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Extracelluar matrix (ECM) proteins create complex networks of macromolecules which fill-
in the extracellular spaces of living tissues. They provide structural support and play an
important role in maintaining cellular functions. Identification of ECM proteins can play a
vital role in studying various types of diseases. Conventional wet lab–based methods are
reliable; however, they are expensive and time consuming and are, therefore, not scalable.
In this research, we propose a sequence-based novel machine learning approach for the
prediction of ECM proteins. In the proposed method, composition of k-spaced amino acid
pair (CKSAAP) features are encoded into a classifiable latent space (LS) with the help of
deep latent space encoding (LSE). A comprehensive ablation analysis is conducted for
performance evaluation of the proposed method. Results are compared with other state-
of-the-art methods on the benchmark dataset, and the proposed ECM-LSE approach has
shown to comprehensively outperform the contemporary methods.

Keywords: extracellular matrix (ECM), auto-encoder, composition of k-spaced amino acid pair (CKSAAP), latent
space learning, neural network, classification, amino acid composition (AAC)

1 INTRODUCTION

Extracelluar matrix (ECM) is a network of fibrous proteins filled in the extracellular spaces of living
tissues to provide structural support for the cells (Karagöz et al., 2021). It is significant for cell
functionality and plays an important role in the physiological dynamics. ECMs are also responsible
for the promotion of vital cellular processes, including differentiation, adhesion, proliferation,
apoptosis, and migration (Klavert and van der Eerden, 2021; Hiraki et al., 2021; Mathews et al., 2012;
Endo et al., 2012; Kim et al., 2011). The chemical composition of ECM mainly consists of minerals,
proteoglycans, proteins, and water. The proteins in ECM act more like a fibrous material which gives
strength to the cells. Several studies have demonstrated that themutation in the ECM genes can cause
severe adverse effects in the cell structure resulting in a number of diseases, including arthritis and
cancer (Kizawa et al., 2005; Hu et al., 2007).

Functional research on ECM protein has resulted in the development of useful biomaterials which
are used in many fields of medicine, such as tissue engineering and cell therapy (Ma et al., 2019;
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Gonzalez-Pujana et al., 2019). Proteins, in general, are active
elements and play a variety of roles depending on their residing
location in a cell. Likewise, the functionality of the ECM varies
with the change in the proteins. The problem of protein
localization is therefore considered to be an important step
toward the understanding of protein functionality (Horton
et al., 2007). Identification of subcellular location is however
considered to be a nontrivial task and requires extensive
experimentation which is prohibitively expensive. Therefore, a
variety of computational methods have been developed to
facilitate the process (Ras-Carmona et al., 2021; Wang et al.,
2021; Chou, 2011). In particular, for different species of plants,
animals, and microorganisms, a number of useful techniques
have been explored (Zhao et al., 2021; Hou et al., 2021; Chou et al.,
2012; Otzen et al., 2021; Wu et al., 2011; Asim et al., 2021; Xiao
et al., 2011; Shen et al., 2021; Wu et al., 2012; Lewis et al., 2014).
Bioinformatics methods, with the aid of machine learning
algorithms, have demonstrated adequate performance for a
variety of applications. A detailed review of computational
methods to classify secreted proteins has been provided by
Klee and Sosa (2007). Typically, three aspects are focused on
the development of a computational method: 1) feature
extraction—in which the peptide sequence is translated/
encoded into a numerical format to make them readable by
the model, 2) feature selection—which is concerned with the
removal of the redundant information from the feature space and
results in the model’s robustness, and 3) model construction and
evaluation—which includes development of a prediction model,
followed by training and testing steps to evaluate performance.

The first benchmark in-silico approach to predict the
extracellular proteins was presented by Jung et al. (2010)and
was named as ECM protein prediction (ECMPP). The research
used the feature augmentation method and crafted a feature set of
91 attributes. One of the limitations of the study was the use of a
small dataset for performance evaluation; also, only the receiver-
operating characteristics (ROC) were used for the performance
evaluation. Since then, many researchers have paid attention
toward the development of machine learning methods for
ECM prediction. As extracellular matrix proteins are linked to
the outer surface of the cell, they have close association with its
secretory mechanism and are naturally associated with the
secretary proteins. Therefore, it is reasonable to consider
possible ECM candidates as a subset of secretary proteins
(Kandaswamy et al., 2010; Bendtsen et al., 2004; Horton et al.,
2006). Based on this knowledge, Kandaswamy et al. (2013)
improved the ECM prediction method and presented
EcmPred. EcmPred (Kandaswamy et al., 2013) used a random
forest (RF)–based classifier which was trained on the
combination of sequence-derived properties of the proteins
including individual and group frequencies of amino acids
with the physicochemical properties. Another method named
prediction of ECM (PECM) (Zhang et al., 2014) utilized a
handcrafted feature set designed by the combination of the
most discriminative attributes of the protein sequences
including evolutionary and structural information as well as
the physicochemical properties of the peptide sequences. An
incremental feature selection (IFS) method was employed for

the selection of optimal features which were used to train a
support vector machine (SVM)–based classifier. Several other
methods have also been proposed to serve the task of ECM
prediction. None of them, however, focuses on the encoding of
sequence-driven feature into a classifiable latent-space (LS). The
primary objective of latent space–based learning is to design a
reduced feature space for clustering of proteins. The LS is,
therefore, a representation of the input signal in a reduced
space. The latent-space encoding (LSE) is based on an
assumption of a low-rank input (i.e. highly redundant) which
can be compressed to a low dimensional signal using LSE. The
process is considered to be reversible as the original signal could
be reconstructed from the LS. The details of LS and LSE have been
provided in the Subsection 2.4.

Development of a feature space and selection of the best
features are fundamental steps in designing machine learning
models (Lyu et al., 2021). In particular, for the protein sequence
classification task, a variety of feature extraction techniques have
been proposed including amino acid composition (AAC),
dipeptide composition (DPC), N-segmented sequence features,
physicochemical composition, and secondary structure features
(Naseem et al., 2017; Khan et al., 2018; Kandaswamy et al., 2011).
The sole purpose of each feature extraction technique is to encode
maximum useful information from a variable length protein
sequence into a fixed-sized vector. In the recent past, inspired
by the success of deep long short-term memory (LSTM) models,
some approaches similar to word2vec (Mikolov et al., 2013) have
been proposed to successfully learn latent space encoding directly
from variable length sequences (Ding et al., 2019). The direct
sequence to latent space encoding method produces good
generalization models (Zemouri, 2020); however, they usually
rely on the availability of a large training dataset. Furthermore,
the direct extraction of latent space features from a limited
number of sequences such as, bioluminescence (Zhang et al.,
2021), antioxidant (Olsen et al., 2020), ECM (Kabir et al., 2018),
antifreeze proteins (AFPs) (Kandaswamy et al., 2011), or other
classes of proteins is a challenging problem. In this study, we
propose a hybrid approach where all proteins are first encoded
into a large feature set obtained through composition of k-spaced
amino acid pair encoding. A latent space representation of
composition of k-spaced amino acid pairs (CKSAAP) is
learned which can help to design a robust classifier. This
eliminates the need for separately developing the classifier and
the feature extraction modules, and a stand-alone model
effectively learns the distinguishing characteristics of classes on
a lower dimensional feature space.

The rest of the article is organized as follows: the classification
framework of the proposed method is presented in Section 2,
followed by the extensive experimentation and discussion in
Section 3, and the study is concluded in Section 4.

2 METHODS

2.1 Evaluation Metrics
For proper evaluation of the proposed model, a number of
standard performance metrics have been used. The most
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intuitive performance measure is accuracy; however, for a highly
imbalanced dataset (which is the case here), accuracy is not
reflective of true performance. Therefore, various evaluation
parameters, such as sensitivity, specificity, and Matthew’s
correlation coefficient (MCC) are reported. Youden’s index
and balanced accuracy are also considered to be important
evaluation metrics for imbalanced data and are, therefore,
extensively explored in this research.

2.2 Dataset
To design the proposed method, we used the benchmark dataset
provided in Kandaswamy et al. (2013). The dataset consists of 445
ECM proteins and 3,327 non-ECM proteins. The 445 ECM
proteins were curated from Swiss-Prot release 67 by first
filtering 1103 ECM proteins from the pool of
17,233 metazoan-secreted protein sequences. Similarly, the
negative dataset of 16,130 proteins were curated from
secretory proteins that are annotated as non-ECM. Later, 445
ECM and 4,187 non-ECM nonhomologous sequences were
further filtered out with the help of a clustering method (Li
et al., 2001) by removing the sequences which showed 70% or
higher similarity.

2.3 Feature Extraction
2.3.1 Composition of K-Spaced Amino Acid Pairs
One of the fundamental steps in designing a machine learning
approach is the transformation of protein sequences to a
numerical format. Several methods of this transformation exist
and the resultant encoded vectors of the sequences are treated as
the features. The common approach practiced by several
researchers is to acquire various features of the same sequence
by employing different encoding schemes, and their combination
is utilized for training the machine learning algorithm. This
laborious approach has resulted in the performance
enhancement of some classifiers (Yu and Lu, 2011; Xiaowei
et al., 2012; Yang et al., 2015; Xiao et al., 2016); however,
some recent studies show that utilizing a single expedient-
encoding scheme such as CKSAAP, which captures both
short- and long-range interaction information between
residues along the sequence, can result in an equally improved
classification performance (Ju and Wang, 2018; Chen et al., 2019;
Usman and Lee, 2019).

The CKSAAP scheme works on the simple principle of
counting the occurrence frequencies of k-spaced amino acid
pairs in the protein sequence. Each k-spaced amino acid pair
represents the residue pair separated by any arbitrary number k
(j � 0, 1, 2 . . . k) of amino acid residues. For k � 0, the encoding is
similar to the DPC, in which protein sequence of 20 types of
amino acids yields a feature vector of (20 × 20) � 400 types of
amino acid pairs (i.e., AA, AC, AD, . . . YY)400. In earlier studies it
has been suggested that the DPC and higher-order peptide
features can be used to design a robust protein sequence
classifier (Kandaswamy et al., 2011; Khan et al., 2018; Pratiwi
et al., 2017). From Figure 1, it can be seen that for higher values of
k, substantial neighborhood information is gathered for large
peptide pairs. For instance k � 2, three feature segments, each
having a length of 400, are obtained. These are then concatenated

to get the final feature vector of length (k + 1) × 400. The graphical
representation of the CKSAAP feature vector obtained with k � 2
has been depicted in Figure 1.

This efficient method of encoding has, therefore, been favored
by a number of researchers in various applications of
computational biology including the prediction of anticancer
peptides (Li et al., 2020), DNA, and several other binding sites
(Ju and Wang, 2020; Lyu et al., 2020). Many adaptations of
CKSAAP encoding scheme have utilized only the features
generated by a single k value. In this research, we aim to find
the optimal value of k by analyzing different combinations of the
features generated by CKSAAP, and details are presented in
Subsection 3.1.

2.4 Latent Space Learning for ECM
Classification
Feature representation ability of the CKSAAP improves with large
values of the parameter k, which is expected to result in a more
robust model (Park et al., 2020b; Usman and Lee, 2019; Wu et al.,
2019; Chen et al., 2017). However, the model utilizing a large
number of features is susceptible to noise, resulting in a degraded
performance. Furthermore, training the model on a large number
of features not only results in an increased training time and
complexity but is also prone to overfitting. To which end, feature
selection/engineering, which involves the selection of most
significant features, has to be employed. Feature selection
techniques are broadly categorized into two types: 1)
supervised methods, which remove the irrelevant features based
on a target variable, and 2) unsupervised methods, which use
correlation techniques to remove redundant information. A
number of methods for feature selection have been proposed in
the literature, including minimum redundancy maximum
relevance (mRMR) (Peng et al., 2005), student’s t test (Student,
1908), info-gain (Mitchell et al., 1997), and generalized variant of
strictly standardized mean difference (GSSMD) (Park et al.,
2020a). Another useful method is to map the original data into
a lower-order dimensional space through some transformation
function. The eigen-space transformation or the principal
component analysis method (PCA) (Jolliffe, 1986) is considered
to be the benchmark method in this context. Other approaches
such as an independent component analysis (ICA) (Comon,
1994), a kernel principal component analysis (KPCA)
(Schölkopf et al., 1998), uniform manifold approximation and
projection (UMAP) (McInnes et al., 2018), and t-distributed
stochastic neighbor embedding (t-SNE) (Van der Maaten and
Hinton, 2008) are also being successfully used to deal with the
curse of dimensionality.

Most of the techniques mentioned above are unsupervised in
nature. To address this issue, we propose to use a novel approach
called a deep latent space encoding (DeepLSE) classifier for the
latent space encoding based on an auto-encoder. Latent space
refers to the representation of compressed data in which similar
points would be in a close group, as shown in Figure 5. Similar
samples tend to have common significance, which can be
packaged into the latent space representation of the raw data.
Thus, as the dimensions are reduced, the redundant information
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from the input samples is removed, leaving only the most
important features of the data. In other words, the method
can learn a compact representation of feature space and
remove the noisy or potentially confusing information which
is good for both the classification and reconstruction tasks. This
ensures that the encoded features truly represent the sample
information. The DeepLSE method has been found to be an
impressive method for the feature space reduction and has
outperformed other approaches in relatively similar tasks such
as AFP-LSE (Usman et al., 2020) and E3-targetPred (Park et al.,
2020b). The architecture of the proposed method is depicted in
Figure 2 named as ECM-LSE.

2.4.1 Network Specifications
The architecture of the proposed ECM-LSE network is composed
of two modules: 1) an auto-encoder module and 2) a classification
module.

2.4.1.1 Auto-Encoder Module
The auto-encoder is a type of neural network that can act as an
identity function. It is used to find the representation of the input
signal in a reduced dimensional space, known as the latent space.

The principle of latent space–based representation is an
assumption that the input signal has a low-rank. The auto-
encoder network has a decoder that tries to regenerate the
input from the latent space variables. During the training of
an auto-encoder, the model is forced to become an identity
function. Due to which only the relevant features of the data
are learned in a compressed representation. This compressed
representation has sufficient information for accurate
reconstruction of the original input signal. The number of
hidden layers and the number of neurons in each layer of the
encoder and decoder are varied to obtain reasonable
performance. In this research, the encoder and decoder are
composed of three layers each, including two hidden layers.
The number of neurons in the input layer of the encoder is
equal to the length of the attribute vector. The number of neurons
in the first and second hidden layers is set to be 50 and 10,
respectively. The decoder is a mirror symmetry of the encoder.
The number of neurons in the output layer of the decoder is equal
to the length of the attribute vector. The number of neurons in the
latent space is systematically altered to obtain the best
performance for which we designed an ablation study
discussed in Section 3.1. All hidden layers of the auto-encoder

FIGURE 1 | CKSAAP feature extraction mechanism for k � 2. Extracted from Usman et al. (2020).
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module are equipped with batch normalization, 30% dropout,
and a rectified linear unit (ReLU) activation function. The latent
space layer uses sigmoid activation function without any batch
normalization and dropout.

2.4.1.2 Classification Module
The output of the encoder module (latent variables) is used as an
input to the classification module. The classifier module shown in
Figure 2 consists of four layers (three hidden and one output
layer). All hidden layers consist of 10 neurons and a ReLU
activation function. The last layer consists of two neurons
representing the positive (ECM) and the negative (non-ECM)
classes. For decision making, softmax activation function was
used at the output layer.

3 RESULTS

To develop a neural network model, the benchmark dataset was
divided into the train, validation, and test datasets. For training,
we formed a dataset consisting of 540 samples with equal
number of ECMs and non-ECM protein samples. These were

randomly selected from the pool of 445 ECMs and 3,327 non-
ECMs, since the available dataset is very small, and it is highly
likely that the model would suffer from the overfitting problem.
To avoid such situation, we employed regularization techniques
such as early stopping, dropout, batch normalization, and
DeepLSE-based feature encoding. Furthermore, the validation
dataset was also used with the aim of designing a generalized
classifier module. The validation dataset consists of 30 ECMs
and 810 non-ECMs randomly selected from the remaining 175
ECMs and 3,182 non-ECMs, respectively. The remaining 145
and 2,247 samples of ECMs and non-ECMs were used in the test
dataset. Several model configurations on the basis of the latent
space size (LVs) and the CKSAAP gap value k were evaluated.
For each choice of model configuration, the process of model
training was repeated 20 times and mean and standard
deviations of performance statistics were reported. In each
trial, the weights and bias of the model were randomly
initialized. Also, each trial utilized randomly configured
subsets from the training, validation, and test dataset. The
validation process assisted toward the filtration of the
overfitted models, that is, only the models with 75% or
higher validation balanced accuracy was selected.

FIGURE 2 | Proposed DeepLSE architecture for ECM classification. Themodel comprises of an encoder, a decoder, and a classifier module. The encoder consists
of an input layer and two hidden layers that embed input features to latent variables (LVs). The decoder architecture is mirror symmetry of the encoder which uses LVs as
its input and generates the decoded output. The classificationmodule uses latent space features as its input and four layers of fully connected neurons. Each hidden layer
has 10 neurons, except for the last layer which produces a one-hot–encoded output of ECM/non-ECM class.
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3.1 Ablation Study
The workflow of the proposed study is aimed to obtain the best
classification model based on two variables, that is, the gap
between the two amino acid pairs and the number of units in
the latent space LVs. An ablation study has been designed to
acquire models with varying number of aforementioned variables
and is depicted in Figure 3 (a). The samples are distributed into
training, validation, and test datasets as discussed in the
Subsection 2.2 and are encoded with incrementing values of k
from 0 to 10. The resultant features are used to train the model
with incrementing values of the latent space variables ranging
from 2 to 9. As discussed earlier, for each configuration, 20
independent trials are performed and the mean results are
computed. A consistent procedure is repeated for all 1,760

trials of the 88 unique model configurations. The model with
the best average results is finally selected as the base model to
perform prediction and is named as ECM-LSE. In Table. 1, the
average results of the balanced accuracy have been reported. It
can be observed that the model with values of gap k � 8 and latent
variables LV � 7, accounts for the best. The results for the rest of
the evaluation parameters are illustrated in the form of surface
graphs in Figure 4.

3.2 Comparison With Contemporary
Approaches
The performance of the proposed model is compared to the
benchmark approaches and the findings are reported in Table 2.

FIGURE 3 | Workflow of the proposed ECM-LSE method.

TABLE 1 | Balanced accuracy results of ablation study on Gap (k) and LV parameters.

Gap/LV 2 3 4 5 6 7 8 9

k � 0 0.779 ± 0.022 0.776 ± 0.027 0.768 ± 0.026 0.758 ± 0.034 0.760 ± 0.028 0.767 ± 0.015 0.769 ± 0.029 0.775 ± 0.027
k � 1 0.795 ± 0.025 0.786 ± 0.030 0.780 ± 0.027 0.788 ± 0.020 0.785 ± 0.030 0.784 ± 0.038 0.765 ± 0.034 0.783 ± 0.030
k � 2 0.803 ± 0.021 0.788 ± 0.036 0.793 ± 0.025 0.789 ± 0.029 0.793 ± 0.024 0.796 ± 0.030 0.795 ± 0.021 0.798 ± 0.027
k � 3 0.791 ± 0.031 0.797 ± 0.029 0.808 ± 0.015 0.812 ± 0.018 0.814 ± 0.028 0.803 ± 0.027 0.803 ± 0.030 0.799 ± 0.32
k � 4 0.785 ± 0.028 0.790 ± 0.047 0.809 ± 0.021 0.816 ± 0.026 0.797 ± 0.029 0.786 ± 0.026 0.803 ± 0.021 0.797 ± 0.037
k � 5 0.822 ± 0.018 0.799 ± 0.032 0.803 ± 0.035 0.813 ± 0.025 0.800 ± 0.031 0.826 ± 0.021 0.802 ± 0.023 0.811 ± 0.019
k � 6 0.808 ± 0.046 0.805 ± 0.023 0.817 ± 0.021 0.814 ± 0.026 0.810 ± 0.027 0.814 ± 0.022 0.803 ± 0.021 0.805 ± 0.031
k � 7 0.813 ± 0.032 0.824 ± 0.033 0.812 ± 0.029 0.806 ± 0.024 0.824 ± 0.027 0.818 ± 0.029 0.808 ± 0.041 0.801 ± 0.022
k � 8 0.811 ± 0.029 0.805 ± 0.039 0.807 ± 0.034 0.815 ± 0.021 0.816 ± 0.021 0.830 ± 0.021 0.814 ± 0.029 0.816 ± 0.026
k � 9 0.796 ± 0.034 0.813 ± 0.022 0.804 ± 0.029 0.814 ± 0.026 0.811 ± 0.034 0.824 ± 0.032 0.809 ± 0.025 0.798 ± 0.034
k � 10 0.819 ± 0.037 0.821 ± 0.021 0.817 ± 0.034 0.823 ± 0.021 0.817 ± 0.027 0.807 ± 0.025 0.819 ± 0.025 0.816 ± 0.031
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For a fair comparison, only the best reported results of the
respective approaches are presented. The performance of the
proposed ECM-LSE is compared with the contemporary methods
including EcmPred (Kandaswamy et al., 2013), a sparse learning
approach for the prediction of ECM (ECMSRC) (Naseem et al.,
2017), and PECM (Zhang et al., 2014). In particular, the reported
sensitivity, specificity, MCC, Youden’s index, and accuracy on the
benchmark dataset of EcmPred (Kandaswamy et al., 2013) are
compared.

The results clearly show that the proposed method has better
balanced accuracy as compared to the contemporary approaches.
In particular, the proposed ECM-LSE method achieves the
highest sensitivity of 84.14% outperforming the best
competitor (PECM) by a margin of 10.91%. The specificity
value achieved by the proposed ECM-LSE also compares
favorably with other methods, which confirms the balanced
unbiased learning effect. It is noteworthy to point out that the
accuracy metric cannot provide true fitness of the models given
the skewed distribution of test dataset toward the negative (non-
ECM) class. Any model with all negative predictions can achieve

100 × 2247
145+2247 � 93.94% accuracy easily. As discussed in

Subsection 2.1, the parameters of balanced accuracy, MCC,
and Youden’s index are considered more reliable in the case of
imbalanced dataset. Therefore, despite achieving 86.35% test
accuracy, which is 0.17% lower than the PECM, better
balanced accuracy and Youden’s index values, which is 3.93%
and 0.08 units higher, respectively, demonstrate the superiority of
the proposed method. Similarly, the MCC value achieved by
ECM-LSE is 7.63% higher than the PECM method. MCC metric
is preferred for accuracy and is considered as more reliable
statistical parameter because it produces a higher value only if
the classifier achieved good results in all four categories of the
confusion matrix (Chicco and Jurman, 2020). In general, the
proposed ECM-LSE approach has shown to comprehensively
outperform the contemporary methods in all aspects of balanced
and unbiased prediction performance.

Furthermore, unlike contemporary methods where
handcrafted embedding schemes are utilized for separately
developing the classifier and the feature extraction modules,
the proposed ECM-LSE method learns directly from the

FIGURE 4 | Performance statistics surfaces for: (A) accuracy, (B) MCC, (C) balanced-accuracy, (D) Youden’s Index, (E) F1-Score, and (F) mean squared error
(MSE) in dB.

TABLE 2 | Comparison of the proposed ECM-LSE algorithm with the benchmark machine learning approaches on the test dataset.

Method Sensitivity (%) Specificity (%) MCC Youden’s index Accuracy (%) Balanced accuracy (%)

EcmPred (Kandaswamy et al., 2013) 65.00 77.00 0.1910 0.42 77.00 71.00
ECMSRC (Naseem et al., 2017) 74.48 81.31 0.2560 0.56 81.06 77.90
PECM (Zhang et al., 2014) 75.86 86.88 0.3143 0.63 86.52 81.37
ECM-LSE 84.14 86.45 0.3906 0.71 86.35 85.30

Bold-face represent best performance.
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original feature space. The LSE encoding effectively learns the
distinguishing characteristics of classes in a lower dimensional
feature space and allows the visualization of proteins sequences.
This aspect of ECM-LSE is further explained in Section 3.4.

3.3 Verification on Experimentally Verified
Human ECM Proteins
To verify the practical usefulness of our method, herein, we
perform the validation of our method on experimentally verified
ECM proteins. In particular, we collected 20 experimentally
verified human ECM proteins from UniProt (Consortium,
2018). The collected sequences were not present in the
positive or negative datasets of ECM-LSE. The criteria for
the selection were based on the clear experimental evidence
in the literature for the given sequence entry. We evaluated the
EcmPred (Kandaswamy et al., 2013), ECMSRC (Naseem et al.,
2017), PECM (Zhang et al., 2014), and ECM-LSE methods. As
shown in Table 3, ECM-LSE (k � 8 and LV � 7) correctly
identified 19 proteins as extracellular matrix proteins, whereas
PECM, ECMSRC, and EcmPred identified 18, 16, and 15
proteins, respectively. It is noteworthy to point out that the
models were trained on ECM proteins from metazoans;
therefore, the superior performance of the proposed ECM-
LSE on proteins from a completely different organism
suggests that it can be effectively utilized for the annotation
of unknown proteins.

3.4 Discussion
For typical classification problems such as lysine acetylation site
prediction in proteins (Wu et al., 2019) or the identification of
protein–protein binding sites (Fernandez-Recio et al., 2005), a
large number of positive and negative samples are usually
available in the datasets. Therefore, the problem of class
imbalance or intra-class variation is not a major concern

(Johnson and Khoshgoftaar, 2019). However, the limited
availability of ECM samples results in an imbalanced dataset,
resulting in an ill-posed problem. A number of approaches,
including sample rescaling, have been proposed in the
literature to tackle the imbalanced data problem (Xiao et al.,
2016; Kabir et al., 2018). Classifiers based on these rescaling
techniques tend to behave well; however, the generalization of the
method is compromised. Furthermore, the comparison of
methods using rescaled samples with the methods using a
standard dataset is not reasonable. In the proposed study, we
utilize a standard dataset and develop a method that effectively
discriminates the ECM proteins from non-ECM. This is achieved
through the latent space learning of the CKSAAP features. For
better understanding, we compare the t-SNE projection of the
CKSAAP features with the proposed latent space in Figure 5.

For visualization purposes, the data were projected on two
dimensions using t-SNE (Van der Maaten and Hinton, 2008)
projection of the original feature space and two variable latent
spaces in the case of ECM-LSE. In the t-SNE projection shown in
Figure 5A, it can be observed that both ECMs and non-ECMs
appear in an overlapping fashion, suggesting that the
development of the ECM classifier using original feature space
is an arduous task. As shown in Figure 5B, the proposed latent
space encoding (ECM-LSE) presents superior learning
capabilities and maps the ECMs and non-ECMs in separate
regions in contrast to the unsupervised subspace learning
method of t-SNE (Van der Maaten and Hinton, 2008).

The proposed method, as shown in Figure 5B, tends to form
distinguishable clusters of ECM and non-ECM proteins.
Although some overlap can be observed in the projection of
the proposed method, it is still remarkably better than that of the
t-SNE, and since the projection is shown for two latent variables
only, the actual model with seven latent variables is expected to
mitigate the overlap to a greater extent. These projections are also
helpful in understanding the working principle of the proposed

TABLE 3 | Prediction results for 20 experimentally verified ECM proteins. “✔” indicates correctly identification while “7” represents an incorrect identification.

UniProtKB ACC NCBI definition EcmPred ECMSRC PECM ECM-LSE

Q9BY76 Angiopoietin-related protein ✔ ✔ ✔ ✔

P07355 Annexin A2 ✔ ✔ ✔ ✔

Q9BXN1 Asporin ✔ ✔ ✔ ✔

P01137 Transforming growth factor beta-1 7 7 ✔ ✔

Q8N6G6 ADAMTS-like protein 1 ✔ ✔ ✔ ✔

P27797 Calreticulin ✔ ✔ ✔ ✔

Q76M96 Coiled coil domain–containing protein ✔ ✔ ✔ ✔

Q07654 Trefoil factor 3 7 ✔ 7 ✔

O75339 Cartilage intermediate layer protein 1 ✔ ✔ ✔ ✔

Q15063 Periostin 7 7 ✔ ✔

O43405 Cochlin ✔ ✔ ✔ ✔

Q96P44 Collagen alpha-1(XXI) chain ✔ ✔ ✔ ✔

P01009 Alpha-1-antitrypsin 7 ✔ 7 7

Q14118 Dystroglycan ✔ 7 ✔ ✔

Q12805 EGF-containing fibulin-like extracellular matrix protein 1 ✔ ✔ ✔ ✔

Q75N90 Fibrillin-3 ✔ ✔ ✔ ✔

P09382 Galectin-1 ✔ ✔ ✔ ✔

Q8N2S1 Latent-transforming growth factor beta–binding protein 4 ✔ ✔ ✔ ✔

P27487 Dipeptidyl peptidase 4 7 7 ✔ ✔

P08253 72 kDa type IV collagenase ✔ ✔ ✔ ✔
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method and the motivation for the development of nonlinear
auto-encoded learning of latent space.

The proposed hybrid approach presents a hybrid design with
capabilities of efficient feature selection and classification of ECM
proteins. The latent space dynamically reduces the dimension of
the feature space and retains only the relevant information
sufficient to efficiently distinguish ECM from non-ECM
samples. Although, the proposed method can predict ECM
from different organisms, it is not a replacement for gold
standard wet lab–based testing. Furthermore, due to the
scarcity of available ECM proteins the model may show biased
performance in favor of already explored ECM and finding novel
proteins may require the fusion of additional information.
However, efforts have been made to avoid overfitting in order
to seek the generalization property of the model by deploying
dropout and batch normalization techniques. Further
enhancements to the ECM prediction task where scarcity of
the positive samples persists can be made by applying a
transfer learning approach, where a large scale model is
trained on a closely related dataset and is further fine-tuned
for ECM samples. The Python implementation of the proposed
algorithm has been made public, and interested users can utilize
the algorithm for their problem of interest. The algorithm is
available at (https://github.com/Shujaat123/ECM-LSE/blob/

master/ECM_LSE_Online.ipynb). In the future, we aim to
explore the efficacy of the auto-encoder–based classifiers on
other bioinformatics problems.

4 CONCLUSION

ECM is a complex meshwork of cross-linked proteins responsible
for the architectural support of cells and contributes to the
functionality of the living tissue. They also contribute toward
the formation of the cancer stem cells; therefore, their study and
classification from non-ECMs proteins is of prime importance. A
reliable prediction method can not only help understand various
abnormalities associated with several cancer types but will also
assist in diagnostic research. Conventional experimental-based
methods are considered gold standards for this task; however,
they are extremely time consuming and scanning a large number
of proteins is practically infeasible. In this research, we designed a
latent space learning method for the classification of ECM
proteins. The proposed method can be used as a reliable
prediction model. An important feature of the proposed
method is its latent space-based projections through which
protein sequences can be visualized in filtered and reduced
dimensions, which is extremely helpful in finding useful

FIGURE 5 | Feature embedding (A) using t-SNE (Van der Maaten and Hinton, 2008) projection of the original feature space and (B) using the proposed latent space
encoding (ECM-LSE) method.
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clusters. The proposed method has been tested on a benchmark
dataset and results of widely used performance metrics are
reported. In particular, we report a balanced test accuracy of
86.45% with 0.71 Youden’s index and 0.39 MCC (with k � 8 and
LV � 7). Additionally, the model performance is verified on
completely unseen experimentally verified ECM proteins and
shown to achieve highest prediction score.
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