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Hepatitis B virus (HBV) is one of the most dangerous and prevalent agents that causes
acute and chronic liver diseases in humans. Genotyping plays an important role in
determining clinical outcomes and response to antiviral treatment in HBV–infected
patients. Here, we first devised a CRISPR–based testing platform, termed “CRISPR-
HBV,” for ultrasensitive, highly specific, and rapid detection of two major HBV genotypes
(HBV-B and HBV-C) in clinical application. The CRISPR-HBV employed multiple cross
displacement amplification (MCDA) for rapid preamplification and then Cas12b–based
detection for decoding the targets. Finally, the detection result was read out with real-time
fluorescence and a lateral flow biosensor. The sensitivity of CRISPR-HBV was 10 copies
per test. The specificity was one hundred percent, and no cross reactions were observed
in other HBV genotypes and pathogens. The whole detection process, including DNA
template extraction (15 min), preamplification reaction of MCDA (30min at 65°C), CRISPR-
Cas12b–based detection (5 min at 37°C), and results readout (∼2min), could be
completed within 1 h. The feasibility of the CRISPR-HBV assay for genotyping HBV-B
and -C as successfully validated with clinical samples. Hence, the CRISPR-HBV assay has
remarkable potential to develop a point-of-care testing for identifying and distinguishing
HBV genotypes B and C in clinical settings, especially in resource-scarcity countries.
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INTRODUCTION

Hepatitis B virus (HBV) is one of the main pathogens that can cause severe liver diseases, such as liver
failure, liver cirrhosis, and hepatocellular carcinoma, which could be transmitted through exposure
to infected blood and body fluids (Nelson et al., 2016; Nguyen et al., 2020; Bertoletti and Bert, 2018).
Approximately 257 million people are living with chronic HBV infection, and it causes 700,000
deaths annually worldwide according to the World Health Organization (WHO) reports (World
Health organization, 2017). Therefore, it is still a major public health concern in the world. It has
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been reported that there are at least eight genotypes (A–H) that
are divergent by >8% across the entire genome (Zhao et al., 2010).
In clinical practice, the genotype characteristic is essential for
finding the severity of HBV infection and response to antiviral
therapy in hepatitis B patients (Wang et al., 2015; Zhao et al.,
2010). China has a high incidence of HBV, and genotypes B and C
were identified as the most common agents (more than 95%) (Lin
and Kao, 2011; Wang et al., 2019; Su et al., 2020). HBV genotype
C causes more severe liver fibrosis, which more easily progresses
to hepatocellular carcinoma, than genotype B infection (Zhao
et al., 2010). Moreover, genotype C is also related to a less
response to antiviral treatment than genotype B (Zeng et al.,
2008). Hence, identification and discrimination of HBV
genotypes B and C is essential for the follow-up clinical
therapy and management of HBV–infected patients in the
Asia–Pacific region.

Real-time polymerase chain reaction (PCR), restriction
fragment length polymorphism (RFLP) analysis, and DNA
direct sequencing have been widely used for genotyping in
clinical practice (Irshad et al., 2016; Inoue and Tanaka, 2020;
Wang et al., 2015). However, these diagnostic services require
expensive apparatus, skilled personnel, and specialized labs,
which may not be available in many resource-limited
countries. Besides, it is also time-consuming. Hence, devising a
rapid, specific, sensitive, and easy-to-use assay for genotyping
HBV is essential for the follow-up therapy in HBV–infected
patients.

A CRISPR/Cas (Clustered Regularly Interspaced Short
Palindromic Repeat and CRISPR-Associated Protein) system was
discovered first in the adaptive immunity of archaea and bacteria for
eliminating invading nucleic acids (Yao et al., 2018). The Cas effector
proteins navigated with guide RNA (gRNA) to target and cleave an
invading nucleic acid. Over the last few years, CRISPR/Cas systems,
such as CRISPR/Cas9, CRISPR/Cas13, and CRISPR/Cas12, have
become prominent tools for genome editing. Recently, the CRISPR/
Cas system has displayed potential for the development of next-
generation nucleic acid–diagnostics methodology owing to its high
sensitivity, specificity, and reliability (Gootenberg et al., 2017). The
principle of detection with a CRISPR/Cas platform is based on the
trans-cleavage activities of Cas nucleases, such as Cas13, Cas12a, and
Cas12b, which have the ability to nonspecifically and
indiscriminately cleave surrounding nontarget ssRNA and ssDNA
whenCas nucleases bound to the target sequence under the guidance
of CRISPR RNA (gRNA) (Gootenberg et al., 2018). Combined with
isothermal amplification, Cas13, Cas12a, and Cas12b have been used
to devise rapid target nucleic acid–detection platforms, such as
SHERLOCK (specific high-sensitivity enzymatic reporter
unlocking), DETECTR (DNA endonuclease-targeted CRISPR
trans-reporter), and HOLMESv2 (one-hour low-cost
multipurpose highly efficient system v2) (Chen et al., 2018;
Kellner et al., 2019; Li et al., 2019), respectively. These assays can
accurately, sensitively, and rapidly detect various targets, including
RNA and DNA viruses, bacteria, DNA genotypes, drug-resistant
genes, and cancer mutations (Liang et al., 2019).

Currently, most of the CRISPR/Cas detection platforms rely
on expensive fluorescence-based instruments (Liang et al., 2019),
which can cause practical inconvenience and make the platform

less robust in resource-limited settings. To overcome previous
limitations, the nanoparticle-based lateral flow biosensor (LFB)
was successfully devised and used to identify CRISPR/Cas
detection results due to its visual readout, low-cost, stability,
simplicity, and easy-to-use characteristics (Mukama et al., 2020).
To increase the sensitivity of CRISPR/Cas diagnostics, the target
gene will be preamplified by PCR or isothermal amplification
(Pickar-Oliver and Gersbach, 2019). Multiple cross displacement
amplification (MCDA), an innovative nucleic acid isothermal
amplification technique, has been applied as an attractive
alternative to the traditional PCR–related technique and has
potential to develop a point-of-care (POC) testing owing to its
rapidity, simplicity, and easy operation (Wang et al., 2017; Li
et al., 2020). In the current study, we integrated the
preamplification step of MCDA with CRISPR-Cas12b–LFB
readout to develop a novel assay termed “CRISPR-HBV” for
ultrasensitive, highly specific, and rapid detection of HBV
genotypes B and C. In addition, a protospacer adjacent motif
(PAM) site (TTC) for the CRISPR-Cas12b–based assay was
added into the MCDA primers for detecting any sequences
that meet the demand of the primer design (even if the target
sequences do not contain any PAM sites). We illustrated the
principle of the CRISPR-HBV assay in Figures 1 and 2 and
validated its feasibility in genotyping of HBV genotypes B and C
with clinical specimens.

MATERIALS AND METHODS

Reagents and Instruments
The universal isothermal amplification kits, colorimetric
indicator (malachite green), gold nanoparticle–based LFB, and
CRISPR-Cas12b protein (C2c1) were obtained from HuiDeXin
Biotechnology (Tianjin, China). Anti-FAM (rabbit anti-
fluorescein antibody) and biotin-BSA (biotinylated bovine
serum albumin) were obtained from Abcam Co., Ltd.
(Shanghai, China). The LFB materials, including a sample pad,
an absorbent pad, a conjugate pad, a nitrocellulose membrane
(NC), and a backing card, were purchased from the Jie-Yi
Biotechnology. Co., Ltd. (Shanghai, China). A dye (crimson
red) and streptavidin-coated gold nanoparticles (size, 34.46 ±
4.34 nm; extinction coefficient, 6.0 × 109 M-1 cm-1 at 506 nm)
were purchased from Bangs Laboratories, Inc. (Indiana,
United States). A real-time turbidimeter (LA-500) was
purchased from Eiken Chemical Co., Ltd. (Japan).

Preparation of Target DNA and Clinical
Samples
In this study, the full-length DNA sequences of the S gene of HBV
genotypes B and C (accession numbers AF100309 and AB014381,
respectively) (Zhao et al., 2010) were synthesized and cloned in a
pUC57 vector. The two plasmids (genotype B plasmid and
genotype C plasmid) were constructed commercially by
General Biol (Anhui, China), according to the manufacturer’s
instruction. The initial concentration of HBV genotype B and C
plasmids was 1 × 108 copies per microliter. The two constructed
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plasmids acted as the positive control. In addition, the full-length
DNA sequences of the S gene for HBV genotypes A, D, E, F, G,
and H (accession numbers AF090842, X65259, AB032431,
AB036910, AF160501, and AY090454) were synthesized and
cloned in a pUC57 vector. The 114 suspected HBV–infected
serum samples were collected from the Second Affiliated Hospital
of Guizhou University of Traditional Chinese Medicine
(Guiyang, China) during April 2020 to December 2020. DNA
sequencing was used as the gold standard for determining the
HBV genotypes. In brief, a portion of the S gene was amplified
with the primers F 5′-TCTAGACTCGTGGTGGA-3′ and R 5′-
GATGATGGGATGGGAATACA-3’ (Zhao et al., 2011), and
then, the PCR products were sequenced by Dian Medical
Laboratory Center Co., Ltd. (Hangzhou, China) and finally
analyzed using NCBI genotyping tools (https://www.ncbi.nlm.
nih.gov/projects/genotyping/formpage.cgi). Other various
pathogens used in the current study are shown in
Supplementary Table S2.

Multiple Cross Displacement Amplification
Primers and gRNA Design
The HBV genotype B– and C–MCDA primers were designed
using PRIMER PREMIER 5.0 software in accordance with the
principle of MCDA reaction based on the genotype B S gene
(GenBank no. AF100309; 157–837) and the genotype C S gene

(GenBank no. AB014381; 2,848–3,215, 1–835), respectively. The
specificity of each MCDA primer was confirmed with the BLAST
analysis tool. In addition, two gRNAs for HBV genotypes B and C
based on the S gene were designed according to the CRISPR-
Cas12b detection mechanism. The locations of each MCDA
primer and gRNA are shown in Figure 1C. Moreover, we
added the PAM site (TTC) in each MCDA primer for the
CRISPR/12b–based assay; the principle of MCDA and the
CRISPR-Cas12b–based assay are shown in Figures 1A,B. The
MCDA primers and gRNA sequences are shown in
Supplementary Table S1. All of the oligonucleotides were
synthesized and purified by Genscript Biotech Co., Ltd.
(Nanjing, China) with HPLC purification grade.

Multiple Cross Displacement Amplification
The preamplification step of MCDA was performed with an
isothermal amplification kit, according to the manufacturer’s
instructions (HuiDeXing Biotech. Co., Ltd. Tianjing, China).
In brief, the MCDA reaction system comprise 12.5 μl of 2 ×
reaction buffer, 0.4 μMeach of F1 and F2, 1.6 μMeach of CP1 and
CP2, 0.8 μM each of C1, C2, D1, D2, R1, and R2, 12.5 μl of 2 ×
reaction buffer, 1 μl of Bst 2.0 DNA polymerase (8 U), 1 μl of
AMV reverse transcriptase (10 U) (only used for the RNA
template), and a nucleic acid template (1 μl of the standard
plasmid and 5 μl of the clinical samples). Finally, 25 μl of
double-distilled water was added. The reaction process was

FIGURE 1 | A schematic illustration of the principle of the CRISPR-HBV system. (A) Schematic illustration of the principle of MCDA with the modified primer. The
amplification primer D1 was modified with a PAM site (TTC). After amplification, a CRISPR-Cas12b recognition site was constructed in the target amplicons. (B)
Schematic illustration of the CRISPR-Cas12b detection system. Upon recognition of the matching target sequence, the CRISPR-Cas12b complex cleaves a single-
stranded DNA reporter molecule. © Sequences and location of the S gene of HBV genotypes B and C used to devise the MCDA primers and gRNAs. The sites of
MCDA primers are underlined, and the gRNAs are in boxes. Right arrows and left arrows indicate the sense and complementary sequences which were used in this
study, respectively.
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carried out with a heat blocker. The amplification results were
monitored with real-time turbidity (LA-500) for optimizing the
amplification temperature.

CRISPR-Cas12b–Based Assay
In the current study, Cas12b (C2c1) was used for CRISPR-
Cas–based trans-cleavage detection. In brief, the CRISPR-
Cas12b–gRNA complexes were preassembled as follows:
300 nM CRISPR-Cas12b (C2c1) (Cat no. HT100006) and
100 nM gRNA were preincubated in 1 × HDX buffer at 37°C
for 10 min; the complexes should be used immediately or stored
at low temperatures (0–4°C) no more than 12 h before use.

The CRISPR-Cas12b–based trans-cleavage detection system
comprised 2 μl of MCDA products, 1.0 μl of the single-strand
DNA reporter molecule (50 μM), 4 μl of the CRISPR-
Cas12b–gRNA complex, 25 μl of the 2 × HDX buffer, and
distilled water up to 50 μl; then, the detection process was

performed at 37°C for 5 min, and the results were analyzed
using the real-time fluorescence (RTF) and LFB, respectively.
For RTF analysis of the CRISPR-Cas12b trans-cleavage detection,
the Flu-probe (5′-FAM-TTTTTT-BHQ1-3′, 100 μM) was used.
For the LFB assay, the reporter should be replaced with a single-
strand DNA reporter molecule (5′-FAM-TTTTTT-Biotin-
3′, 50 μM).

Gold Nanoparticle–Based Lateral Flow
Biosensor Design and Assay
The LFB (size: 60 mm × 4 mm) used in this study is designed and
illustrated in Figure 3. In brief, the biosensor was composed of
four sections, including a sample pad, a conjugate pad, a reaction
region (nitrocellulose membrane), and an absorbent pad. All of
them were assembled on a plastic adhesive backing card. The
streptavidin–gold nanoparticles (SA-GNPs) were deposited on

FIGURE 2 | An outline of the CRISPR-HBVworkflow. (A) The CRISPR-HBV RTF assay employs three closely linked steps: DNA extraction (step 1), MCDA (step 2),
and CRISPR-Cas12b cleavage and RTF readout (step 3). The whole detection process could be completed within 1 h. (B) CRISPR-HBV–LFB assay employs four
closely linked steps: DNA extraction (step 1), MCDA (step 2), CRISPR-Cas12b cleavage (step 3), and LFB readout (step 4). The whole detection process could be
completed within 60 min.
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the conjugate pad. Anti-FAM and biotin-BSA were fixed on the
reaction region for a control line (CL) and a test line (TL),
respectively, each line separated by 5 mm. The biosensor used
in the current study was manufactured by HuiDeXing Biotech.
Co., Ltd. (Tianjing, China) in accordance with our experiment.
The LFB can be dry-stored at 4°C for 2 years before use.

For the LFB analysis, 1.5 μl of CRISPR-Cas12b trans-cleavage
products was added on the sample pad; meanwhile, 50 μl of
running buffer (100 mM PBS) was dropped on the sample pad.
The running buffer containing CRISPR-Cas12b trans-cleavage
products was absorbed, and the detection results were read out
visually on a NC membrane (red line) within 2 min (Figure 3).

Sensitivity and Specificity of the
CRISPR-HBV Assay
For testing the sensitivity of the CRISPR-HBV assay, two
standard plasmids, including HBV genotype B and C
plasmids, were 10-fold serially diluted from 1.0 × 105 to 1.0 ×
10-1 copies. The CRISPR-HBV assay was performed as previously
described, and then, the results were detected with the RTF and
LFB. Three replicates of each dilution were tested.

The S gene of HBV genotypes A–H (synthesized sequences)
and other non-HBV pathogens (Supplementary Table S2) were
used for verifying the specificity of the CRISPR-HBV assay;
distilled water (DW) was applied as the blank control (BC).

The CRISPR-HBV assay was performed as previously described
and then detected with the RTF and LFB. Each test was confirmed
at least three times.

Verification of the Feasibility of the
CRISPR-HBV Assay Using Clinical Samples
For further confirming the feasibility of the CRISPR-HBV assay
devised in this study, the optimized CRISPR-HBV assay system was
assessed with clinical samples. 114 suspected HBV–infected serum
samples were collected from the Second Affiliated Hospital of
Guizhou University of Traditional Chinese Medicine (Guiyang,
China). The CRISPR-HBV operation was performed as described
above. Meanwhile, the clinical samples were tested with direct DNA
sequencing (Dian Medical Laboratory Center Co., Ltd. Hangzhou,
China). Finally, the outcomes of the CRISPR-HBV assay were
compared with those of direct DNA sequencing.

RESULTS

Overview of the CRISPR-HBV Detection
System
The principle of CRISPR-HBV detection system is illustrated in
Figures 1 and 2. In brief, the extracted HBVDNA templates were
preamplified by the MCDA method. In this detection system, we

FIGURE 3 | The schematic of the LFB for visualization of HBV genotype B and C products. (A) The reaction mixtures (1.5 μl) and the running buffer (50 μl) were
deposited on the sample pad. (B) The running buffer containing mixtures moved along the LFB owing to capillary action; meanwhile, the dye and streptavidin-coated
gold nanoparticles (GNPs) rehydrated in the conjugate region. (C) In the positive sample, the ssDNA reporter molecule (5′-FAM-TTTTTT-Biotin-3′) was trans-cleaved by
the activated CRISPR-Cas12b nuclease and the FAM and biotin were separated. Hence, the biotin–streptavidin–GNPs complex was captured by biotin-BSA at the
TL; however, in negative outcomes, the ssDNA reporter molecule was not cleaved and was specifically captured by the anti-FAM at the CL. The biotins of the ssDNA
reporter molecule bind streptavidin–GNPs for visualization at the CL. (D) Interpretation of the CRISPR-HBV assay results. For positive results, the CL and TL appear on
the LFB. When only the CL is observed on the LFB, it indicates negative outcomes. CL: control line; TL: test line.
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modified the MCDA primer D1 at the 5′ end with a PAM site
(TTC) (Figure 1A) and the HBV-MCDA amplicons contain a
newly acquired Cas12b PAM site for the CRISPR-Cas12b–based
assay stage (Figure 1B); the PAM site can be applied for location
by the corresponding CRISPR-Cas12b/gRNA system (Figure 1B,
Step 1). Then, the CRISPR-Cas12b effector was activated for
trans-cleavage activity, and the single-strand DNA reporter
molecules (5′-FAM-TTTTTT-Biotin-3′) were ultrafast digested
(Figure 1B, Step 2 and Step 3). After CRISPR-Cas12b cleavage,
the reaction mixtures (1.5 μl) and the running buffer (50 μl) were
deposited on the sample region of the LFB (Figure 3A); the
running buffer containing reaction mixtures moved along the
LFB owing to capillary action, and the streptavidin–GNPs were
rehydrated in the conjugate region (Figure 3B). In negative
outcomes, the ssDNA reporter molecule was not cleaved and
specifically seized by the anti-FAM at the CL. Hence, the biotins
of the ssDNA probe (5′-FAM-TTTTTT-Biotin-3′) bind
streptavidin–GNPs for visualization readout at the CL
(Figure 3C). However, in the positive sample, the ssDNA
reporter molecule was trans-cleaved by the activated CRISPR-
Cas12b nuclease, and the biotin and FAMwere separated. Finally,
the biotin–streptavidin–GNPs complex was seized by biotin-BSA
at the TL (Figure 3C). The interpretation of the CRISPR-HBV
assay using the LFB analysis is displayed in Figure 2B and
Supplementary Figure S1. The detection results were reported
simultaneously using RTF with the Flu-probe (5′-FAM-
TTTTTT-BHQ1-3′); the principle is illustrated in Figure 2A.

Optimal Reaction Conditions for the
CRISPR-HBV Assay
Temperature is critical for isothermal amplification. The reaction
temperature of the preamplification stage of MCDA was optimized
from 60 to 67°C using HBV genotype B and C plasmids (1.0 × 103

copies per reaction), respectively. The results indicated that 65°C was
deemed an optimal reaction temperature for the preamplification
step of HBVMCDA (Supplementary Figures S2 and S3). Then, the
reaction time (1, 2, 5, 10, and 20min) of CRISPR-Cas12b detection
was optimized. The results were read out simultaneously with the
LFB and RTF. As shown in Supplementary Figure S4, the stable
visual signal was observed by the LFB within 5min (Supplementary
Figures S4A andB) and the fluorescent signal wasmonitoredwithin
1 min (Supplementary Figures S4C and D).

Sensitivity and Specificity of the
CRISPR-HBV Assay
The sensitivity of CRISPR-HBV detection was evaluated using
HBV genotype B and C plasmids with serial dilutions (ranging
from 1.0 × 105 to 1.0 × 10-1 copies per reaction). The CRISPR-
HBV assay was performed as described above, and the outcomes
were read out through the RTF and LFB. For RTF detection, the
results indicated that the limit of detection (LoD) of the CRISPR-
HBV assay was 10 copies per test (Figures 4B,D), which was
completely consistent with the LFB assay (Figures 4A,C).

The specificity evaluation of the CRISPR-HBV assay was
confirmed using synthesized templates, HBV genotype B– and

C–positive clinical samples, and various non-HBV pathogens
(Supplementary Table S2). The CRISPR-HBV assay was
manipulated by the optimal reaction conditions verified above,
and the outcomes were analyzed using the LFB and RTF. The
positive outcomes appeared only when the templates were
extracted from HBV genotype B or C agents, while other HBV
genotypes, non-HBV pathogens, and the blank control presented
negative outcomes (Figure 5, Supplementary Figures S5, and
S6). No cross reactions were observed in the CRISPR-HBV assay.
Therefore, the CRISPR-HBV assay designed in the current study
was highly selective to the target sequences.

Confirming the Feasibility of the
CRISPR-HBV Assay in Clinical Samples
To further validate whether the CRISPR-HBV assay could be
used for distinguishing between HBV genotypes B and C in
clinical application, 114 suspected HBV–infected serum
specimens were assayed simultaneously using CRISPR-HBV
and direct sequencing. According to the sequencing results, 36
samples were confirmed as genotype B, 28 samples were
recognized as genotype C, five samples were identified as
genotype B/C, three samples were recognized as genotype D,
and 42 samples were tested as non-HBV infection. The results
were in accordance with the CRISPR-HBV assay outcomes
(Supplementary Table S3). These results indicated that the
CRISPR-HBV assay developed in this study could be
considered as an advanced technique to distinguish between
HBV genotypes B and C in clinical application.

DISCUSSION

HBV is one of the most dangerous and prevalent agents that
causes acute and chronic liver diseases in humans (Pisaturo
et al., 2019; Meng et al., 2020). Several investigations have
indicated that different HBV genotypes could affect the clinical
outcomes and response to antiviral treatment in hepatitis B
patients. Genotypes B and C are the two most common agents
(accounting for approximately 95%) in China (Lin and Kao,
2011; Wang et al., 2019; Su et al., 2020). Previous studies
demonstrated that HBV genotype C was associated with a
higher risk of reactivation of hepatitis B, with more severe liver
fibrosis, and can more easily progress to hepatocellular
carcinoma than genotype B infection (Lin and Kao, 2011).
Moreover, HBV genotype C is also associated with a lower
response rate to antiviral therapy (Zeng et al., 2008). A
previous study demonstrated that genotype B had a better
virological response to adefovir dipivoxil therapy than
genotype C (Zhao et al., 2010). Hence, detection and
discrimination of HBV genotypes B and C are essential for
the follow-up clinical treatment and management of
HBV–infected patients in the Asia–Pacific region. In the
current study, a novel CRISPR-HBV assay, which integrated
CRISPR-Cas12b detection with MCDA, was established for
identifying and distinguishing HBV genotypes B and C in
clinical samples.
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An ideal laboratory diagnostic technique for confirmation and
distinction of HBV genotypes B and C should be rapid, specific,
sensitive, and easy to use. Currently, real-time PCR, RFLP
analysis, and direct DNA sequencing have been widely applied
for genotyping in clinical practice (Zhao et al., 2011; Wang et al.,
2015; Lin and Kao, 2011). However, their use in low- and middle-
income regions is significantly limited due to the requirement of
expensive instruments and trained experts. A CRISPR/Cas
system was discovered first in the adaptive immunity of
archaea and bacteria for eliminating invading nucleic acids
(Yao et al., 2018; Shiriaeva et al., 2020). The Cas effector
proteins were navigated with gRNA to target and cleave an
invading nucleic acid (Zhou et al., 2018). Over the last few
years, CRISPR/Cas systems, such as CRISPR/Cas9, CRISPR/
Cas12, and CRISPR/Cas13, have become a prominent tool for
genome editing (Myhrvold et al., 2018; Zhu et al., 2021). Recently,
Cas12 and Cas13 effectors were demonstrated to have remarkable
potential in developing novel nucleic acid–detection technologies
based on their unique characteristic of collateral cleavage of target
genes and nonspecific single-stranded nucleic acids (Pickar-
Oliver and Gersbach, 2019; Broughton et al., 2020). In this
study, we designed successfully the specific gRNAs for HBV
genotypes B and C, and the gRNAs navigated Cas12b effector
proteins to each of the target sequences. The specificity of the
CRISPR-HBV system was strongly confirmed with HBV agents
and other pathogens. The results have shown that the CRISPR-
HBV assay could clearly distinguish HBV genotypes B and C and
have no cross reactions with other pathogens (Supplementary

Figures 5S5S6). Hence, the CRISPR-HBV assay displayed a high
level of specificity for distinguishing HBV genotypes B and C.
Apart from its remarkable specificity, the novel CRISPR-HBV
assay could detect as low as 10 copies of genomic DNA per test
(Figure 4). Owing to the lack of reference strains for HBV
genotypes B and C in our laboratory, the full-length DNA
sequences of the S gene for HBV genotypes B and C
(accession number AF100309 and AB014381, respectively)
were synthesized and cloned in the pUC57 vector, respectively.
The synthesized plasmids were considered as HBV genotype B
and C reference strains. In order to further confirm the sensitivity
of the CRISPR-HBV assay in the human serum, the HBV
genotype B-S or C-S plasmids were added into 100 μl serum
of a healthy volunteer and the final concentrations of HBV
genotype B-S or C-S genes were made ranging from 1.0 × 105

to 1.0 × 10-1 copies/μl, respectively. The nucleic acid was
extracted using a Rapid Nucleic Acid Extraction kit (Jiangsu
Bioperfectus Technologies Co., Ltd., China) and dissolved into
100 μl distilled water, and then, 1 μl nucleic acid was used for the
CRISPR-HBV assay. The results showed that the sensitivity of
this assay was also 10 copies (data not shown). More importantly,
we also successfully applied the CRISPR-HBV assay to clinical
samples. The suspected HBV–infected serum samples were
simultaneously detected with the CRISPR-HBV assay and
direct DNA sequencing, and the concordance results of the
former and latter detections were given (Supplementary Table
S3). It is indicated that the CRISPR-HBV assay could be used as a
reliable tool for detecting and distinguishing HBV genotypes B

FIGURE 4 | The sensitivity of the CRISPR-HBV assay. LFB and RTF techniques were simultaneously applied for reporting the CRISPR-HBV assay results. LFB (A)
and RTF (B) 1–8 represent the HBV genotype B-S plasmid concentrations of 1 × 105, 1 × 104, 1 × 103, 1 × 102, 1 × 101, 1 × 100, and 1 × 10-1 copies per reaction and the
blank control (DW), respectively. LFB (B) and RTF (D) 1–8 represent the HBV genotype C-S plasmid concentrations of 1 × 105, 1 × 104, 1 × 103, 1 × 102, 1 × 101, 1 × 100,
and 1 × 10-1 copies per reaction and the blank control (DW), respectively. The LoD of the CRISPR-HBV assay was 10 copies per reaction. CL: control line; TL: test
line; “+”: positive; “−”: negative.
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and C in clinical application. The CRISPR-HBV assay developed
in the current study only has the ability to detect and distinguish
HBV genotypes B and C, but not HBV subgenotypes. For
conservation across the sequences of entire HBV genotypes B
and C, the HBV genotype B and C MCDA primers and gRNA
sequences were designed based on the S gene that come from the
NCBI’s recommended reference sequence strains for genotype B
(accession number: AF100309) and genotype C (accession
number: AB014381) (Zhao et al., 2010).

In order to improve the sensitivity of the CRISPR-HBV
assay, the MCDA method was used for preamplifying the

target genes (HBV genotype B-S and genotype C-S). MCDA
was considered as a novel isothermal amplification technique,
which is more sensitive than PCR and LAMP assays (Wang
et al., 2015; Jiao et al., 2019; Wang et al., 2017). The isothermal
amplification of the target sequence through a set of 10
primers spanning 10 different regions of the target gene
was conducted (Wang and Wang et al., 2015), which
comprised a pair of displacement primers (F1 and F2), a
pair of cross primers (CP1 and CP2), and three pairs of
amplification primers (C1, C2, D1, D2, R1, and R2)
(Figure 1A). More importantly, in the current study, the

FIGURE 5 | The specificity of the CRISPR-HBV assay. (A) The specificity of the CRISPR-HBV–LFB assay for HBV genotype B detection. Biosensor 1, HBV
genotype B-S plasmid; biosensors 2–9, HBV genotype B agents (clinical samples); biosensors 10–13, HBV genotype B/C agents (clinical samples); biosensor 14, HBV
genotype A-S plasmid; biosensor 15, HBV genotype C-S plasmid; biosensor 16, HBV genotype D-S plasmid; biosensor 17, HBV genotype E-S plasmid; biosensor 18,
HBV genotype F-S plasmid; biosensor 19, HBV genotype G-S plasmid; biosensor 20, HBV genotype H-S plasmid; biosensor 21, hepatitis C virus (standard
substance); biosensor 22, human immunodeficiency virus (standard substance); biosensor 23, human rhinovirus; biosensor 24, adenovirus; biosensor 25,
Mycobacterium tuberculosis; biosensor 26, Bordetella pertussis; biosensor 27, Bacillus cereus; biosensor 28, Haemophilus influenzae; biosensor 29, Staphylococcus
aureus; and biosensor 30, blank control. CL: control line; TL: test line; “+”: positive; “−”: negative. (B) The specificity of the CRISPR-HBV–LFB assay for HBV genotype C
detection. Biosensor 1, HBV genotype C-S plasmid; biosensors 2–9, HBV genotype C agents (clinical samples); biosensors 10–13, HBV genotype B/C agents (clinical
samples); biosensor 14, HBV genotype A-S plasmid; biosensor 15, HBV genotype B-S plasmid; biosensor 16, HBV genotype D-S plasmid; biosensor 17, HBV genotype
E-S plasmid; biosensor 18, HBV genotype F-S plasmid; biosensor 19, HBV genotype G-S plasmid; biosensor 20, HBV genotype H-S plasmid; biosensor 21, hepatitis C
virus (standard substance); biosensor 22, human immunodeficiency virus (standard substance); biosensor 23, human rhinovirus; biosensor 24, adenovirus; biosensor
25, Mycobacterium tuberculosis; biosensor 26, Bordetella pertussis; biosensor 27, Bacillus cereus; biosensor 28, Haemophilus influenzae; biosensor 29,
Staphylococcus aureus; and biosensor 30, blank control. CL: control line; TL: test line; “+”: positive; “−”: negative.
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MCDA-D1 primers were modified with a Cas12b PAM site
(TTC); after MCDA, the PAM site was applied for location by
the corresponding CRISPR-Cas12b/gRNA complex to target
sequences, then the Cas12b nuclease was activated, and the
single-strand DNA reporter molecules were ultrafast trans-
cleaved.

In this report, the gold nanoparticle–based LFB was used for
reading out CRISPR-HBV outcomes. Currently, gold
nanoparticles have become the most appropriate
nanomaterials used as a biosensor owing to high
adsorption, the high surface-to-volume ratio, well
biocompatibility, and easy synthesis and manipulation
(Quesada-González and Merkoçi, 2015; Aldewachi et al.,
2017; Huang et al., 2019). The LFB could visually respond
to the CRISPR-HBV assay for labeling with biotin-BSA and
anti-FAM on the biosensor. In positive results, the ssDNA
reporter molecule (5′-FAM-TTTTTT-Biotin-3′) was trans-
cleaved by the activated CRISPR-Cas12b nuclease, the FAM
and biotin probes were separated, and the
biotin–streptavidin–GNPs complex was arrested by biotin-
BSA and visually observed at the TL. However, in negative
results, the ssDNA probe was not cleaved, was specifically
captured by the anti-FAM, and was visualized at the CL
(Figure 3). Although the RTF technique and the LFB
method could be used for identifying the CRISPR-HBV
assay, the former requires special instruments and complex
operation, whereas the LFB is simple and easy to operate.
Hence, LFB was considered as an optimal mean for the
CRISPR-HBV assay. The whole detection process, including
genomic DNA template preparation (∼15 min), MCDA
(30 min), CRISPR-Cas12b/gRNA detection (5 min), and
results readout (∼2 min), could be completed within 60 min.
Therefore, the CRISPR-HBV assay has potential to develop a
POC testing for identifying and distinguishing HBV genotypes
B and C in clinical settings, especially in economically
impoverished regions of the world. The shortcoming of this
study is that we just use CRISPR-Cas12b–based platform for
detection of two major HBV genotypes (B and C) in China.
Next, we will further utilize the CRISPR-Cas12b–based
platform to devise more assays for identifying various kinds
of HBV genotypes.

CONCLUSION

We combined the preamplification reaction of MCDA with
CRISPR-Cas12b and LFB readout to devise a novel assay,
termed “CRISPR-HBV,” for ultrasensitive, highly specific,
and rapid detection of HBV genotypes B and C in clinical
practice. The CRISPR-HBV assay was able to detect 10 copies
of genomic DNA per test and has no cross reactions with other
agents. The whole assay process could be completed within
60 min and does not require costly facilities. Hence, these traits
of our CRISPR-HBV assay have potential to be an important
POC testing for identifying and distinguishing HBV genotypes
B and C in clinical application, especially in resource-
constrained areas.
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