
Streptomycin Sulfate–Loaded
Niosomes Enables Increased
Antimicrobial and Anti-Biofilm
Activities
Maryam Mansouri 1, Nazanin Khayam2, Elham Jamshidifar3, Tara Pourseif 1,
Sepideh Kianian4, Amir Mirzaie5*, Iman Akbarzadeh6* and Qun Ren7*

1Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University,
Tehran, Iran, 2Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran, 3Department of Pharmaceutical
Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran, 4Master of Medicinal Chemistry,
Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran, 5Department of Biology, Parand Branch,
Islamic Azad University, Parand, Iran, 6Department of Chemical and Petrochemical Engineering, Sharif University of Technology,
Tehran, Iran, 7Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen,
Switzerland

One of the antibiotics used to treat infections is streptomycin sulfate that inhibits both
Gram-negative and -positive bacteria. Nanoparticles are suitable carriers for the direct
delivery and release of drug agents to infected locations. Niosomes are one of the new
drug delivery systems that have receivedmuch attention today due to their excellent biofilm
penetration property and controlled release. In this study, niosomes containing
streptomycin sulfate were prepared by using the thin layer hydration method and
optimized based on the size, polydispersity index (PDI), and encapsulation efficiency
(EE%) characteristics. It was found that the Span 60-to-Tween 60 ratio of 1.5 and the
surfactant-to-cholesterol ratio of 1.02 led to an optimum formulation with a minimum of
size, low PDI, and maximum of EE of 97.8 nm, 0.27, and 86.7%, respectively. The drug
release investigation showed that 50.0 ± 1.2% of streptomycin sulfate was released from
the niosome in 24 h and reached 66.4 ± 1.3% by the end of 72 h. Two-month stability
studies at 25° and 4°C showed more acceptable stability of samples kept at 4°C.
Consequently, antimicrobial and anti-biofilm activities of streptomycin sulfate–loaded
niosomes against Staphylococcus aureus, Escherichia coli, and Pseudomonas
aeruginosa were found significantly higher than those of free drug, and the minimum
inhibitory concentration values decreased 4- to 8-fold. Furthermore, niosome-
encapsulated streptomycin up to 1,500 μg/ml exhibited negligible cytotoxicity against
the human foreskin fibroblasts cell line, whereas the free drug exhibited slight cytotoxicity at
this concentration. Desired physical characteristics and low toxicity of niosomal nano-
carriers containing streptomycin sulfate made them a demanded candidate for the
treatment of current bacterial infections and biofilms.
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INTRODUCTION

The use of drug delivery systems is essential to improve the
timing, location, and speed of drug release, as well as to prevent
drug fluctuations in the circulatory system that lead to lower
efficacy and greater side effects (Vikas et al., 2011; Shirzad et al.,
2019; Shad et al., 2020). Progress in nanotechnology led to the
development of nano-carriers that are able to carry drugs to the
target site (Ladavière and Gref, 2015; Heidari et al., 2020). Nano-
carriers have benefits such as increased drug solubility, increased
drug half-life, controlled release, targeted delivery, reduced side
effects, the ability to transfer multiple drugs simultaneously,
protecting the drug from degradation, and protecting the
patient from immune responses to the drug (Zhang et al.,
2008; Banyal et al., 2013; Ghafelehbashi et al., 2019;
Akbarzadeh et al., 2021a).

One of the types of nano-carriers is niosomes, which can be an
ideal choice because they are biocompatible, inert, and capable of
carrying large dosage of one or more drugs (Lajevardi et al., 2018;
Fang et al., 2019). They are composed of non-ionic surfactants of
the class alkyl or polyglycerol diallyl ether and cholesterol,
hydrated in aqueous media (Kumar and Rajeshwarrao, 2011),
and can be used as carriers for low–molecular weight drugs,
proteins, and genes. Due to the numerous benefits of niosomes as
a drug carrier, much research has been carried out and proven to
be effective for drug delivery to skin, ocular, oral, and pulmonary
sites (Kumar and Rajeshwarrao, 2011; Akbarzadeh et al., 2020a;
Akbarzadeh et al., 2020c). Some diseases, such as bacterial
infections, require a high dosage of medication with controlled
release. Also depending on the condition of these patients, it is
important to have the least side effects and decrease drug
resistance (Zhang et al., 2008; Banyal et al., 2013; Reta et al.,
2019). Therefore, niosomal drug carriers can be a suitable
candidate for infectious diseases (Akbari et al., 2013;
Akbarzadeh et al., 2020c).

Infectious diseases are a major health problem and are one of
the leading causes of death in developing countries. In infection,
the body is invaded by pathogenic microorganisms which
establish, grow, and proliferate in the host body, leading to
localized cell damage, toxin secretion, or antigenic antibody
responses (Brunner, 1970; Glanze et al., 1990; Bloom et al.,
2000; Reta et al., 2019). Most of the commonly used
antibiotics are becoming inefficient against pathogenic bacteria
because of biofilm formation. Biofilms are complex structures of
aggregate bacteria which are capable to survive in stressful
environment conditions and cause antibiotic resistance. In
recent years, different types of nanoparticles have been
developed for biofilm treatment (Samiei et al., 2016; Shrestha
and Kishen, 2016; Fulaz et al., 2019; Mirzaie et al., 2020).

Streptomycin is a broad-spectrum antibiotic because it kills
both Gram-negative and Gram-positive bacteria and was one of
the first aminoglycoside drugs discovered. It cannot be taken
orally and is often prescribed as regular intramuscular injections.
Aminoglycosides block the protein synthesis in the bacterium by
binding to the S12 protein of the 30 S ribosomal unit (Judy et al.,
2018); thus, they can have a bactericidal effect (Zhu et al., 2001;
Sharma et al., 2007; de Lima Procópio et al., 2012).

The purpose of this investigation is developing the
streptomycin sulfate–containing niosomes according to the
design of experiment, followed by physicochemical
characterization. The drug loading and release profiles of the
streptomycin sulfate–containing niosomes were investigated. The
stability of the prepared niosomes was evaluated at temperatures
of 4°C and 25°C for 3 months in terms of nanoparticle size,
particle size distribution (PDI), and drug encapsulation efficiency
(EE%). Finally, the antimicrobial and anti-biofilm effects of
niosomes containing streptomycin sulfate on microbial strains
of Staphylococcus aureus, Escherichia coli, and Pseudomonas
aeruginosa were compared with the free drug.

MATERIALS AND METHODS

Chemicals
Streptomycin sulfate and phosphate buffer solution (PBS) were
purchased from Bio Basic, Canada. Cholesterol, polyoxyethylene
sorbitan monostearate (Tween 60), sorbitan monostearate (Span
60), dimethyl sulfoxide (DMSO), and chloroform were bought
from Merck, Germany. 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide, penicillin/streptomycin 100X,
Trypsin-EDTA, Trypan blue, RPMI 1640 medium, Dulbecco’s
modified Eagle medium (DMEM), fetal bovine serum (FBS) were
obtained from Gibco, United States. A dialysis membrane
(MWCO 12,000 Da) and MTT (dimethylthiazol-2-yl-)-2,5
were received from Sigma-Aldrich (United States). Mueller
Hinton broth, Mueller Hinton agar, barium chloride, and
H2SO4 were received from Merck, Germany. Staphylococcus
aureus ATCC 6538, Escherichia coli ATCC 25922, and
Pseudomonas aeruginosa ATCC 15442 were obtained from the
Pasteur Institute of Iran.

Preparation of Niosome
One of the most known methods for preparing niosomes is the
thin-layer hydration method (Hülsermann et al., 2009;
Akbarzadeh et al., 2021b). Cholesterol and surfactants (Span
60 and Tween 60) with a 1:1 M ratio were dissolved in 10 ml
chloroform, which was evaporated using the rotary evaporator for
1 h at 60°C and 120 rpm. Afterward, the dried thin films were
hydrated using streptomycin sulfate solution in PBS (10 ml,
1.5 mg/ml) at 30°C for 1 h with stirring at 120 rpm.
Subsequently, the samples were sonicated (Hielscher UP50H
ultrasonic processor, Germany) for 5 min and stored at 4°C in
a refrigerator. Different formulations of niosomes were prepared,
as shown in Table 1.

Optimization of Synthesized Niosome by
Design of Experiments
The purpose of applying the design of experiments is to identify the
factors influencing the experiment process and determine the
optimal values. The design method used in this study is
D-optimal design using Design-Expert 7.0.10 software (Stat-Ease
Inc., United States). This technique can identify the variables that
have the most impact on output and evaluate the most optimal
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conditions in terms of effective factors (Gunst, 1996; Bernkop-
Schnürch et al., 2006). For this purpose, two factors were
considered: the surfactant-to-cholesterol ratio and the Span 60-
to-Tween 60M ratio as test variables, and the nanoparticle size,
polydispersity index (PDI), and encapsulation efficiency (% EE) as
test responses. These variables were selected on the basis of
information obtained from previous studies (Moghtaderi et al.,
2021) and initial screening tests.

The morphology of optimized niosomes was characterized by
the field emission scanning electron microscope (SEM). For
imaging, the nanoparticle suspension was diluted 1:100 in
deionized water; a drop of sample was spread on a conductor
film such as aluminum and dried at room temperature.

Physicochemical Characterization
Particle Size
A dynamic light dispersion analysis is a fast, non-destructive
physical method used to determine the size of particles in solution
and depends on the interaction of light with the particle.
Therefore, Zetasizer (Malvern Instrument Ltd. Malvern, the
United Kingdom), equipped with a green laser with a
wavelength of 633 nm, was used to evaluate the particle size at
25°C. The particle size is the mean particle diameter which is
represented as Z-average in nanometers. Accordingly, the more
the Z-average, the larger will be the particle size.

Polydispersity Index
The degree of particle scattering indicates the degree of
dissimilarity of the particle size distribution, calculated by the
Malvern nanosizer (Malvern Instrument Ltd. Malvern,
United Kingdom) based on the following formula:

PDI � Mw/Mn.

Encapsulation Efficiency
To separate the free drug from the niosome-encapsulated drug,
the niosomes were centrifuged at 4°C at 14,000 g for 30 min.
Through this process, the niosomes are precipitated and free drug
remains in supernatant. The amount of streptomycin sulfate in

the supernatant can be quantified by measuring the absorbance at
560 nm wavelength (Blainski et al., 2013), using a calibration
curve. Finally, by applying the following formula, the percentage
of encapsulation efficiency was calculated:

Encapsulation efficiency%

� the amount of initial Streptomycin − Streptomycin in supernatant
the amount of initial Streptomycin

× 100.

In Vitro Drug Release Kinetics
In order to evaluate the amount of drug released from niosomal
carriers over a specified period of time, the dialysis membrane
(molecular weight cutoff 12 KDa) was used to separate noisomes
from the free drug. The dialysis bags containing niosomes (2 ml
of the samples prepared earlier) or streptomycin (1.3 mg/ml)
were placed in 50 ml of PBS solution (pH 7.4), which was under
constant magnetic stirring at 37 ± 1°C. At desired time points (1,
2, 4, 8, 24, 48, and 72 h), 1 ml solution was sampled and replaced
with 1 ml of fresh PBS solution. The collected sample solution was
measured by colorimetric assay for the absorbance at 560 nm via
UV-vis spectrophotometry (Jasco V-530, Japan Servo Co. Ltd.,
Japan) (Aman et al., 1995). To study the release kinetics and the
mechanism of drug release from the niosomal formulation, the
data of the drug release were mathematically analyzed based on
the proportional models in kinetic models’ equations, including
zero-order kinetics, the Higuchi model, first-order kinetics, and
the Korsmeyer–Peppas equation, by using linear form diagrams.

Storage Stability Studies
To investigate storage stability of the synthesized niosomes, 1 ml
of the streptomycin sulfate–loaded niosome solution with 1 mg/
ml drug concentration was poured into glass vials and stored at 4
and 25 °C, respectively, for 1 month. Samples were evaluated for
the particle size and EE% at different time intervals.

Antimicrobial Activity
The minimum inhibitory concentration (MIC) and minimum
bactericidal concentration (MBC) were performed for empty
niosome, drug-loaded niosome, and free drug using a classical
microdilution method. The samples were diluted with Mueller

TABLE 1 | Composition of different formulations of niosomes.

Drug Formulation
A: Span

60:Tween 60
B:

Surfactant:cholesterol Z average PDI EE

Unit Molar ratio Molar ratio nm — %

Streptomycin sulfate (S) S1 0.5 1 85.9 0.40 77.7
S2 0.5 2 146.2 0.24 77.3
S3 0.5 3 203.2 0.11 64.4
S4 1.0 1 65.5 0.30 82.4
S5 1.0 2 98.2 0.25 79.4
S6 1.0 2 129.1 0.25 80.1
S7 1.0 2 92.5 0.25 79.8
S8 1.0 3 170.4 0.31 68.2
S9 1.5 1 125.0 0.27 85.7
S10 1.5 2 159.3 0.25 82.1
S11 1.5 3 362.0 0.29 71.2
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Hinton broth (MHB), of which 100 µl was added to a well of 96-
well microplate. Furthermore, the inoculums were prepared at 0.5
McFarland’s standard and 50 µl of selected bacterial culture
including S. aureus (ATCC 6538), E. coli (ATCC 25922), and
P. aeruginosa (ATCC 15442) was added to each well. Finally, the
samples were incubated overnight at 37 °C, and the absorbance of
each well was read using a microplate reader at 600 nm (Fard
et al., 2018; Ghomi et al., 2020). The lowest concentration at
which no growth was observed was considered as MIC.

To assess the MBC values, 10 µl from each well was spread on
Mueller Hinton agar and incubated overnight at 37°C. Afterward,
colonies were counted, and MBCs were defined as the lowest
concentration of samples required to kill bacteria.

Time-Kill Assay
Antibacterial activity of free and streptomycin sulfate–loaded
niosomes was determined against S. aureus, E. coli, and P.
aeruginosa within 72 h using a microplate technique (Sadeghi
et al., 2019). In brief, 100 µl of the samples (free streptomycin and
noisome-encapsulated streptomycin) in their sublethal
concentrations (half of the MIC) were added into the 96-well
microtiter plate which was preloaded with 100 µl of each bacterial
suspension having 105 CFU/ml. After incubation at 37°C, optical
density at OD 600 nm was measured at 2, 4, 6, 24, 48, and 72 h
using a microplate reader (EPOCH, Japan).

Anti-Biofilm Activity
The anti-biofilm activity of free and niosome-encapsulated
streptomycin sulfate against biofilms of S. aureus, E. coli, and
P. aeruginosa was done using a microtiter plate–based crystal
violet (CV) assay (Behdad et al., 2020). First, 180 μl of Mueller
Hinton broth (MHB) culture medium and 20 μl of pathogenic
bacteria were added to each well to an OD 600 at 0.6, and the
mixture was incubated for 48 h at 37°C at 120 rpm to allow
biofilm formation. Then 100 μl of niosomal streptomycin and
free streptomycin at the MIC level, free niosome, and free MHB
medium (negative control) were added. The plates were then
incubated at 37°C for 24 h. Afterward, the supernatants were
removed and the wells washed with 300 μl PBS to remove non-
adherent cells from the wells. The plates were then air-dried. The
biofilms were fixed with 175 μl 2% sodium acetate and stained
with 175 μl 0.1% violet crystal for 30 min in the dark. The wells
were then washed with PBS to remove excess dye. Finally, 200 μl
of ethanol was added to the wells, and their absorption was read at
570 nm.

Cytotoxicity Study
To investigate cytotoxicity of free streptomycin sulfate, free
niosome, and streptomycin sulfate–loaded niosome towards
the human foreskin fibroblast (HFF) normal cell line, the
colorimetric MTT [(3-(4, 5-dimethylthiazol-2-yl)-2, 5-
diphenyl-tetrazolium bromide] assay was used. In brief, the
HFF cells were seeded into 96-well plates for 24 h at 37°C.
Then, various concentrations of free streptomycin sulfate, free
niosome, and streptomycin sulfate–loaded niosome were added
into each well. After incubation time, 100 µl of MTT dye was
added to the wells and incubated for 4 h at 37°C. Subsequently,

100 µl of DMSO was added, and the absorbance was measured at
570 nm using a microplate reader (AccuReader, Metertech,
Taiwan), and the cell survival rate was calculated by the formula:

Cell viability(%) � Optical density of sample/Optical density of control × 100.

For control, HFF cells were incubated with the Dulbecco’s
modified Eagle medium (DMEM) without the test sample (Ali
et al., 2010).

Statistical Analysis
A Statistical analysis was performed using Design-Expert 7.0.10
software (Stat-Ease Inc., United States) and IBM SPSS Statistics
version 24. ANOVA was used to compare multiple samples, and
the p value < 0.05 was considered significant.

RESULTS AND DISCUSSION

Niosomal Formulations and
Physicochemical Properties
In the structure of the niosomes, the size of the vesicles and the
efficiency of streptomycin sulfate encapsulation are highly
dependent on the type of surfactant and the ratio of surfactant
to cholesterol. For a suitable drug delivery system, it is desired to
have a small size and a high encapsulation efficiency (EE)
(Moghaddam et al., 2021; Moghtaderi et al., 2021). A variety
of niosomal formulations synthesized with different ratios of
surfactant to cholesterol and Span 60 to Tween 60 were prepared
and compared (Table 1). It was found that with the same Span
60-to-Tween 60 ratio, an increasing surfactant-to-cholesterol
ratio led to a larger nano-vesicle size and lower EE. The
minimum size was at low levels of the Span 60-to-Tween 60
and surfactant-to-cholesterol ratios as shown in the three-
dimensional graph (Figure 1A). The maximum EE of nano-
vesicles was found at the high Span 60-to-Tween 60 ratio and low
levels of the surfactant-to-cholesterol ratio (Figure 1B). The
lowest PDI was found at low Span 60-to-Tween 60 and high
surfactant-to-cholesterol ratios (Figure 1C).

As mentioned, Span and Tween are non-ionic surfactants that
have many advantages such as improved stability, broad
compatibility, and flexibility of formulation. Due to the weak
rigidity of Tween 60 and the high lipophilicity of Span 60, proper
confinement of cholesterol and surfactant (Span 60:Tween 60) in
a 1:1 M ratio can lead to the density of niosome films
(Junyaprasert et al., 2012; Ghafelehbashi et al., 2019). By the
combination of Span and Tween in different ratios, systems with
a wide range of hydrophobic–lipophilic balance (HLB) are
produced. In addition, studies have shown that high transition
temperatures of Span and Tween 60 provide high levels of drug
encapsulation (Bharti et al., 2012; Taymouri and Varshosaz,
2016). Increasing the amount of cholesterol increases the lipid
profile and stability of the two layers and results in reduced
permeability, so that the drug can be trapped more effectively in
the vesicles. However, excessive amounts of cholesterol make the
drug and cholesterol compete for the space between the two
layers, and consequently, the drug cannot enter the structure
(Balakrishnan et al., 2009). It was reported that a 1:1 M ratio of
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cholesterol to surfactant results in a high EE formulation (Rochdy
Haj-Ahmad et al., 2015). The PDI value is an estimate of the
particle distribution and their heterogeneity, which is measured
between 0 and 1 (Moghassemi et al., 2015). The uniform particles
have better distribution and less tendency to accumulate
(Waddad et al., 2013).

Based on the data shown in Table 2, multi-criteria
optimization was performed by using the desirability function
to obtain the optimal formulation (Derringer and Suich, 1980;
Esfahani et al., 2019; Shabani et al., 2020). According to the
desired parameters, the predicted optimal formulation was
calculated and compared with the experimentally obtained one
(Table 3). It was found that both predicted and empirically
obtained formulation showed similar values, with the latter
having a size of 97.8 nm, a polydisperse index of 0.27, and an
encapsulation efficiency of 86.7%.

Morphological Characterization
A field emission scanning electron microscope (FE-SEM) was
used to investigate the morphology of the synthesized niosomes. It
was observed that the streptomycin sulfate–containing niosomes
were perfectly spherical in morphology, with a smooth surface
(Figure 2). The average particle size for the synthesized niosomes
is approximately 20–40 nm, which is less than the size obtained by
the light scattering method. This difference could be because the
FE-SEM shows the nanoparticle size in the dried form (actual
nanoparticle size), while DLS measures the hydrodynamic
diameter, which may include any molecule (such as like ions
or water molecules) attached to the nanoparticle surface.

Multilayer niosomes were observed using an FE-SEM, which
has been reported previously. Niosomes prepared by thin-layer

FIGURE 1 |Response surfaces for (A) average diameter, (B) entrapment efficiency (EE), and (C) polydispersity index (PDI) as an outcome of Span 60-to-Tween 60
and surfactant-to-cholesterol molar ratios.

TABLE 2 | Desirability criteria and predicted values for independent variables.

Number Span 60:Tween 60 Surfactant:cholesterol Desirability

1 1.50 1.02 0.80

TABLE 3 | Comparison of the empirical and predicted values for the optimized
niosomal formulation.

Source Z-average PDI EE

Predicted 118.8 0.25 85.5
Empirical 97.8 ± 5.0 0.27 ± 0.03 86.7 ± 1.1
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hydration is usually multilayer vesicles below 100 nm with
suitable particle distribution that can confine a large amount
of drug and slower drug release (Hope et al., 1986; Akbari et al.,
2015; El-Sayed et al., 2017).

Stability Study
During storage, the niosomes can swell/break down or are
affected by steric/repulsion forces. Here, we investigated the
stability of the synthesized niosomes at 4 and 25°C for 60 days.
It was found that samples stored at 4°C had better stability in
terms of size, PDI, and EE than those stored at 25°C during the
60-day storage (Figure 3). There was a significant difference in
the size of the niosomes kept at two temperatures, and the size
increase for the samples stored at 4°C was slower than the
corresponding sample at 25°C, which could be due to less
mobility of the niosomes at 4°C (Lawrence et al., 1996;
Balasubramaniam et al., 2002; Akbarzadeh et al., 2020b).
Studies have also shown that the size of formulations can

affect the stability of the system because, according to the
theory of thermodynamics, smaller niosomes contain excess
energy, which makes them unstable. The high leakage of the
drug at 25°C can also be caused by the higher fluidity of the lipid
vesicles at high temperature (Pardakhty et al., 2011; Akbarzadeh
et al., 2020b; Akbarzadeh et al., 2020c).

In Vitro Drug Release
The drug release rate is an essential factor for upgrading drug
delivery systems. The release of encapsulated drugs within the
niosomes can be optimized for controlled drug release over
the long term (Tarekegn et al., 2010). Here, we compared the
release profile of the streptomycin sulfate–soluble form and
the encapsulated niosome form in the PBS medium for 72 h. It
was found that the streptomycin sulfate release from the
nano-carrier (66.4 ± 1.3%) was lower than the drug
solution (97.8 ± 1.12%) during 72 h of release (Figure 4).
Thus, encapsulation of streptomycin sulfate in the niosome
reduced the release burst and allowed more sustainable and

FIGURE 2 | Morphological characterization of optimized niosomes
by SEM.

FIGURE 3 | Effect of different temperatures of storage on the average diameter (A), polydispersity index (PDI) (B), and streptomycin sulfate encapsulation efficiency
(EE%) (C) n � 3, *p value < 0.05, **p value < 0.01, and ***p value <0.001.

FIGURE 4 | The release profile of free and optimized niosomal
formulation of streptomycin sulfate. Each point represents the mean ± SD
(n � 3).
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TABLE 4 | Release kinetic models and the parameters obtained for niosomal formulations.

Release model Equation R2

Streptomycin sulfate solution Streptomycin
sulfate–loaded niosome

Zero-order Ct � C0 + K0t R2 � 0.62 R2 � 0.79

Korsmeyer–Peppas Mt/M∞ � Kt.t
na R2 � 0.85 R2 � 0.94

n � 0.43 n � 0.52

First-order LogC � LogC0+Kt/2.303 R2 � 0.88 R2 � 0.85
Higuchi Q � KH√t R2 � 0.79 R2 � 0.92

aDiffusion or release exponent.

FIGURE 5 | MIC (A) and MBC (B) of free and niosome-encapsulated streptomycin sulfate. n � 3.

FIGURE 6 | Antibacterial activity of free streptomycin and encapsulated streptomycin against pathogenic bacteria: S. aureus (A), E. coli (B), and P. aeruginosa (C)
measured by optical density as a function of time (72 h). Each point corresponds to a mean ± SD with three replicates per condition.
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prolonged release. It has been previously reported that the
release profile of niosomes can have two steps: the first is faster
and the second is slower (Paolino et al., 2008; Akbarzadeh
et al., 2020c). The rapid release of the drug in the first stage is
due to the excretion of the drug from the outer surface of the
niosome, and the slower release in the second stage is due to
the penetration of the drug through the niosome (Manosroi
and Bauer, 1989). Other factors contributing to the release can
be components of the niosomes. As the amount of cholesterol
in the niosomes increases, the amount of drug release from the
vesicles decreases because, at higher cholesterol levels, the
movement of the bilayer cannot eliminate osmotic changes
and lead to the released drugs absorbed to the niosomal
surface (Liang et al., 2004; Ruckmani and Sankar, 2010;
Hedayati Ch et al., 2020; Sadeghi et al., 2020). In addition,
as the surfactant chain length increases, drug release can
continue for a longer period because the transfer
temperature can affect the surfactants and make them
completely fluid, thereby providing greater penetration of
the drug at 37°C (Ruckmani et al., 2000; El-Ridy et al., 2018).

Different models were evaluated to fit the release kinetics of
streptomycin sulfate from the optimal niosomal formulation
(Table 4). Based on the model parameters and the coefficient
of determination (R2) for each model, the release for niosomal
formulation was found to follow the Korsmeyer–Peppas model,
where the N obtained values (n < 0.45) indicate that the Fickian
diffusion mechanism determines the release of streptomycin
sulfate molecules from the niosomal formulation (Korsmeyer
et al., 1983).

Antimicrobial Activity
We further investigated the antimicrobial activity of the
synthesized niosomes by measuring minimum inhibitory
concentration (MIC) and minimum bactericidal concentration
(MBC). Free niosome, free streptomycin sulfate, and
streptomycin sulfate–loaded niosomes against S. aureus,
E. coli, and P. aeruginosa were tested. The streptomycin
sulfate–loaded niosomes showed a higher antibacterial effect
against all studied pathogenic bacteria than free streptomycin
sulfate, with the MIC values decreased between 4- and 8-fold
(Figure 5). Furthermore, lower MBC was found for the
streptomycin sulfate–containing niosomes than for the free
streptomycin sulfate. These results suggest that lower
concentrations of niosomal streptomycin sulfate are needed to
inhibit bacterial growth than free streptomycin sulfate. This could
be caused by the possibility that niosomes can protect drug
against the effects of bacterial enzymes and facilitate niosome
fusion with the bacterial membrane, as reported previously
(Mugabe et al., 2005; Moammeri et al., 2021; Moghtaderi
et al., 2021).

To investigate the killing profile of the synthesized niosomes,
we next performed the time-kill assay against S. aureus, E. coli,
and P. aeruginosa with sublethal concentrations (half of the MIC
shown in Figure 5). During the 72-h test, the loaded niosomes
displayed highest antibacterial activity compared to the unloaded
niosomes and free streptomycin (Figure 6). The results further
demonstrate that the direct interaction of the niosomal carrier
with bacteria (likely cell membrane) could be a reason for the

FIGURE 7 | Anti-biofilm activity of free and niosome-encapsulated
streptomycin sulfate against selected pathogenic bacterial biofilms at their
minimal inhibition concentrations shown in Figure 5. Biofilms were formed in a
96-well microplate and, consequently, treated for 24 h at 37°C. The
remaining biofilm was quantified by CV staining and compared with the
untreated one. Data represent the mean ± SD (n � 3). Error bars represent
standard deviations. The levels of significant difference are denoted by *p
value < 0.05, **p value < 0.01, and ***p value < 0.001.

FIGURE 8 | Cytotoxicity of free and niosomal streptomycin sulfate in
different concentration against HFF after 24 h. ***p < 0.001, **p < 0.01,
*p < 0.05.
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greater antibacterial property in the niosomes, as reported
previously (Zille et al., 2015; Raza et al., 2016; Ghafelehbashi
et al., 2019; Moghtaderi et al., 2021).

Anti-Biofilm Activity
Since biofilm is a prevalent factor causing antimicrobial
resistance and accounts for 65–80% of all infections (Macià
et al., 2018), the fabricated niosomes here were investigated for
their efficacy against biofilms of S. aureus, E. coli, and P.
aeruginosa with MIC shown in Figure 5. It was revealed that
streptomycin-loaded niosomes reduced significantly the
preformed biofilm in comparison to the free streptomycin
(Figure 7). Previously, it has been reported that niosomal
vesicles, due to their cationicity, interact electrostatically with
the negatively charged biofilms; the drug can be released into the
biofilm structure. Thus, niosomes are excellent carriers for
delivery of antimicrobial drugs for eradication of biofilms.
Previously, Kashef et al. studied the anti-biofilm effects of
ciprofloxacin-containing niosomes against S. aureus biofilm
and showed that niosome encapsulation reduced the
minimum biofilm eradication concentration of ciprofloxacin
by 2- to 4-fold compared to free ciprofloxacin (Kashef et al.,
2020). In this work, even with 4- to 8-fold lower MIC of the free
streptomycin (Figure 5), encapsulation allowed more efficient
removal of the biofilm (Figure 7). This result once more
demonstrates the power of niosomes.

Cytotoxicity
The free and encapsulated streptomycin was evaluated for their
cytotoxicity toward the HFF using the MTT assay. The cells
exposed to medium only were used as control, and their
viability was set to 100%. The cytotoxic cutoff was set as
70% of the viable cells in the control. It can be noticed that
the niosome-encapsulated streptomycin had low toxicity (cell
viability above 70%) to the HFF cells within the tested
concentrations up to 1,300 μg/ml after 24 h, whereas free
streptomycin exhibited toxicity with a concentration at
1,300 μg/ml (Figure 8). The lower toxicity of the niosome-
encapsulated streptomycin than the free drug may be due to
the use of surfactants (Span and Tween) in the niosomes,
which are highly biocompatible (Marianecci et al., 2010;
Shaker et al., 2015). The lower toxicity can also be caused
by the lower release of streptomycin from niosome than the
free form (Figure 4): after 24-h interaction, only about half of
streptomycin was released from niosomes compared with that
from the free form. Consequently, slightly higher cytotoxicity

was observed for the free form than the niosome form
(Figure 8), with about 70% cell viability for the former and
80% for the latter at the highest tested concentration. The low
toxicity of niosomal carriers can be an ideal proposition in
clinical applications.

CONCLUSION

In this study, the optimal niosomal formulation was designed and
synthesized for streptomycin sulfate, with the highest
encapsulation efficiency but a minimum size and low PDI.
The optimized niosomal formulation exhibited controlled drug
release and antibacterial effects against both Gram-positive and
-negative strains. In addition to increased antibacterial activity of
drug-containing nano-carriers, the niosomes showed reduced
toxicity to normal cells compared to free streptomycin sulfate.
The results of this study can lead to a new therapeutic process in
the improvement and treatment of infection. It is envisaged that
further in vivo studies shall be performed to investigate the
function of this nanostructure in treatment of microbial
infections.
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