wistar rats purchased from
Janvier Labs). Animal experiments were approved by Instituut
Voor Dierenwelzijn (IVD) at University of Twente. After
isolation, metatarsals were individually cultured in 24-well
plates in 200 μl/well in Minimal Essential Medium (MEM) α
medium supplemented with 10% Fetal bovine serum (FBS), 100
U of penicillin-streptomycin and 1% GlutaMAX supplement for
48 h. After this, 6 metatarsals per treatment were treated with
various combinations of the small molecules (H-89 (30 μM),
Tanshinone IIA (6 μM), and PD98059 (25 μM), Recombinant
human IGF1 (100 ng/ml), Recombinant human BMP7 (100 ng/
ml), and Rh PtHrP (100 ng/ml) for 6 days.

Morphometric and Histological Analysis
Microscopic images were taken at different time points and the
longitudinal growth of the bones was measured along the sagittal
axis using ImageJ software. For histological examination,
metatarsals were fixed in 10% formalin and dehydrated in
ethanol series before embedding in paraffin. Five micrometer
sections were cut using a rotary microtome (Shandon). The
sections were dried for at least an hour at 65°C and stained
with Safranin O stain for proteoglycan quantification. The slides
were then deparaffinized in 100% xylene twice for 5 min and
rinsed in 100% EtOH. A hydration series of 2 × 100, 1 × 96, 1 × 90,
1 × 80 and 1 × 70% EtOH was done, each for 2 min. The sections
were then rinsed in demineralized water for 2 min and stained
with Gill #3 hematoxylin staining solution for 6 min after which
they were washed in running tap water for 15 min. The sections
were then stained with Fast Green (0.001 w/v % in dH2O) for
3 min and quickly rinsed with 1% v/v Acetic acid in dH2O for
10 s. After staining with Safranin O (0.1% w/v in dH2O) for 6 min
the slides were rinsed 2 times in 70% EtOH for 1 min each and a
dehydration series in 1 × 80, 1 × 90, 1 × 96, 2 × 100% EtOH. The
slides were then incubated twice for 5 min in 100% xylene after
which they were immediately mounted in GLC mounting
medium. The slides were kept in xylene while mounting.
Slides were counterstained with hematoxylin Gill #3 for 30 s
and mounted with GLC™ mounting medium (Sakura). Images
were taken using a Nanozoomer (Hamamatsu).

Quantification of GAG Staining
To quantify the intensity of histological staining ImageJ version
1.51 was used. The images were converted to 8-bit grayscale and
the plugin Image Inverter was then applied. The straight-line tool

TABLE 2 | Distribution of ECHO cell fates from 1,000,000 random initializations for
each model. Errors give the boundaries of 99% confidence intervals.

Model SOX9+ (%) RUNX2+ (%) Null (%) SOX9+/RUNX2+

1 (GP) 1.49 ± 0.03 6.95 ± 0.07 91.56 ± 0.07 0.21 ± 0.01
2 0.54 ± 0.02 0.19 ± 0.01 99.27 ± 0.02 2.8 ± 0.3
3 1.78 ± 0.03 0.81 ± 0.02 97.41 ± 0.04 2.2 ± 0.1
4 (AC) 0.61 ± 0.02 0.012 ± 0.003 99.37 ± 0.02 50 ± 13
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was then used to draw a line the length of the scalebar, and set
scale was used to apply a spatial calibration converting units from
pixels to mm. In set measurements area, mean grey value andmin
& max were selected. The polygon selection tool was then used to
select the cartilage portion of the metatarsal base, excluding the
hypertrophic zone and any tissue stained with fastgreen (such as
surrounding fibrotic tissue). Measure was then used to quantify
metatarsal base area, and average grey value of the metatarsal
base. The rectangle tool was then used to select areas from the
background. The average grey value was then measured, and this
background value was subtracted from the average grey scale
value of the metatarsal base to give an indication of the staining
intensity. The straight-line tool was finally used to measure the
length of the different zones after setting scale.

Statistical Analysis
Statistical analysis was performed in R, using the statistics
package ggpubr. A Welch Two Sample t-test was performed
between control and treatment as well as between individual
treatments using the code: stat_compare_means (method:
“t.test,” comparisons � my_comparisons). Differences were
considered significant when p < 0.05.

Reference to Materials
Minimal Essential Medium (MEM) α medium, Gibco/Life
Technologies, #22571-020.
Fetal bovine serum, 10%, Gibco/Life Technologies, #10270106.
Penicillin-Streptomycin, Gibco/Life Technologies, #15140-122.
GlutaMAX, Gibco, #35050-061.
H89 (30 μM), Merck, #B1427-5MG.
Tanshinone IIA (6 μM), #T4952-5MG, Merck.
PD98059 (25 μM), #S1177, Selleckchem.com.
Rh IGF1 (100 ng/ml), # 354-BP-010, R and D systems.
Rh BMP7 (100 ng/ml), #100-09, Peprotech.
Rh PtHrP (100 ng/ml), #100-09, Peprotech.

RESULTS

Modeling Growth Plate Cartilage Using
ANIMO
Chondrocytes, that secretes and shapes the extracellular matrix
necessary for the cartilage load-bearing properties, are
differentiated from mesenchymal stem cells in a sequence of
events following mesenchymal condensation. Chondrogenic
differentiation and hypertrophy are directly and tightly
regulated by the activity of two main transcription factors.
SOX9 is the master transcription factor for chondrogenic
development and a key inhibitor of hypertrophic
differentiation. RUNX2 is a transcription factor that facilitates
hypertrophic differentiation that occurs in the growth plate, and a
key factor for osteoblastogenesis during subsequent bone
formation (Mackie et al., 2008; Cheng and Genever, 2010).
The balance of the activities of these two factors controls the
switch between formation of permanent articular cartilage versus
transient hypertrophic cartilage in the growth plate (Eames et al.,
2004; Zhong et al., 2015). However, the complexity of the

signaling network that controls the activities of SOX9 or
RUNX2 prevents a thorough understanding of the
mechanisms that regulate formation of transient or permanent
cartilage.

To investigate the intricate signaling network in cartilage
we set out to build a computational model according to logical
rules we described previously (Scholma et al., 2014). To start,
we used pre-existing Boolean model and additive models of the
growth plate (Kerkhofs et al., 2012; Kerkhofs and Geris, 2015;
Kerkhofs et al., 2016). Seven signaling pathways known to be
important in cartilage development and maintenance: WNT,
BMP, TGFβ, IHH, IGF, PTHrP, and the FGF pathways are
described. In contrast to Boolean networks, ANIMO is based
on activity networks, where activity represents an integrated
value that accounts for modulations in gene expression at
posttranscriptional and post-translational levels. The rules we
used to translate the original model into ANIMO can be found
in the Methods. The resulting ANIMO network, which we
called ECHO (Executable CHOndrocyte), contains 120
proteins (nodes) and 343 interactions (edges) representing
the downstream signaling events that influence SOX9 and
RUNX2 (Supplementary Figure S3). For a number of these
proteins, expression and post-translational activation are
regulated separately (methods: model definitions
Supplementary Figure S4). Node activities range with
integer values between 0 and 100, while interactions are
described as positive or negative influences. Single-
parameter simplified kinetics describe the rate at which
each interaction influences its target node’s activity.

We defined the network configuration in a stable SOX9-active
state as a healthy articular chondrocyte or stable chondrocyte
phenotype, whereas a state in which RUNX2 is active is associated
to chondrocyte hypertrophy and bone formation. The adaptation
of the growth plate gene expression network to a protein activity
network in ANIMO is referred to as Model 1. The model enabled
us to obtain insight into the activities of the proteins in the
network leading to development of stable cartilage (SOX9+) or
transient hypertrophic cartilage as found in the growth plate
(RUNX2+).

A Model of Growth Plate Cartilage Is
Adapted Towards Articular Cartilage Based
on Global Gene Expression Microarrays of
Growth Plate and Articular Cartilage
Growth plate cartilage and articular cartilage share a common
lineage in development (reviewed in Onyekwelu et al., 2009;
Goldring, 2012). Many studies have been directed towards
identifying specific markers for transient and permanent
cartilage (Emons et al., 2011; Gelse et al., 2012; Leijten
et al., 2012; van Gool et al., 2012). We identified DKK1,
FRZB (WNT antagonists) and GREM1 (BMP antagonist) as
the natural brakes on hypertrophic differentiation and
regulation of the maintenance of the articular phenotype
(Leijten et al., 2012). We therefore incorporated DKK1,
FRZB and GREM1 into Model 1 to generate Model 2
(Figure 1A, Supplementary Figure S5) (Schivo et al., 2019).
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Differential gene expression analysis between growth plate
(GP) and articular cartilage (AC) further indicated subtle but
significant differences in the expression of four genes whose
corresponding proteins were already represented in our model:
ERK2, p38γ, GSK3β and Smad3 ((Leijten et al., 2012), Figure 1).
For the other nodes in the network, no changes in gene expression
between GP and AC were observed and these are therefore
unchanged. To represent the different expression of these four
genes in ECHO, we reasoned that the strength of effects directly
downstream of these factors is likely to correlate with their
expression level and subsequently the protein activity. We
therefore multiplied downstream interaction parameters with
the relative expression levels to take into account the
differences between tissues. For example, the microarray data
show that articular chondrocytes express less p38 than cells from
growth plate (Figure 1B AC/GP � 0.64). Hence, we adjusted
parameters of the interactions downstream of p38 by a factor of
0.64 to yield Model 3 (without DKK1, FRZB and GREM1, but
with modification of output parameters for ERK/p38/GSK3/
Smad3) and Model 4 (including DKK1, FRZB and GREM1
and modification of output parameters for ERK/p38/GSK3/
Smad3) (Figure 1B). To obtain detailed insight into the effects
of these adaptations on reaching a state in which either SOX9 or
RUNX2 are robustly active (i.e., SOX9+ or RUNX2+ states), all in
silico experiments were carried out for all four models
(Figure 1A).

As a first assessment of the properties of the four models, we
performed Monte Carlo simulations in which all nodes are
initially assigned a random, uniformly distributed activity level
over the entire range of theoretical values (i.e., the interval [0,
100]). Each initialized model is then simulated until a stable state
is reached. Analysis of the results of 1,000,000 simulations for

each model shows that three distinct stable states are possible for
ECHO Models 1–4 (Table 1). Over 90% of all initializations
arrive at a Null state in which all nodes assume the activity value
zero. This result is attributable to the fact that in ECHO protein
activities are programmed to taper off and reach baseline in the
absence of upstream activating factors. Only initializations of
essential network components that have activity patterns above
certain threshold levels will escape from returning to the
Null state.

More interesting from a biological perspective are the other
two stable states that are either SOX9+ and RUNX2+. In Model 1
(the original GP model), the RUNX2+ cell fate is about 5 times
more likely to occur than the SOX9+ cell fate, Table 2. Addition of
the genes that were highly expressed in articular, but not in
growth plate cartilage, DKK1/GREM1/FRZB (Model 2,
Supplementary Figure S5), causes an increase in the Null
state as expected, because those factors repress WNT and
BMP signaling, thus decreasing the fraction of initializations
capable of escaping the Null state. The RUNX2+ state is much
more affected by DKK1/GREM1/FRZB than the SOX9+ state, and
the latter becomes dominant. Adaptation of parameter settings
for ERK/p38/GSK3 (Model 3), to better represent protein
concentrations in articular chondrocytes, causes a decrease in
the RUNX2+ fate, while the adaptation of SMAD3 further
increases the fraction of SOX9+ fate. The two adaptations
together (addition of DKK1/GREM1/FRZB, and adaptation of
the parameters downstream of ERK/p38/GSK3/SMAD3, Model
4, Figure 1) virtually eliminate the RUNX2+ fate. In this respect,
its behavior resembles that of articular cartilage, which is under
stable control of SOX9. In the remainder of the paper, we will
consider Model 1 (Supplementary Figure S4) to be a growth
plate cartilage model (ECHO GP), while Model 4 (Figure 2)
represents an articular cartilage model (ECHO AC).

Constitutive Activation and Knock-Out of
Individual Nodes in the Network Provides
Information on the Role of Proteins in
Determining Cell Fate
To understand the role of each node in determining cell fate, we
individually perturbed the activity of the nodes by fixing their
activity to either 0 (in silico knock-out, K.O.) or at 100
(constitutive activation). The other nodes were randomly
initialized over the course of 10,000 simulations and cell fate
distributions were compared with the unperturbed situation
(Table 2) to assess the influence of each perturbation
(Figure 3). Given the bi-stable behavior of ECHO, one can
expect that the effects of perturbations follow three intuitive
“rules”: 1) If a node is more active in the SOX9+ fate than in
the RUNX2+ fate, then activation of this node will favor SOX9+
cell fate and knockout will favor RUNX2+ cell fate, and vice versa.
2) If a knockout or activation favors a specific cell fate, it is
detrimental to the other fate. 3) If the knockout of a node favors a
specific cell fate, activation of the same node is detrimental to
this fate.

WNT is more active in the RUNX2+ fate (activity 100) than in
the SOX9+ fate (activity 29 in the GP model, and 0 in the AC

FIGURE 1 | (A) Adaptation of ECHO resulted in 4 model versions,
depending on the presence or absence of DKK1, FRZB and GREM1 and the
changes in parameters of ERK1/2, GSK, p38 and SMAD3. (B) Model
parameters of ERK1/2, GSK3β, p38 and SMAD3 were adapted to
previously found differences in growth plate and articular cartilage mRNA
expression (Leijten et al., 2012; Schivo et al., 2019).
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model) and is an example that follows all the rules above.
Interestingly, a node that has activity 0 in a cell fate can still
affect the probability of reaching that fate when it is knocked
out. An example is PP2A, which has activity 0 in RUNX2+.
Knockout of PP2A increases the RUNX2+ state from 7 to 44%.
This happens because PP2A inhibits ERK, which in turn
activates RUNX2; thus: knocking out PP2A (indirectly)
activates RUNX2.

R-SMAD is an exception to rule 2, as a constitutively active
R-SMAD in the AC model makes both SOX9+ and RUNX2+

percentages rise significantly. In other cases, both activation and
K.O. of the same node have similar effect on a cell fate,
contravening rule 3. For example, keeping BMP inactive in the

GPmodel annuls the chance to reach a SOX9+ state, and the same
effect is observed if BMP is kept at 100% activity. Interestingly,
this does not occur in the AC model. These complex effects are
also known in the wet-lab, where BMP2 has a dose-dependent
effect on stem cell differentiation, and can stimulate both cartilage
and bone formation (Wang et al., 1993). Another interesting
exception to rule 3 is TGFβ: although it is more active in a
RUNX2+ state, its constitutive activation significantly increases
the chance of reaching a SOX9+ fate and prevents reaching
RUNX2+.

These complex effects recapitulate experimental findings,
where BMP2 has both transient and permanent dose-
dependent effects on stem cell differentiation, and can

FIGURE 2 | ECHO, executable chondrocyte, describes the development and maintenance of articular chondrocytes. The activities of the transcription factors
SOX9 and RUNX2 are regulated by an intricate network of signal transduction pathways, including IHH, PTHrP, FGF, WNT, BMP, TGFβ, HIF and IGF. The model is
depicted in the SOX9+ state and node. Activity is represented on a scale from red (inactive) via yellow to green (active).
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FIGURE 3 | Effects of node perturbations on cell fate. Each node in ECHO was set as either constitutively active (activity fixed at 100,C) or knocked-out (activity
fixed at 0, ○), while all other nodes were randomly initialized over the course of 10,000 simulations. The resulting percentages of cell fates were computed and compared
with the percentages in Table X1. The colors the cells in this table show themagnitude of deviation from the non-perturbed values and give an indication of the importance
of a node for a cell fate.
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stimulate both cartilage and bone formation (Wang et al., 1993).
TGFβ is also interesting because this signaling ligand is more
active in a RUNX2+ state, but its constitutive activation
significantly increases the chance of reaching a SOX9+ fate,
while preventing a RUNX2+ state.

Although the role of these proteins in relaying information to
the nucleus is known, knockout or constitutive activity for most
of these proteins in determining cell fate has not yet been
described. Published KO animal experiments (Yoon et al.,
2005; Jing et al., 2013; Jing et al., 2014; Chen et al., 2015)
validate the network topology and parameter settings for
ECHO. Our findings indicate that computational models offer
rationale outputs that can inform new in vivo and in vitro
experimentation to elucidate the molecular mechanisms
governing cartilage and bone development.

Using Literature to Validate Topology and
Dynamics of ECHO
In any computational model one wonders how much the model
represents biological situations with respect to the time
dependency of reactions and the topology of the model. Of
course, the Chinese proverb “Life is like an echo: What you
send out usually comes back to you.” could be quoted here, since
the model predictions should reflect the data that were put in. For
building ECHO, we did not use any model training and based the
topology of the cross-talk interactions of the various pathways on
different studies. It is therefore still useful and necessary to
validate whether the results of the in silico experiments in
ECHO reflect the literature. We therefore investigated whether
K.O. animal experiments that were not used for the model
building, validate the network topology and parameter settings
for ECHO. We aimed to validate some of the data of our KO and
overexpression experiments of Figure 3. Quite a few papers
discuss the double role of BMP in articular cartilage as well as
in chondrocyte hypertrophy and OA. We also observe this in the
model, where we find that the role of BMP is concentration
dependent. In conditional BMPR1a KO mice, the lack of Bmpr1a
leads to significant chondrodysplasia and almost eliminated the
chondrocyte phenotype with decreased SOX9, collagen II and
proteoglycan (Yoon et al., 2005; Jing et al., 2013; Jing et al., 2014).
In ECHO, BMP2 affects both RUNX2 and SOX9, which is also
seen in BMP2/4 double KO embryos where SOX9, ACAN and
collagen type II (COL2A1) mRNA levels were reduced and
RUNX2 protein expression was reduced in the proliferating
and pre-hypertrophic areas (Shu et al., 2011; Liao et al., 2014).
In addition, Shu et al. found that BMP2 induces RUNX2
expression at both transcriptional and post-transcriptional
levels (Shu et al., 2011). We showed in ECHO that PTHrP
and IHH overexpression increased the occurrence of stable
SOX9 states, while KO reduced the SOX9 phenotype. Indeed,
in IHH KO mice it was shown that expression of SOX9 and
RUNX2 as well as PTHrP was low and growth was inhibited in
the temporomandibular joint, indicating that IHH is
indispensable for proliferation and expression of
transcriptional regulators such as RUNX2 and SOX9
(Shibukawa et al., 2007; Ochiai et al., 2010).

This indicates that using a computational model offers
advantages to biologists that now depend on many mouse
models to elucidate the molecular mechanisms governing
cartilage and bone development.

Perturbation of Pairs of Nodes in the
Network Reveals New Pathways That can
Be Manipulated for Future Cartilage
Disease Therapy
Corresponding to the biological reality of cartilage diseases, such
as osteoarthritis, OA, in the AC model a switch from the SOX9+

to the RUNX2+ state is possible (Zhong et al., 2016a). This allows
interrogation of the model for conditions that cause a switch to
RUNX2+. Such conditions in the model could recapitulate
changes taking place in OA patients. Even more interesting
from a therapeutic perspective are interventions that could
reverse such a switch. We performed all-or-nothing
perturbations of all combinations of two nodes in the network
to find such conditions. A summary of the results showing
combinations of knockouts and/or overexpression that induce
switches between the RUNX2 and SOX9 positive states is given in
Figure 4. The complete analysis, also including nodes for which
knockout or overexpression had little to no effect on the state is
shown in Supplementary Figure S6.

There are nodes whose activities are linked with a switch from
a SOX9+ stable state to a RUNX2+ state. These nodes could
indicate mechanisms by which healthy articular cartilage
undergoes hypertrophy to become transient cartilage as occurs
in a subset of OA patients (Gelse et al., 2012; van der Kraan and
van den Berg, 2012; Zhong et al., 2015). Activation of theWNT or
FGF signaling pathways results in a switch from SOX9+ to
RUNX2+ (Figure 4A). This is not unexpected, as both WNT
and FGF signaling have been related to induction of hypertrophy
in cartilage (reviewed in (Zhong et al., 2015)). Combinations of
factors that induce a switch from SOX9+ to RUNX2+ are
simultaneous activation of WNT3a and PKA (but addition of
only WNT3a already induces a RUNX2+ state), DLX5 and
inhibition of PKA, combination of anti-DKK1 and anti-FRZB
(already described in (Zhong et al., 2016b)), and inhibition of IGF
via GLI2 and ERK. Since we could not find literature on the
combination of DLX5 and inhibition of PKA, we decided to
further investigate this.

Inversely, in addition to SOX9 activation, there are
combinations of factors that are sufficient to cause a transition
of the RUNX2+ state to the SOX9+ state in the AC model:
simultaneous addition of BMP7 and PTHrP, addition of TGFβ
(alone), simultaneous addition of IGF1 and PTHrP, and
simultaneous inhibition of ERK in combination with addition
of IGF. Using model-checking we further investigated some of
these combinations.

Using Model-Checking to Test and Refine
Candidate Treatment Conditions
Among the combinations shown in Figure 4, we selected a series
of interesting treatment conditions that could be tested in
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laboratory. Treatment conditions for which sufficient literature
was available, were omitted. Table 3 shows the treatment
conditions that were selected as most promising candidates.

For each of the selected treatment conditions, we used model
checking to ensure that the predicted behavior based on one
simulation run was not due to errors or artefacts of the model.
The formal technique of model checking allows to automatically
test all possible behaviors of a model against a given property. At
the end of the analysis, the property is found to be either true or
false for the given model (see Figure 5), providing a guarantee

that cannot be obtained by just observing one single simulation
run. Because model checking is computationally intensive, we
could apply it only to a restricted set of conditions.

Each of the selected treatments was tested in ANIMO using
the model checking feature, starting from both a SOX9+ and
RUNX2+ initial state. In case no change was expected (for
example, if we start from a RUNX2+ state and we expect that
no switch occurs), we tested a query such as “The state RUNX2+
must persist indefinitely,” which is automatically translated by
ANIMO into the formal language CTL as “A [] RUNX2 >� 60 &&

FIGURE 4 | Combination of perturbations that cause a SOX9+ to switch to a RUNX2+ state (A) or RUNX2+ state to switch to a SOX9+ state (B) in the AC model.
This figure shows combinations of knockout and overexpression that induce switches between the RUNX2 and SOX9 positive states. An overview of all combinations of
knockouts and overexpression can be found in the supplemental material. Each pair of nodes in the network was perturbed in all combinations of knock-out (○) and
constitutive activation (C), while all other nodes were initialized as in the RUNX2+ state. After one simulation, the resulting stable state was recorded. Single node
modifications are highlighted if they can be used alone to obtain the switch. (A) Switch from SOX9+ to RUNX2+, (B) Switch from RUNX2+ to SOX9+. The extended figure
can be found in the Supplementary Figure S6.
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SOX9 < 20” (� “node RUNX2 has always an activity of at least
60% while node SOX9 never reaches 20% activity, no matter what
happens in the model”). This is automatically tested with the
model checker UPPAAL, and the result (True/False) is shown to
the user. In case a change was expected, we tested a property such
as “It is always possible to reach the state SOX9+,” which was
translated into “A<> RUNX2 < 20 && SOX9 >� 60” (� “it always
guaranteed that we reach a configuration in which node RUNX2
has less than 20% activity while node SOX9 has at least 60%
activity”). If a change can occur only in some cases, while in
others no change is obtained, both the previous properties are
found to be false. In this situation, a property such as “It is
possible to reach state SOX9+” (translated into “E<> RUNX2 <
20 && SOX9 >� 60,” i.e., “it is possible, but not guaranteed, to
reach a configuration in which node RUNX2 has less than 20%
activity while node SOX9 has at least 60% activity”) is True, and
ANIMO additionally shows a trace (plot of the node activities) as
a proof that the requested state “SOX9+” can indeed be reached.

It is interesting to note that in one case the expected a result
shown in Table 3 is not coherent with what the model results
show in Figure 4: for treatment number 2 (ERK OFF, IGF1 ON)
the model shows that a RUNX2+ configuration does not switch to
SOX9+ (Figure 4), and this was confirmed with model checking.
Indeed, the query “It is possible to reach the state SOX9+” (in
CTL: “E<> SOX9 >� 60 && RUNX2 < 20”) evaluates to false,
which means that it is never possible to obtain a SOX9-positive
activity state starting with the given configuration. We note that
the only reachable configuration is Null, where both SOX9 and
RUNX2 (as well as most nodes in the network) are at 0 activity.
However, with some further investigation, we were able to
observe that a different timing in the treatment actually can
lead to a switch to SOX9+. We modified the model such that the
addition of IGF1 does not occur immediately: instead of being
completely active from the beginning, IGF1 can be added at a
later, purposefully left unspecified, point during the evolution of
the model. We then performed a model checking query to see
whether there is at least one way to reach a SOX9+ state (“It is
possible to reach the state SOX9+,” “E<> RUNX2 < 20 && SOX9
>� 60”): indeed, there is. However, the query “It is guaranteed
that a SOX9+ state occurs” (“A<> RUNX2 < 20 && SOX9 >�
60”) evaluates to false, because not all timing choices for the
addition of IGF1 can lead the model into a SOX9+ state. From the

first query, we gather that the addition of IGF1 needs to occur
later during the evolution of the model. From the second we
obtain that the addition should not come too late, otherwise the
model ends in a Null state. As the concept of time is present in
ECHO only in a very abstract way (“fast” vs. “slow” reactions), we
concluded that the knock-out of ERK causes some adjustment on
the signaling (“fast”) parts of the model, which need to be
completed before the addition of IGF1 can have the wanted
effect and activate the transition to SOX9+. Waiting too much
before adding IGF1 can lead to an unrecoverable situation, with
the model switching to the Null state instead.

It is also worth mentioning that Treatment number 3
(addition of PTHrP and BMP7) has a different effect in the
model than what is intuitively expected. In particular, if ECHO
starts in the RUNX2-positive state, the addition (overactivation)
of PTHrP and BMP does not directly cause a switch to the SOX9-
positive state. This happens because in the RUX2+ state the “PPR
Prot” node (which represents the presence of PTHrP receptors) is
not sufficiently active: this basically means that the PTHrP
pathway cannot be activated unless enough receptors are
produced first. Indeed, in Figure 4 the node that by itself can
cause a switch from RUNX2+ to SOX9+ is PTHrPR (written as
PPR in Figure 2), which is the node representing both the
presence and activation of the PTHrP receptor. In reality, we
expect that treatment of metatarsals with BMP7 will show
enhanced cartilage formation, independent of the PTHrP
stimulation (Haaijman et al., 1999).

Model checking of the condition where DLX5 is active and
PKA is inactive indeed confirmed the previous finding that AC-
model in SOX9 state would switch to a RUNX2+ state.

ERK Inhibition and IGF1 Overactivation
Leads to Increased Bone Growth and Good
Cartilage Formation
For testing the predicted switch from RUNX2 to SOX9 active
state with a combination of ERK inhibition and IGF addition,
metatarsals were treated with combination of PD98059 (ERK
inhibitor) and recombinant IGF1 for 6 days. For macroscopic
validation, longitudinal bone length, total length of both cartilage
area and length of mineralized bone area were measured. As per
the prediction by the model, it was expected that there would be

TABLE 3 |Model checking was performed on a selection of combinations of nodes that were predicted to switch cell fate to a preferred SOX9+ fate or a RUNX2+ state. All
treatments were tested using both the SOX9+ and RUNX2+ initial states. “No switch” means that the initial state is constantly preserved, i.e., that the property “[initial
state] must persist indefinitely” is true. “Always possible” means that the model is guaranteed to switch state, i.e., the property “[opposite state] can always be reached”
is true.

Treatment # Target 1 Target 2 Preferred state Model checking

1 No treatment No treatment N/A SOX9+: No switch
RUNX2+: No switch

2 ERK OFF IGF1 (later) ON SOX9+ SOX9+: No switch
RUNX2+ → SOX9+: Only with later addition of IGF1

3 PTHrPR ON BMP7 ON SOX9+ SOX9+: No switch
RUNX2+ → SOX9+: Always possible. Note: We are adding
PTHrPR (PPR). PTHrP addition is not strong enough.

4 DLX5 ON PKA OFF RUNX2+ SOX9+ → RUNX2+: Always possible
RUNX2+: No switch
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an increase in the cartilage area growth and inhibition of the
mineralized bone area growth over time. Indeed an increase in
longitudinal metatarsal length was already observed by day 3 and
slight length decrease was observed by day 6 (Figures 6A,B).
However, as compared to control the fold change in longitudinal
length was lower than that of the control samples at day 3 (not
significant, Figure 6C). Increase in cartilage length was observed

with time, however, the change was always lower than that in the
untreated control. Furthermore, an increase in mineralized bone
area was observed at day 3 which was decreased at day 6 even
lower than control levels (Figures 6B,C).

Microscopically, the validation of the effect of PD98059 and
IGF1 on the SOX9 active state was tested by determining the
length of the resting, proliferative and hypertrophic zones of

FIGURE 5 |Workflow of the model checking experiments. Model checking is used to ensure that the predicted behavior based on one simulation run is not due to
errors or artifacts of the model. The tested conditions were: 1. BMP7+PTHRP, 2. ERK inhibition and addition IGF1, and 3. DLX5 activation with inhibition of PKA off. We
used model checking to ensure that switches occur in the model as expected. If a formula of the type “[initial state] must persist indefinitely” is found to be true, no further
action is taken: we have the guarantee that the property is true in all possible future evolutions of the current configuration of the model. However, if the formula is
found to be false (or equivalently, the opposite formula “[opposite state] can be reached at least once” is found to be true), an example trace is automatically produced by
the UPPAAL tool, analyzed by ANIMO and represented as an activity graph in Cytoscape. This trace runs through one possible execution run of the model and illustrates
how it is possible that the tested property becomes false (resp. true).
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Safranin O-stained mid-sagittal sections of metatarsals cultured
up to 6 days (Figure 7). It was expected that there would be better
cartilage matrix formation, with increased proteoglycan
production and a decrease in the size of the hypertrophic
zone. Even though the staining intensity was strong, there was
no significant difference in the staining intensity as compared to

untreated control (Figure 7A). This indicates that overall
proteoglycan production was not further enhanced in the
presence of these molecules (Figure 7C). A significant increase
in cartilage surface area was observed at day 6 as compared to the
control (Figure 7C). Interestingly, an increase in the length of the
proliferation and resting zones was observed as compared to

FIGURE 6 | Treatment with a combination of PD98059 (ERK1/2 inhibitor) +IGF1 or a combination of BMP7+PTHrP slightly increases longitudinal length with time,
whereas the combination of Tanshinone (DLX5 activator) and H89 (PKA inhibition) decreases longitudinal length as compared to control. (A)Morphological changes of
representative rat pupmetatarsals caused by PD98059 (ERK inhibitor) +IGF1, BMP7+PTHrP and Tanshinone IIA (DLX5 activator) + H89 (PKA inhibitor) at day 0, 3 and 6.
(B) Change in metatarsal longitudinal length, cartilage length and mineralized bone area length at day 0, 3 and 6 of control and treated samples (C). Percentage
change in metatarsal length, cartilage length and mineralized bone length as compared to control. Data represent the mean of at least 6 metatarsals for each condition.
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control (not significant) even though there was a decrease in the
cartilage area length as compared to control (Figure 7A). In
addition, the length of the hypertrophic zone remained
unchanged as compared to the control. Overall, the base of
PD98059+IGF1 treated metatarsals was composed of large
resting zones, a relatively small proliferation zone and even
smaller hypertrophic zone, indicating differentiation towards a
SOX9 active state (Figure 7B).

BMP7 and PTHrP Overexpression Leads to
Increased Bone Growth but Poor Cartilage
Formation
Another combination of molecules was tested: overexpression of
BMP7 and PTHrP. For this purpose, metatarsals were treated

with a combination of BMP7 and PTHrP. For this combination,
we observed an increase in longitudinal metatarsal length and
total length of cartilage at all time points (Figures 6A,B). The
fold-change for both parameters was higher than that of the
control at day 3, but similar to control samples at day 6
(Figure 6C). In addition, a slight increase in cartilage surface
area was observed as compared to control at day 6 (Figure 7C). A
decrease in mineralized bone length as compared to the control
was observed at day 3, but it was restored to initial levels at day 6
(Figure 6C).

In contrast to the macroscopic parameters as well as ECHO
predictions, a decrease in staining intensity was observed as
compared to control. Despite the decreased staining intensity,
no changes were observed in length of the hypertrophic,
proliferative and resting zones as compared to the control

FIGURE 7 | Histological analysis of zonal length, ratio of zones to total cartilage length, proteoglycan production and cartilage surface area in base of rat pups
metatarsals (A). Representative Safranin O stained sections of control, PD98059 (ERK inhibitor) +IGF1, BMP7+PTHrP and Tanshinone IIA (DLX5 activator)+H89 (PKA
inhibitor) treated rat pups metatarsals at day 6 (left) and comparison of size of resting zone, proliferative zone and hypertrophic zone of stained samples (right) (B).
Comparison of ratio of size of resting zone (left), proliferative zone (middle) and hypertrophic zone (right) to total cartilage length of base of metatarsals (C).
Comparison of matrix production and cartilage surface area, Welch Two Sample t-tests were performed and differences were considered significant when p < 0.05.
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(Figure 7A). Overall, the base of BMP7+PTHrP bones was
composed of a large resting zone, small hypertrophic zone,
and even smaller proliferative zones (Figure 7B). Additional
simulations in ECHO verified that addition of PTHrP in the
AC-model when in the RUNX2 state, did only activate PKA to
about 20%, which is not enough to make a switch to SOX9+.
However, ECHO predicts partial node activity for Collagen 2,
which may explain the low matrix production observed in these
samples. Manual manipulation of the PKA activity to 100%
immediately switched the cell fate to SOX9+ (data not shown).
This corresponds to what was shown before in Figure 4B, where
both PPR and PKA have the power to switch cell fate if fully
active.

Combination of DLX5 Activation and PKA
Inhibition Indicate Poor Cartilage Formation
For testing the switch from a SOX9 active state to RUNX2 active
state, a combination of DLX activation and PKA inhibition was
used. Metatarsals were treated with a combination of Tanshinone
IIA (DLX activator) and H89 (PKA inhibitor). An increase in
mineralized bone growth was expected. Interestingly not much
change in longitudinal bone growth and cartilage length was
observed over time (Figures 6A,B). However, a decrease in fold-
change of longitudinal bone growth and total cartilage length
were observed as compared to control (Figure 6C). In contrast to
the prediction, no increase in mineralized zone was observed at
these time-points. Surprisingly, the fold-change in mineralized
zone was lower than that in the control (Figures 6B,C). Even
though the total cartilage length was not significantly changed, a
significant decrease in cartilage surface area was observed with
time (Figure 7C).

A significant decrease in staining intensity was observed as
compared to the control as well as to the other treatments,
indicating reduced matrix production. In addition to the
decreased staining intensity, the relative length of the
proliferative and resting zones was decreased, while the
relative length of the proliferative zone was significantly
increased as compared to control (Figure 7A). Overall,
metatarsals treated with these molecules had the largest
hypertrophic zone as compared to control as well as other
treatments (Figure 7B), indicating a switch to a RUNX2
positive state as predicted by ECHO.

DISCUSSION

Modeling in Biology
Signaling networks are traditionally represented as static graphs.
However, in the past years it has become obvious that the
temporal and spatial information in these networks confers
important dynamic behavior. As static networks do not allow
quick modifications to test hypotheses or to include novel
findings, a more widespread use of interactive exploration of
biological networks and their dynamics could cause a paradigm
shift in our understanding of biological networks. To support this
shift, we developed ANIMO (Analysis of Networks through

Interactive Modeling (Schivo et al., 2012, 2014b; Schivo et al.,
2016). ANIMO is a computational modeling tool that enables
executable modeling of network dynamics in order to mimic
biological phenomena in silico. We present here a versatile
modeling tool with a low experience threshold that can be
implemented used by investigators without formal
mathematical training in systems biology and that is based on
the intuitive graphic interface offered by Cytoscape. In addition,
ANIMO has the ability to predict biological responses, both by
manually testing hypotheses, as well as by using the model-
checking capabilities offered by the underlying mathematical
language UPPAAL (Bartocci et al., 2009; David et al., 2011).

In ANIMO we generated ECHO, Executable CHOndrocyte
based on previous models (Kerkhofs et al., 2012; Kerkhofs and
Geris, 2015; Kerkhofs et al., 2016). Kerkhofs has shown that these
large-scale models can be used to correctly capture the gene
expression network dictating chondrocyte hypertrophy in the
growth plate (Kerkhofs et al., 2016). Using ECHO, we were able to
simulate knock-out and overexpression of all individual nodes in
the network. This is something that can only be achieved using
computational models, as performing these experiments in the
wet-lab is both time consuming and very costly. Moreover, in
silico experiments provide information on the changes in activity
of all nodes in the network upon virtual KO mutations. These
very important experiments provide information about the
potential roles of, for example, miRNAs for targeting specific
factors in the network.

The interesting aspect of these types of experiments is that in
silico experimentation provides information on all possible
combinations and concentrations of the growth factors and
cytokines represented in our model. These experiments will
provide information on the activities of all biological entities
in our model at any time-point after stimulation. This is
impossible to achieve in wet-lab experiments and provides
detailed description of the biological system at hand.

Even though our computational model is a simple and
reusable tool to understand the complex mechanisms behind
the switch between SOX9 and RUNX2 activities, certain
boundaries are used. Firstly, the model is semi-quantitative,
i.e., its numbers do not necessarily reflect reality (in a linear
scale), and the concept of “time” in the model can only be seen as
a generic sequence of events (minutes/hours in this model have
little to no meaning). This is also due to our choice of simplifying
the k-parameters to the two main categories of “slow”
(transcription+translation) and “fast” (post-translational
modifications). Node activities themselves are thus “just
numbers,” so while we can see that an activity level of 100 is
higher than 10 and interpret this as “high (er) activity” for that
node, we cannot define a correspondence between activity levels
in the model and protein concentrations in the lab. Another thing
to keep inmind is that the a priori network topology and choice of
nodes in the network is based on existing literature and that
means that there is an over-representation of nodes/pathways
that are well described in literature. However, the in silico
experiments are in line with the findings in literature and we
therefore feel that the models describe the system well. Also due
to the computation restraints, it is not efficient to make large
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models, so we choose to generate models that are simplified
versions of complex networks. Hence, there is an intricate balance
between a computational model describing processes in large
detail and its prediction ability. Finally, when building a
computational model, it is always necessary to find the proper
balance between truthfulness (i.e., precision, closeness to reality)
and simplicity (abstraction from reality). We refer the interested
reader to (Mader et al., 2007; Schivo et al., 2016; Waters et al.,
2021). Overall, the precision of a model depends on availability of
data and computational tools and the need for detailed
information and one should be aware that the final outcome
of the computational model depends on these factors.

While computationally efficient models are usually less
detailed, they are, still, a great tool to understand network
behavior by just using the most important signaling molecules.
Computational models can be utilized as a tool to understand the
behavior of network especially, in this age, where we have high
amounts of proteomic and genomic data available, which will
take years to be utilized and validated by wet-lab experiments,
especially with regard to cell signaling pathways. Previously, we
found that model built with simplified network are sufficient to
predict the dynamics and cell fate and thus, can help in
prioritizing the wet lab experiments (Schivo et al., 2016;
Schivo et al., 2019). This prioritization is what we show in our
current publication.

ECHO as a Predictive Model for
Therapeutics and Tissue Remodeling
From a tissue engineering and/or therapeutic standpoint, we
wanted to know if it is possible to switch cell fate through
perturbation of any combination of 2 nodes in the network. It
is experimentally challenging to test these predictions in human
primary cells or tissue. This is especially the case for the switch of
a RUNX2+ to SOX9+ cell fate, since epigenetic regulation has
likely occurred in the process of osteoarthritis (reviewed in Ramos
and Meulenbelt, 2017). The resulting methylation of cartilage
specific genes, such as SOX9, will therefore prevent the actual
switch from a RUNX2+ to a SOX9+ phenotype in OA cells.
However, this strengthens the argument of using computational
modeling, since it allows us to simulate osteoarthritis
development, and as such provides insight into the molecular
boundaries that define therapeutic efficacy.

In addition, the combination of factors tested in our in silico
experiments have individually been described to have a role in
cartilage development and in OA, both by cell and in knock-out
animal studies (There are many excellent papers, but for more
information we refer to these excellent reviews (Kronenberg,
2003; Mackie et al., 2008; Kozhemyakina et al., 2015; Welting
et al., 2018 and references herein). However, the combined effects
of these factors have not yet been conclusively shown in tissue
engineering strategies or therapies. It is therefore likely that when
designing therapies for treatment of cartilage defects multiple
factors will have to be targeted to get the desired response.

In this study, we make use of metatarsals that are cultured ex
vivo for validating our model predictions in the wet-lab. We
prioritized the model predictions and limited the wet-lab

validation to 3 conditions that we compared to an untreated
control.

For the treatment consisting of inhibition of ERK with
addition of IGF (treatment 2) the model predicts a SOX9+
state. In contrast, ECHO predicts that activation of DLX5 +
inhibition of PKA (treatment 3) will switch the cell-fate towards a
RUNX2 state.

We assessed the effect of the treatments using various output
measures, including size of the metatarsal, as well as the cartilage
and mineralized areas. In addition, we assessed extracellular
matrix formation by staining glycosaminoglycans in
histological sections and measuring the distribution of the
different cartilage zones, the hypertrophic, the proliferative
and the resting zones. Overall, we see that activation of DLX5
with simultaneous inhibition of PKA leads to inhibition of growth
of the metatarsal, a smaller cartilage area, a decrease in matrix
production, and a significant increase in cartilage hypertrophy.
This may have been partially expected, since DLX5 was shown to
regulate osteogenesis in differentiating MSCs (Heo et al., 2017).

Inhibition of ERK while simultaneously adding IGF1 resulted
in increased length of metatarsals, especially of the cartilage area
as compared to the untreated control. In addition, we observe at
least the same levels of matrix production as in control cells, in
some metatarsals even higher. We have not quantified the
number of cells, as there are many cells in these metatarsals at
this developmental stage, but by eye it seems that there are more
cells in the metatarsals treated with PD98059+IGF, which is
reflected in the zone measurements that shows that the length
of all zones is increased in these metatarsals.

For treatments with BMP7 + PTHrP (treatment 1), ECHO
predicted that in the RUNX2+ state there is little to no receptor
for PTHrP (called “PPR” in ECHO): node activity of “PPR Prot”
is very low, about 11/100. So, because there are few receptors
available, just adding PTHrP to ECHO is not enough to activate
the PTHrP pathway (PPR activity stays at 0 even with 100%
activity of PTHrP). And indeed, we saw this already in Figure 4:
the PTHrP pathway is “strong enough” to change a RUNX2+
state into SOX9+ by itself, but we can activate it only by activating
PPR (PTHrP Receptor) directly. We also noted that BMP is
already fully active in the RUNX2+ state, but it is of note that the
BMP we have in ECHO represents both BMP2 and 7, with a bias
toward BMP2 effects as those are more often described in
literature.

PTHrP is a well-known regulator of cartilage development and
it is shown to inhibit the differentiation of proliferating
chondrocytes into pre-hypertrophic chondrocytes (Lanske
et al., 1996; Weir et al., 1996; Mackie et al., 2008; Welting
et al., 2018). The effect of PTHrP in regulating proliferation of
preventing hypertrophy is dependent on the dose (Loveys et al.,
1993). As compared to what others use, we used a very high
concentration of PTHrP (1 μM). At this concentration, we
expected to see an increase in proliferation, but less so in
prevention of hypertrophy (Loveys et al., 1993).

Seeing the current interest in BMP7 as a possible treatment for
OA (Caron et al., 2013; Huang et al., 2018; Caron et al., 2021) and
its role in cartilage development (Kronenberg, 2003; Mackie et al.,
2008; Kozhemyakina et al., 2015; Welting et al., 2018), we were
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especially curious to see the combined effect of BMP7 and PTHrP
on cartilage development of the metatarsal bone. Although we
observed an increase in growth as compared to our untreated
controls, histological staining showed a slight but unsignificant
decrease in proliferative zone and an increase in the size of the
hypertrophic zone as compared to our control. Interestingly, we
observed a significant decrease in matrix production as compared
to the controls albeit not as low as for the DLX5+/PKA-treatment.

Even though predicted by ECHO, this result was slightly
surprising as we had expected that both the use of BMP7 as
well as PTHrP would induce chondrocyte proliferation and
prevent hypertrophy, which has been shown before in
embryonic mouse metatarsals (Loveys et al., 1993; Haaijman
et al., 1999). This seemingly discrepant data can at least be
partially explained by the differences in the experiments.
While Haaijman et al. treated mouse embryonic (E15)
metatarsals, at which stage no endochondral ossification centre
is present, with 40 ng/ml BMP7 and showed that this was
independent on the expression of PTHrP, we treated rat new-
born metatarsals, which at that point already contain the
secondary ossification centre, with a 2.5 fold higher dose of
BMP7. At this developmental stage, the effect may not be as
severe as at earlier developmental stages, since terminal
differentiation has already occurred for at least a subset of
cells. Although we do not observe a relatively large
proliferative zone, we did observe the largest overall growth of
the metatarsals for this PTHrP +BMP7 treatment, most notably
in the cartilage zone, indicating that BMP7+PTHrP indeed
stimulated proliferation rather than cartilage matrix
production. To see the effect of these treatments on stem cell
fate choices, these experiments should be performed in
(mesenchymal or iPSC) stem cells, which was not possible due
to lab closures in this COVID-19 dominated year.

CONCLUSION

In this work, we describe ECHO as an executable model to
explore network dynamics, derive hypotheses, design
experiments, and predict the outcomes of these experiments.
Our manuscript shows that building activity-based signaling
networks of a cell provides important information the role of
signals in cell fate decisions. Moreover, in silico experiments allow
researchers to test many hypotheses before validating them in the
wet-lab, thereby reducing time and costs for experiments. We
used model-checking to prioritize combinatorial treatments that
were shown to induce a switch between transient and permanent
cartilage. We validated the model predictions that treatment with
IGF1, while inhibiting ERK1/2 has a positive effect on cartilage
formation and growth, with a relative decrease in hypertrophy as
compared to control samples, while activation of DLX5 while
inhibiting PKA results in impaired growth, increased cartilage
hypertrophy and prevented cartilage matrix formation.
Interestingly, ECHO predicted the combination of PTHrP
+BMP7 was not sufficient to switch from a RUNX2+ to a
SOX9+ state, even though we intuitively expected that this
combination of treatment would strongly enhance cartilage

formation. This shows that computational modelling can not
only be used for finding new mechanisms, but also for taking
away human bias by providing objective model predictions.
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