AUTHOR=Reavette Ryan M. , Sherwin Spencer J. , Tang Meng-Xing , Weinberg Peter D. TITLE=Wave Intensity Analysis Combined With Machine Learning can Detect Impaired Stroke Volume in Simulations of Heart Failure JOURNAL=Frontiers in Bioengineering and Biotechnology VOLUME=Volume 9 - 2021 YEAR=2021 URL=https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2021.737055 DOI=10.3389/fbioe.2021.737055 ISSN=2296-4185 ABSTRACT=Heart failure is treatable, but the one-year mortality rate is 40%. This reflects, in part, the lack of specific, simple and affordable diagnostic techniques; the disease is often advanced by the time a diagnosis is made. Previous studies have demonstrated that certain metrics derived from pressure–velocity-based wave intensity analysis are significantly altered in the presence of impaired heart performance when averaged over groups, but to date, no study has examined the diagnostic potential of wave intensity on an individual basis, and, additionally, the pressure waveform can only be obtained accurately using invasive methods, which has inhibited clinical adoption. This research investigates whether a new form of wave intensity based on noninvasive measurements of arterial diameter and velocity can detect impaired heart performance in an individual. To do so, we have generated a virtual population of two-thousand elderly subjects, modelling half as healthy controls and half with an impaired stroke volume. After deriving metrics from the diameter–velocity-based wave intensity waveforms in the carotid, brachial and radial arteries, we found that all metrics showed significant crossover between groups – no one metric in any artery could reliably indicate whether a subject’s stroke volume was normal or impaired. However, after applying machine learning to the metrics, we found that a support vector classifier could simultaneously achieve up to 99% recall and 95% precision. We conclude that noninvasive wave intensity analysis has significant potential to improve the quality of heart failure screening and diagnosis.