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Mechanobiology research is for understanding the role of mechanics in cell physiology and
pathology. It will have implications for studying bone physiology and pathology and to guide
the strategy for regenerating both the structural and functional features of bone.
Mechanobiological studies in vitro apply a dynamic micro-mechanical environment to
cells via bioreactors. Porous scaffolds are commonly used for housing the cells in a
three-dimensional (8D) culturing environment. Such scaffolds usually have different pore
geometries (e.g. with different pore shapes, pore dimensions and porosities). These pore
geometries can affect the internal micro-mechanical environment that the cells experience
when loaded in the bioreactor. Therefore, to adjust the applied micro-mechanical
environment on cells, researchers can tune either the applied load and/or the design of
the scaffold pore geometries. This review will provide information on how the micro-
mechanical environment (e.g. fluid-induced wall shear stress and mechanical strain) is
affected by various scaffold pore geometries within different bioreactors. It shall allow
researchers to estimate/quantify the micro-mechanical environment according to the
already known pore geometry information, or to find a suitable pore geometry according
to the desirable micro-mechanical environment to be applied. Finally, as future work, artificial
intelligent — assisted techniques, which can achieve an automatic design of solid porous
scaffold geometry for tuning/optimising the micro-mechanical environment are suggested.

Keywords: micro-mechanical environment, mechanical stimulation, scaffold porous geometry, mechanobiology,
bone tissue engineering

DEFINITION

Scaffold pore geometry that is presented in this review involves the following parameters:

e Pore shape: the architecture or shape of the scaffold micro-pores, which can be irregular or
regular (cubic, spherical, gyroid, etc.);

e Pore dimension: also called pore size or pore diameter, which is a measure of the (maximal)
distance between two neighbouring struts, usually has a value around 100-2000 um for bone
tissue engineering applications;
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e Porosity: also called void fraction, which is a measure of the
void (i.e. “empty”) spaces in scaffolds, and has a value in the
range of 0-100%.

INTRODUCTION

In the field of bone tissue engineering (BTE), a primary challenge
is to recapitulate both the structural and functional features of
bone (Amini et al, 2012). Mechanobiology research seeks to
understand the role of mechanics in cell physiology and
pathology. Bone cells are known as mechanosensitive cells that
respond to their mechanical environment in vivo and in vitro
(Klein-Nulend et al., 2003; Giorgi et al., 2016). Mechanobiology
research in BTE aims at getting insight into how the scaffolds or
the application of mechanical loads affect the development of
tissue-engineered bone tissue, which is intended to be used for
bone disease research, drug testing, etc. (Garcia-Aznar et al., 2021;
Kim etal., 2021). In vitro mechanobiology includes the creation of
either static or dynamic micro-mechanical environments. The
cellular mechanical environment is then transduced into
biochemical signals through mechano-transduction protein
networks, which therefore influence the cellular behaviours,
such as osteogenic differentiation of stem cells in BTE
(Delaine-Smith and Reilly, 2012; Jansen et al, 2015; Paluch
et al., 2015; Wittkowske et al, 2016; Naqvi and McNamara,
2020). A static micro-mechanical environment refers to the
use of biomaterials with different mechanical properties to
which the cells attach. The effect of mechanical properties
inherent to biomaterials on bone cell behaviour have been
widely reviewed, e.g. by Janmey et al. (2020), Klein-Nulend
et al. (2012), Lin et al. (2020), Selig et al. (2020) or Janmey
etal. (2020), to name a few. This review will focus on the dynamic
micro-mechanical environment on cells that is guided by the
scaffold pore geometry when loading is applied through the use of
bioreactors.

Various bioreactors are being applied in BTE. For example,
flow perfusion bioreactors, spinner flasks or rotating wall vessels
can be used which all apply a fluid induced wall shear stress
(WSS) on cells (Granet et al., 1998; Sikavitsas et al., 2002; Bancroft
et al., 2003). Mechanical compression and stretching bioreactors
can be used for applying mechanical strain to cells that are
attached on scaffold struts (Zhang et al., 2008; Bilgen et al,
2013). For cell culturing in 3D, scaffolds are used for housing and
supporting the seeded cells. Scaffolds used in the experiments
usually have different porous geometries, for example some have
irregular pore shapes (Mccoy et al., 2012), and some have regular
pores but with different porosities or pore dimensions
(Bartnikowski et al, 2014). With improvements in 3D
printing/additive manufacturing technology, scaffolds with
well-defined geometries can be manufactured, and this will
probably be the standard for scaffold manufacturing in the
near future (Bahraminasab, 2020). To investigate the influence
of scaffold pore geometry on the internal micro-mechanical
environment, computational approaches are commonly used,
thanks to the capability of such approaches to calculate/
simulate the mechanical environment at the micro (or even
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sub-micro) scale with low cost, which is challenging for
experimental measurements (Garcia-Aznar et al.,, 2021). It has
been found that the scaffolds’ pore geometry can largely influence
the micro-mechanical environment within the scaffolds (Olivares
et al., 2009). Previous examples are the computation of the fluid
flow induced micro-mechanical environment when applying flow
perfusion-, spinner flask- or rotating wall vessel bioreactors by the
application of computational fluid dynamics (CFD). Or the
mechanical deformation (such as stretching/compression) of
the cells within scaffolds in compression/stretching bioreactors
(Brunelli et al., 2017), where finite element (FE) models based on
fluid-structure interaction (FSI), biphasic poro-elasticity, etc.
have been used for simulating/quantifying the resultant WSS
and/or mechanical strain on scaffold struts (Zhao et al., 2016;
Castro and Lacroix, 2018).

This review aims at providing insight into the role of scaffold
pore geometry parameters (i.e. porosity, pore dimension and pore
shape) based on previous theoretical studies, in order to better
understand their complex effect on the micro-mechanical
environment of bone cells. It will benefit the BTE/bone
organoids fields for cellular mechanobiology research. For
example, this information is expected to allow researchers to
estimate the micro-mechanical environment depending on
scaffold geometry information, or to find/design a suitable
pore geometry providing a desirable micro-mechanical
environment to the cells. The limitations of the current
computational approaches in automatically achieving a
scaffold geometry design that is driven by micro-mechanical
environment will be discussed. An outlook and suggestions for
future research in terms of artificial intelligence (AI) - assisted
techniques for addressing the limitations in scaffold geometry
design will be presented.

THE ROLE OF SCAFFOLD PORE
GEOMETRY ON THE CELL
MICRO-MECHANICAL ENVIRONMENT

This section will present the influence of the scaffold pore
geometry, more specifically pore shape, pore dimension and
porosity on the resultant WSS and mechanical strain within
empty scaffolds in perfusion, spinner flask and compression
bioreactors.

Assumptions for Calculating the Cell
Micro-mechanical Environment Within

Scaffolds

The calculation of fluid - induced WSS within empty scaffolds is
based on the assumption that the WSS at the scaffold surface is a
good representation of the WSS sensed by the cells that are
attached to the scaffold surfaces. It also assumes that the cells
attach mostly flat to the scaffold surface in the initial state, with a
minimal cell volume with respect to the pore volume. This
assumption has been shown to be met for some experiments/
scaffold materials (Figure 1A), but not for all (Figure 1B). For
calculating the mechanical strain in empty scaffolds, it is assumed
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FIGURE 1 | Scanning electron microscopy (SEM) images of MC3T3-E1 cells that (A) flatly attach on the Poly-lactic acid (PLLA) scaffold struts on day 7 of culturing,
re-produced from (Xue et al., 2019); or (B) bridge over the collagen glycosaminoglycan (CG) scaffold struts on day 6 of culturing, re-produced from (Mccoy et al., 2012).
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FIGURE 2 | (A-H) scaffold units with various regular pore shapes, re-produced from (Lu et al., 2020; Deng et al., 2021; Prochor and Gryko, 2021); (1) scaffold with
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that the cells are subjected to the strain magnitude at the location
of the scaffold that they are attached to (Olivares et al., 2009;
Laurent et al., 2014). Such assumptions can be reasonable if the
scaffold material is much stiffer than the cell and no substantial
ECM has been formed yet.

Porosity

Porosity is the main determinant for scaffold permeability and
thus the amount of flow through the scaffold in perfusion/stirring
bioreactors and was found to be an important parameter
determining the results of BTE (e.g. seeded cell density, cell
proliferation, ECM production, etc.) (Grayson et al, 2008;
Panseri et al., 2021). The effect of porosity on the permeability
of the scaffold, which describes the amount of flow through the
scaffold, can be calculated by the Kozeny-Carman Equation (Eq.
1) (Van Bael et al.,, 2012; Egan, 2019):

(1) ¢
K_(Ck> s W

where, « is the permeability, ¢ is the porosity, ¢ is the Kozeny
constant and S; is the specific surface area calculated as the surface
area divided by the total volume of the struts.

This equation demonstrates that scaffold permeability linearly
increases with porosity. This has also been demonstrated by
experimental measurements (Zhang et al, 2019). The
relationship between the permeability, the fluid velocity and
the WSS, however, is complex and also depends on the pore
geometry. Ali and Sen (2018) employed a CFD approach to
investigate the influence of porosity on the permeability and WSS,
and they found that under a fluid velocity of 0.7 mm/s, the
average WSS decreased from 131 to 27 mPa with an increase
in porosity from 65 to 90% for the gyroid pore shape (Figure 2H).
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This trend also happened for a diamond pore shape (Figure 2F)
(Ali and Sen, 2018). Melchels et al. (2011) designed and
manufactured a scaffold (gyroid pores in Figure 2H) with
different porosities (40-85%) in different regions. This resulted
in different shear rates (SRs) in the regions with different
porosities under perfusion flow, e.g. 10-40 s™', i.e. higher SR
in the region with higher porosity (Melchels et al., 2011).
Porosity is also the main determinant for the amount of strain
in the scaffold when an external force is applied according to both
micro-FE analyses and experimental characterisation (Hannink
and Arts, 2011; Castro et al., 2020). If under pressure/compressive
force loading through bioreactors, a scaffold with a lower porosity
(i.e. higher overall structural stiffness) will show less deformation,
thus cells that attach on the struts will receive lower strain. Not
only for overall structural stiffness, the porosity also can influence
the local stress/strain concentration under compression loading.
For instance, in the computational study by Hendrikson et al.
(2017), scaffolds that had a cubic pore shape, a pore dimension of
151 pm, but different porosities (74 vs 64%) were compared in
terms of octahedral shear strain under a compressive strain of
10%. It was found that the scaffold with higher porosity (74%)
had a larger strut area in the low strain range (e.g. <10%) than the
one with lower porosity (64%) (Hendrikson et al., 2017). Similarly
to section 2.2 and 2.3, under dynamic compression, the porosity
will also have an influence on the resultant WSS that is induced by
fluid flow due to compression. Zhao et al. (2016) compared
scaffolds with porosities of 60-90% and found that a higher
porosity resulted in lower WSS under dynamic compression. By
increasing the pore dimension, the influence of porosity on WSS
became smaller, e.g. for cubic pore, dimension = 100 pum: average
WSS = 3.5 mPa when porosity = 60%, average WSS = 2.5 mPa
when porosity = 90%; for cubic pore, dimension = 300 pm:
average WSS = 1.5mPa when porosity = 60%, average
WSS = 1.1mPa when porosity = 90% under dynamic
compression (strain = 1%, frequency = 1Hz) (Zhao et al,
2016). So, under dynamic compression, the lower porosity and
pore dimension can result in higher fluid flow-induced WSS.

Pore Dimension

Pore dimension is the main factor that determines fluid-induced
WSS under perfusion flow (Fu et al, 2021). Also, pore
dimension is one of the factors that can influence cell
attachment (e.g. flatly attached on struts/bridging over struts
in Figure 1) (Guo et al., 2015; Yamashita et al., 2016). Previous
mechanobiological studies have investigated cell responses via
tuning the scaffold pore dimensions while keeping the pore
shape constant (Bartnikowski et al., 2014; Ouyang et al., 2019).
For example, Bartnikowski et al. (2014) quantified the WSS
within the scaffolds that had cubic pores (with rounded profile
in Figure 2G) and a porosity of 60% but with different pore
dimensions (625 vs 1250 um). It was found that the scaffold with
smaller pore dimension provided a higher WSS: maximum
WSS = 1979 mPa/average WSS = 500 mPa (pore dimension =
625 um) vs maximum WSS = 837 mPa/average WSS = 120 mPa
(pore dimension = 1250 um) under a flow rate of 1 ml/h
(0.61 um/s). These scaffolds were then applied in an in vitro
cell experiment where it was found that the DNA amount was
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significantly higher in the cell seeded scaffold with larger pore
dimension (1250 pm) (Bartnikowski et al., 2014). Whereas the
accurate calculation of the actual WSS requires performing a
CFD analysis for the (often complex) scaffold pore geometries,
simple mathematical equation can be used to estimate the WSS

(Zhao et al., 2016):
by
T, d
a_a £ 2
" a; <Lc> 2

Where, 7, is the average WSS within the scaffold, v the applied
fluid velocity, d the pore dimension, L, is the characteristic length
(L. = 1 pm), and a; and b; constants that depend on the pore
shape and porosity. A limitation of this approach is that the
equations are only a good approximation for a limited set of pore
shapes (i.e. cube with flat profile and sphere in Figures 2C,E) and
porosities (i.e. 60%-90%).

Dynamic compression not only generates mechanical strains
in the struts but can also result in WSS on the strut surfaces,
which was mostly ignored in previous mechanobiological
studies regardless of the compressive strain magnitude or
frequency. It was found that the resultant average WSS was
proportional to the applied compressive strain (Milan et al.,
2009). Moreover, it was highly dependent on the scaffold pore
dimensions (Zhao et al., 2016). Here also, simple equations were
introduced to estimate the WSS due to compression (Zhao et al.

(2016)):
Ty d\”
Eapp - (fc) ®

where, 7, is the average WSS within the scaffold, ¢, is the
applied compressive strain by bioreactor, d the pore dimension,
L. is the characteristic length (L, = 1um), and a, and b,
constants that depend on the pore shape and porosity.
Similar as in Eq. 2, one of the limitations of this approach is
that the equations are a good approximation only for a limited
set of pore shapes (i.e. cube with flat profile and sphere in
Figures 2C,E) and porosities (i.e. 60%-90%). Also, this Eq. 3 is
only applicable for a dynamic compression frequency of 1.0 Hz
and needs to be adapted to other frequencies. For all other cases
beyond the aforementioned ones, a FSI analyses will be needed
to accurately calculate the WSS.

Under mechanical compression, the stress/strain
distribution can be influenced by the pore dimension. Ribeiro
et al. (2017) investigated this based on the scaffolds with pore
dimensions of 740 and 370 um using an FE model. There, an
unconfined compression loading with a strain of 15% was
applied on both scaffolds. Their results showed that the
maximum value of compressive stress was similar between
the two scaffolds with different pore dimensions, i.e.
maximum compressive stress = 27.7 MPa in pore dimension
of 740 um vs maximum compressive stress = 25.9 MPa in pore
dimension of 370 pum. However, the scaffold with larger pores
(pore dimension = 740 um) had more regions (area) with higher
stress than the one with smaller pores (pore dimension =
370 pum) (Panadero et al.,, 2015).
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Pore Shape
The effect of pore shape on the fluid-induced WSS in flow

perfusion and spinner flask bioreactors is difficult to predict.
Some scaffolds with different regular pore shapes (but same pore
size and porosity) have similar WSS, but some do not. The
commonly (designed) regular pore shapes include sphere,
cube, gyroid, prism, etc. (Figures 2A-H), which can be
manufactured by 3D  printing/additive = manufacturing
technology. Prochor and Gryko (2021) quantified the WSS
within scaffolds that have different regular pore shapes (e.g.
triangular prism with rounded and flat profiles, cube,
octagonal prism and sphere in Figures 2A-E) under perfusion
flow. It was found that the scaffold with triangular prism (with
rounded profile) experienced the highest WSS, whereas the
scaffold with spherical pores experienced the lowest WSS
under the same flow rate. The maximum WSS within
spherical pores and cubical pores were identical. However, this
can be different within different bioreactors that generate fluid -
induced WSS. In a combined experimental and computational
BTE study by Rubert et al. (2020), the average WSS within the
scaffolds with spherical pores (average pore diameter = 330 pm,
porosity = 84.7%) and cubical pores (average pore diameter = 330 pm,
porosity = 92.8%) were 0.42 and 0.81 mPa respectively in a spinner
flask (70 RPM). This was associated to upregulated osteoblast cell
differentiation and ECM formation within cubic pores, while ECM
mineralisation was enhanced within the spherical pores (Rubert et al,,
2020).

Porous scaffolds also can have irregular pore shapes, which are
for example obtained from more traditional fabrication methods
such as porogen leaching (Figure 2I). Studies have found that the
irregularity of the pore shape does not have a distinct influence on
the fluid - induced WSS, once the pore dimensions and porosity
are similar. For example, Zermatten et al. (2014) investigated the
influence of the pore irregularity on the internal WSS using
scaffolds with regular cubical pores (with rounded profile) and
highly irregular pores (Figures 2G,I). Although the other two
parameters, pore dimensions (regular: 0.22mm vs irregular:
0.16 mm) and porosity (regular: 38% vs irregular: 55%) were
not exactly the same, the average WSS within irregular and
irregular pores have high similarity (regular: 3.08 mPa vs
irregular: 3.68 mPa) under a perfusion fluid velocity of
0.066 mm/s (Zermatten et al, 2014). One limitation of
simulating the micro-fluidic environment within these highly
irregular pores (at whole scaffold level) was the high
computational cost (Santamaria et al, 2013; Zermatten et al.,
2014). To address this challenge, Zhao et al. (2019) developed a
more versatile technique, creating a multiscale and multiphasic
CFD model. In this approach, small but representative parts of
the scaffold are being used for the generation of a microstructural
model of the pore environment, which are then coupled with a
macro-model representing the whole scaffold in which the
microstructure is homogenised. The macro-model can be used
to calculate the fluid flow at larger length scales, that then can be
applied to the micro-model to calculate the local WSS at the cell
level. As only small parts of the scaffold need to be modelled in
detail, this approach can reduce the computational costs while
still providing results at the cell-level. It has been shown that with
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this multiscale and multiphasic CFD model, calculations of
resulting WSS within any scaffold with highly irregular pore
shape is possible even using a normal computer (e.g. 16 GB RAM,
Intel i7 CPU). However, this technique requires that the Reynolds
(Re) number should less than 1 when using Darcy’s law for
homogenisation (Chaudhary et al., 2011).

Under mechanical compression, the pore shape can have a
distinct influence on the overall structural stiffness of the
scaffold (Castro et al., 2020; Jahir-Hussain et al, 2021).
According to their calculations, the triangular pore shape
resulted in the highest structural stiffness of the scaffold and
the spherical pore shape resulted in the lowest stiffness among
the various pore shapes (spherical, cubic, hexagonal and
triangular). Under pressure/compressive force, scaffolds with
alower structural stiffness (e.g. with spherical pores) will have a
higher strain in the struts than the ones with a higher structural
stiffness (e.g. with cubic/hexagonal/triangular pores). This
difference will translate to differences in strain sensed by
cells attached to the struts. In cell culture experiments
applying compression to stimulate cells, usually dynamic
compression is applied. As mentioned in sections 2.2 and
2.3, this dynamic compression also generates WSS within
the pores of the scaffold. A FSI approach for quantifying the
WSS during dynamic compression has found that the WSS was
higher within spherical pores than that within cubical pores,
e.g. 5.5 mPa within spherical pores (pore diameter = 100 um,
porosity = 60%) and 3.5mPa within cubical pores (pore
diameter = 100 um, porosity = 60%) under an applied
compressive strain of 1.0% and at a frequency of 1.0 Hz
(Zhao et al.,, 2016). Therefore, to precisely quantify the WSS
due to dynamic compression, the pore shape needs to be
explicitly reflected in the computational model.

Some scaffolds have extremely anisotropic pores, such as
those with unidirectional channels or holes, as shown in
(Deville et al., 2006, 2007; Munch et al, 2009;
Pourhaghgouy et al., 2016). For this type of scaffolds, the
above discussed influence of porosity, pore dimension and
pore shape on the internal micro-mechanical environment is
still applicable for external loading in the unidirectional
orientation (e.g. fluid perfusion/unidirectional mechanical
compression/stretching), but not for external loading in
non-unidirectional directions (e.g. spinner flask/non-
unidirectional compression/stretching).

EFFECT OF CELL/TISSUE GROWTH ON
THE MICRO-MECHANICAL ENVIRONMENT
WITHIN SCAFFOLD PORES

A major limitation of all studies above is that they do neither
consider the cells nor the tissue within the scaffold pores. In these
studies, it is assumed that the cells lie flatly attached to the scaffold
surface and that their volume is small compared to the pore
volume. In other situations, e.g. when cells can bridge across the
pores (Figure 1B) (Mccoy et al., 2012), this assumption no longer
holds and can lead to large errors when calculating the WSS.
Moreover, once tissue starts to form within the scaffold, its
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FIGURE 3 | lllustrations of (A) cells within the scaffold in computational model, re-produced from (Jungreuthmayer et al., 2009); (B) appositional tissue growth in
computational model, re-produced from (Zhao et al., 2020a); (C) interstitial tissue within unit scaffold in computational model, re-produced from (Zhao et al., 2020b).

porosity, and consequently the micro-mechanical environment,
can dramatically change (Sandino and Lacroix, 2011). The
influence of scaffold pore geometry on the micro-mechanical
environment when considering cell/tissue growth has not been as
rigorously investigated as within empty scaffolds. In this section,
some computational models which can simulate the micro-
mechanical environment while considering cell/tissue within
scaffolds are reviewed.

Cells Within Scaffold Pores

In some BTE experiments, dynamic cell seeding is used for
improving the seeding efficiency and/or distribution of seeded
cell in the porous scaffolds. Perfusion flow is usually used for
dynamic seeding. During this process, the fluid force can also
mechanically stimulate the cells through cell deformation which
consequently can promote cellular processes (Riiberg and Aznar,
2016; Serrano-Alcalde et al., 2017).

For seeded cells, Jungreuthmayer et al. (2009) and Mccoy et al.
(2012) modelled cells as flatly attached and as bridged
morphologies  within collagen glycosaminoglycan (CG)
scaffolds, which had irregular pore shapes (Figure 3A). It was
found that the influence of cell morphology (attached/bridged)
on the cellular WSS depends on the locations within scaffolds
(Guyot et al., 2016b). Furthermore, in the study by Mccoy et al.
(2012), three CG scaffolds with different pore dimensions (85,
120 and 325 um) but equal porosity (90%) were compared in
terms of resultant WSS on cells. It was found that the average
WSS on all cells (both bridged and attached morphologies) was
165, 176 and 155 mPa, respectively for the pore dimensions of 85,
120 and 325 um under a perfusion fluid velocity of 235 pum/s, and
the WSS was proportional to the fluid velocity (Mccoy et al,
2012).

Tissue Growth Within Scaffold Pores

To investigate the influence of scaffold pore geometry on the
changing micro-mechanical environment over time, tissue
growth models have been introduced. These are coupled with
FE/CFD models. To account for tissue growth, various studies
have developed mathematical models to describe neo-tissue
formation assuming appositional growth in static conditions
(Nava et al, 2013; Guyot et al., 2014; Herklotz et al, 2015;
Egan et al., 2018). In the mathematical model, the cells and
ECM are usually homogenised (Figure 3B). One of the most
commonly used models for describing the tissue growth kinetics
is based on the level set (LS) method, which is available in both
commercial and open-source software packages (e.g. COMSOL,
ANSYS, OPENFOAM, etc.). It allows to model appositional
tissue growth as illustrated in Figure 3B. The governing
equation is (Guyot et al., 2014):

s

at+(VG'nr)'VV/:0

(4)
where, nr is the normal unit vector to the interface between neo-
tissue and medium domains, v is the LS function and Vj; is neo-
tissue growth velocity governed by local the struts curvature «, in

Eq. 5:
A
v ;

Where, 1 is the tissue growth rate.

To investigate the influence of the micro-mechanical
changes during neo-tissue growth within
scaffolds that have different pore geometries, the tissue growth
model needs to be coupled with the FE/CFD model by
introducing a WSS-dependent term into Eq. 5. The WSS (7)

(k. >0)

(k. <0) (5)

environment
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in Egs 6, 7 by Guyot et al. (2015, 2016a) then is computed by a
CFD model:

| Ak f(r) k>0
%‘{o k<0 ©)
0.51
05+—0<7<a
a;
1 a;<7<4a,
f@=1 14 )
—— @ <T<a3
a, — as
0 T=0a3

Where, a; and a, are the minimal and maximal shear stresses
enhancing neo-tissue formation and a; the critical shear stress.

Then the computational model is applied to scaffolds that
have different pore geometries. For instance, Guyot et al. (2015)
applied the model on scaffolds with two different pore shapes
(i.e. cubic shape with rounded profile and pore dimensions of
650 pm vs diamond shape and pore dimension of 750 um in
Figures 2F,G). It was found that under the same amount of
tissue produced within the scaffolds higher shear stress
occurred in the neo-tissue within the scaffold with diamond
shape than that in the scaffold with cubic shape, e.g. when 30%
of the porous volume was filled with neo-tissue, the average
shear stress in the neo-tissue was 175 mPa within the diamond
pores, while it was 80 mPa within the cubic pores (Guyot et al.,
2015).

One of the limitations of these computational models is the
uncertainty of the parameter values (such as A, a;, a, and a3 in
Eqs 5-7). As these are empirically determined constants, they
may need to be changed depending on parameters that influence
tissue formation (e.g. the number of cells in the culture, the type
of cells, scaffold-related attachment of cells, the density of the
deposited ECM and whether or not it is mineralised). Whereas
after fitting these constants to experimental results these
equations thus may well describe the effect of changes made
within that specific experiment, they may not well describe the
outcome of other experiments. To reduce the number of
parameters in the tissue growth model, recent computational
studies have employed second order diffusion equations to
model tissue growth kinetics (Buenzli et al., 2020; Zhao et al,,
2020a). The main advantage of using this diffusion equations
over the LS method is that fewer parameters need to be
determined. For example, diffusion equations can already
model the curvature - dependent tissue growth without
adding the curvature parameter « in the equation as that in
LS method (Buenzli et al., 2020). Therefore, in modelling the
scaffold pore geometry for tissue growth kinetics, if the
curvature is not a parameter that needs to be explicitly
assessed, a computational model based on a diffusion
equation will be a good choice. Otherwise, a computational
model based on LS method is suggested. Another limitation is
that these computational models assume appositional tissue
formation towards the centre of the pores. In reality,
however, interstitial formation, in which the tissue is
infiltrated within the pores rather than being attached on the

Scaffold Micro-Mechanical Environment

struts surfaces is also observed in many cases (Li et al., 2009) (as
illustrated in Figure 3C). The resultant WSS on cells under
interstitial tissue formation was quantified and compared to
appositional tissue formation (Zhao et al., 2020b). Distinct
difference in WSS between two cases were found, even if the
same amount of newly formed tissue was present. This implies
that computational models that assume appositional tissue
growth cannot well predict the micro-mechanical
environment in case of substantial interstitial tissue
formation. Estimating the influence of scaffold pore geometry
on the micro-mechanical environment by taking the tissue into
account also needs to consider whether the cell/tissue growth is
appositional or interstitial. Even then, this remains challenging
due to the high variability in tissue formation.

Different from LS method and diffusion equation, some other
computational studies employed a simple voxel - FE based
method to simulate the tissue growth within scaffolds (Adachi
et al., 2006; Nasello et al., 2021). In this method, modelling the
neo-tissue generation within scaffolds was achieved by adding
elements on the scaffold surfaces according to the applied stress
in elements where the cells are located. Therefore, this voxel - FE
based method does not require mathematical functions for tissue
growth kinetics. However, this method is limited to simulate the
neo-tissue growth under mechanical stimulation only, and not
under static conditions.

OUTLOOK

This review provides an insight on how scaffold pore geometry
influences the micro-mechanical environment within scaffold
pores, ie. the environment that cells are subjected to. This
information would allow researchers to estimate/quantify the
micro-mechanical environment according to the already
known pore geometry information, or to find a suitable pore
geometry according to the desirable micro-mechanical
environment to be applied. It also indicates which
computational technique could be used for modelling the
scaffold in each specific circumstance (e.g. under perfusion
flow/spinner flask/compression). So far, these investigations
are still in their infancy, in which a large number of scaffold
geometries need to be computationally modelled, from which
then the users can select suitable ones. A truly automatic
optimisation of the scaffold design would obviously involve a
much more rigorous approach involving search algorithms.
Considering the large number of variables involved, the
complexity of the design space, and the time-dependent
behaviour of the problem, classical optimisation procedures
are not well suited for this task. New techniques, such as an
Al-assisted design pipeline centred around the computational
methods/tools) could be used for addressing these limitations. To
establish an Al-assisted design pipeline, several steps are needed.
First, a generative computer-aided design method that can model
both periodic and stochastic scaffolds will be needed to greatly
enlarge the design space (Tang et al., 2020). These scaffolds with
complex biomimetic designs may possess enormous potential to
advance the performance of mimicking the in vivo condition.
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Second, model order reduction methods, which have been used
for designing additive manufacturing products (e.g. by Xiong
et al. (2019)) are needed to speed up the computer simulations,
such that large training sets become available. Third, a systematic
method to determine the relationship between multiple factors
(e.g. scaffold geometry parameters, mechanical properties of
scaffold material, chemical composition, cell attachment sites
etc.) during the experimental cell mechanobiology study are
needed for developing an Al-assisted design pipeline. To do
this, we suggest a combination of experimental methods (e.g.
adaptive sampling) and a data-driven modelling approach, which
will enable the application of more advanced tasks, such as multi-
task/purpose and active learning. After training, it then would be
possible to suggest an optimal scaffold for a specified set of
requirements with no or minimal additional computational
analyses.
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