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Advances in immunotherapy have made an unprecedented leap in treating colorectal
cancer (CRC). However, more effective therapeutic regimes need a deeper understanding
of molecular architectures for precise patient stratification and therapeutic improvement.
We profiled patients receiving neoadjuvant chemotherapy alone or in combination with
immunotherapy (PD-1 checkpoint inhibitor) using Digital Spatial Profiler (DSP), a high-plex
spatial proteogenomic technology. Compartmentalization-based high-plex profiling of
both proteins and mRNAs revealed pronounced immune infiltration at tumor regions
associated with immunotherapy treatment. The protein and the corresponding mRNA
levels within the same selected regions of those patient samples correlate, indicating an
overall concordance between the transcriptional and translational levels. An elevated
expression of PD-L1 at both protein and the mRNA levels was discovered in the tumor
compartment of immunotherapy-treated patients compared with chemo-treated patients,
indicating potential prognostic biomarkers are explorable in a spatial manner at the local
tumor microenvironment (TME). An elevated expression of PD-L1 was verified by
immunohistochemistry. Other compartment-specific biomarkers were also differentially
expressed between the tumor and stromal regions, indicating a dynamic interplay that can
potentiate novel biomarker discovery from the TME perspectives. Simultaneously, a high-
plex spatial profiling of protein and mRNA in the tumor microenvironment of colorectal
cancer was performed.

Keywords: tumor microenvironment (TME), digital spatial profiling, spatial proteomics, spatial transcriptomics,
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INTRODUCTION

As colorectal cancer is one of the leading causes of cancer deaths around the world, multiple clinical
trials have proven the efficacy and rationale for immunotherapy in improving treatment outcomes
for late-stage colorectal cancer (CRC), especially for those bearing genetic traits of mismatch-repair
deficient (MMR-D) and/or microsatellite instability (MSI-H) (Golshani and Zhang, 2020; Siegel
et al., 2018; Overman et al., 2017; PD-1 Inhibitor Bests Chemo for Colorectal Cancer, 2020).
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Notwithstanding the effort made toward MMR-D and/or MSI-H
CRC, of more clinical importance, about 95% of CRC patients are
MMR proficient (MMR-P) and/or microsatellite stable (MSS).
Although clinical trials were underway with expectations to
benefit a potential subset of MMR-P/MSS patients using PD-1
(programmed death-1) modulation alone or in combination with
other targeted agents as well as radiation and chemotherapy,
convincing data are still largely lacking (Bilgin et al., 2017; Arora
and Mahalingam, 2018; Eng et al., 2019; Golshani and Zhang,
2020).

A profound understanding of the tumor microenvironment
(TME) within heterogeneous tissues is demanded to identify
effective biomarkers in the rim of immunotherapy for CRC.
Despite tumor mutation load as the primary driver of
microsatellite instability in CRC, other mechanisms do exist,
such as the high expression level of PD-L1 (programmed
death-ligand 1) and close association between tumors
expressing PD-L1 or PD-L2 (programmed death-ligand 2) and
immune infiltrates (Taube et al., 2014; Salem et al., 2018). PD-L1
expression was shown to correlate strongly with CD8 (cluster of
differentiation 8) T-lymphocyte infiltration in CRC TME, and
this phenomenon appears to be associated with microsatellite
instability (Sudoyo et al., 2019). A previous work using single-cell
RNA sequencing (scRNA-seq) revealed highly complex T-cell
subclones and distinct functions within CRC. Specific clusters of
TH1-like (T-helper 1-like) T-cell co-expressing CXCL13
(Chemokine C-X-C motif ligand 13) and BHLHE40 (Class E
basic helix-loop-helix protein 40) were associated with only
microsatellite-instable tumors and shared an increased level of
IGFLR1 (IGF-like family receptor 1) with CD8 exhausted T cells,
indicating likely co-stimulatory mechanisms and biomarkers for
MSI-H patients (Zhang et al., 2018). Focusing on myeloid cell
populations in CRC, other groups discovered novel SPP1
(secreted phosphoprotein 1) expressing tumor association
macrophage (TAM) that could play critical roles in CRC
tumorigenesis. This subpopulation exhibits a tighter
association with cancer-associated fibroblast stressing the
dynamic cross-talk within the TME (Zhang et al., 2020).

Indeed, several lines of evidence support the idea of
incorporating spatial information for the biomarkers profiling
in CRC. The density and location of CD3+ and CD8+ T cells, and
GZMB+ (Granzyme B) and CD45RO + are strongly correlated
with the overall survival (OS) of CRC based on the early tissue
microarray data (Galon et al., 2006). More in-depth studies
continued to support that the quantitative evaluation of
cytotoxic and memory T cells in the tumor core regions, and
invasive margin “immunoscore” served as a more powerful
predictor of patient survival than MSI-H (Mlecnik et al., 2011;
Mlecnik et al., 2016). In MSS patients, “immunoscore” was also
shown as a prognostic factor for survival (Nosho et al., 2010).
Upon large-scale internal cross-center validation to prove the
“immunoscore” as a parameter for prognosis in stage I-III CRC,
the European Society for Medical Oncology has historically
approved to consider the “immunoscore” as a prognostic
factor to assist TNM scoring in stage I–III patients (Mlecnik
et al., 2018; Argiles et al., 2020). Another study investigated the
combinational power of PD-L1 expression and extracellular

mucin percentage in predicting clinical outcomes (Llosa et al.,
2019). To set a spatial phenotype in CRC, researchers employed
56-plex proteomic spatial technologies at the single-cell level to
explore specific cell-type–oriented pathological architectures and
defined cell population–based neighborhoods. This study proved
that tertiary lymphoid structures (TLSs) defined by a high density
of CD3/CD4 T cells, B cells, CD163 macrophage, and CD4/
CD45RO T cells are associated with better clinical outcomes for
Crohn’s-like reaction (CLR) phenotype, whereas PD-1/CD4
expression T cells in granulocyte defined neighborhood

FIGURE 1 | Representative full scan and regions of interest (ROIs) from
patients and ROI-based correlation matrices on 84-plex RNA and 40-plex
proteins. (A) Representative full-scan image for patient 1. (B) Representative
ROI images for all patients. For every patient, 12 ROIs were drawn, and
four representative ROIs (2 tumors and 2 stroma) are shown with tricolor
fluorescence labeling (blue: SYTO13, green: Pan-cytokeratin, Pan-CK, red:
CD45) at 20x magnification (patients 1 and 2: chemotherapy only, patients 3
and 4: chemotherapy + immunotherapy). For correlation matrices, ROIs are
grouped based on treatment options, ROI location (tumor or stroma), and
patient IDs. (C) mRNA-based expression correlation matrix shows separate
stroma and tumor ROI clusters, and separate therapy-dependent ROI clusters
in tumor regions. QC-failed and normal epithelium ROIs were excluded. (D)
Protein-based expression correlation matrix shows separate stroma and
tumor ROI clusters. QC-failed and normal epithelium ROIs were excluded.
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positively correlated with survival in diffuse inflammatory
infiltration (DII) subtype of CRC (Schurch et al., 2020). Those
together underpin the fundamental concept of spatial-assisted
high-plex profiling in CRC biomarker discovery and validation.

Understanding the complex molecular profiles of CRC in
high-plexity requires advanced analytical tools. Among those,
linking spatial information with high-dimensional data at
molecular levels has already started elucidating novel
mechanisms for immunotherapy in CRC. Herein, we used
Digital Spatial Profiler (DSP), a recently emerged technology
for high-plex proteogenomic characterization of the TME, to
explore MSI-L CRC patients receiving neoadjuvant
chemotherapy alone or in combination with a PD-1
checkpoint inhibitor (Merritt et al., 2020; Wang et al., 2021a)
in a protein–mRNA–coordinated manner.

RESULTS

Validation of DSP on Colorectal Cancer
Tissues
We first validated the DSP technology by exploring gene-wise and
ROI-wise association across all samples/genes. We selected tumor
and stroma ROIs, given their expected distinct expression
characteristics. The representative images of full scan and
ROIs from either tumor or stroma are shown in Figure 1A.
Representative ROIs from patients who received either
chemotherapy only or combined with immunotherapy are
shown in Figure 1B. Additional full scan images and ROIs are
shown in Supplementary Figure S1. As expected, based on the
expression profiles of 84 genes at the transcriptional level and 40
at the protein level in all ROIs, tumor and stromal regions showed
strong region-specific expression patterns, regardless of
individual tissue characters and different treatments (Figures
1C,D). The mRNA data from tumor ROIs also showed a therapy-
differentiated expression pattern. A clear separation of patient
groups with different neoadjuvant therapies bymRNA expression
in tumor but not stroma ROIs suggests a potential immune
signature in the tumor-enriched TME compartments
(Figure 1C). Protein expression did not separate patient
groups potentially due to the limited ROI numbers and
protein targets in this study (Figure 1D). Also, the RNA or
protein data for the 17 genes in common between 84-plex RNA
and 40-plex protein panels did not separate patients according to
different treatments (Supplementary Figures S2A,B).

For between-gene association analysis, common epithelial cell
markers such as AKT1, Cytokeratin, EPCAM, Ki-67, and S6
showed a strong association at both the RNA and protein levels
(Supplementary Figure S2C,D). At the protein level, the data
showed a strong co-expression pattern between the T-cell
markers (CD3, CD4, and CD8) and the myeloid-derived cell
markers (CD14 and CD163). They are also significantly
associated with the total immune cell markers (CD45/
CD45RO/HLA-DR) and to a lesser extent with the B-cell
markers (CD20), indicating an overall consistency of those
markers being co-expressed within particular
microenvironments (Supplementary Figure S2D).

Region-Defined Individual Molecular
Characteristics of the CRC Patients
Based on the ROI selection strategy of the TME regions, we
compared the tumor-surrounding stromal and tumor epithelial
areas (ROIs) within or between the treatment groups.
Chemotherapy patients (patients 1 and 2) showed a generally

FIGURE 2 | Unsupervised hierarchical clustering of mRNA and protein
for ROIs from chemotherapy- and combinational therapy–treated patients and
differentially expressed genes. (A) mRNA-based clustering of tumor and
stroma ROIs of chemotherapy-treated patients 1 and 2. (B) Protein-
based clustering of tumor and stroma ROIs of chemotherapy-treated patients
1 and 2. (C)Differential mRNA expression in the tumor ROIs between patient 1
and patient 2 (p-values were adjusted, and the cut-off was set to 0.05). (D)
mRNA-based clustering of tumor and stroma ROIs of combinational
therapy–treated patients 3 and 4. (E) Protein-based clustering of tumor and
stroma ROIs of combinational therapy–treated patients 3 and 4. Color bars
are grouped based on ROI categories (tumor/stroma) and patient IDs,
respectively.
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minimal immune marker expression at tumor-enriched regions
at the RNA and protein levels, indicating low tumor-infiltrating
lymphocytes (TILs) (Figures 2A,B). All immune-related cells
resided in the surrounding stroma, with an apparent exclusion
from tumors demonstrated by the overall low expression of the
immune markers (Figures 2A,B). The RNA expression within
the tumor-enriched regions revealed distinct expression profiling

between these two patients, whereas those same sets of markers
showed minimal differences within the stromal compartments
(Figure 2C and Supplementary Tables S4, S5). Compared with
patient 2, patient 1 showed higher levels of GZMB, TNF (tumor
necrosis factor), IL12B (interleukin 12B), IL6 (interleukin 6),
CD8A, CD3E, CD4, and CXCL9/10, suggesting a more active
status of immune infiltration. Patient 1 also showed higher levels

FIGURE 3 | Increased immune response and elevated PD-L1 expression in combinational therapy–treated patients within the tumor ROIs. Line charts of
differentially expressed mRNA (A) and protein (B) within the tumor regions between the treatment groups. Y-axes are untransformed expression raw count values of
individual probes. Boxplots of PD-L1 mRNA (C) and protein (D) expression in ROIs of chemotherapy- and combinational therapy–treated groups (the Mann–Whitney
test p < 0.05, non-adjusted). (E) PD-L1 IHC staining of patient tissues receiving chemotherapy or combinational therapies. Magnification is shown at 20x (scale bar
�200 μm).
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of PTEN (phosphatase and tensin homolog), AKT1, and Ki67.
Patient 2 showed an increased STAT3 (signaling transducer and
activator of transcription 3) (Figure 2C), likely due to the primary
tumor difference or adaptation to the treatment. The differential
expression above could only be discovered when the tumor-
enriched regions and stroma regions were explored separately
(Figure 2C, and Supplementary Tables S4, S5 for the entire gene
lists). When comparing the 17 common genes, mRNA difference
was not captured at the protein level in the same ROI profiling,
emphasizing the importance of proteomics data in
complementing transcriptomic data to stratify patients.

As expected, combinational therapy (chemo/immuno)
induced various immune infiltration methods into the tumor
regions manifested by an elevated expression of many immune
markers, including CD4, CD68, GZMB, CD40LG (CD40 ligand),
CD86, CD276, and LAG3 (lymphocyte-activation gene 3) at the
mRNA level in multiple tumor ROIs (Figure 2D). Chemokines
and cytokines, such as CXCL10 and IL15, IL12B, and IL6, and the
receptor CXCR6 (C-X-C chemokine receptor type 6), also
increased at RNA levels. Concomitant increases of PD-L1,
IDO1 (indoleamine-pyrrole 2,3-dioxygenase), OX40 (tumor
necrosis factor receptor superfamily member 4), CD66b, and
CD68 at the protein level were also observed (Figure 2E
compared to Figure 2B).

We then compared inter-treatment group expression profiles
and observed an overall high expression of immune markers at
both the RNA and protein levels in the combinational treatment
group, suggesting induction of immune infiltration (Figures
3A,B). As expected, we observed a significant (p < 0.001)
tumor-specific increase of PD-L1 expression at both the
mRNA and protein levels for patients receiving combinational
therapy (Figures 3C,D). We validated this finding by
conventional immunohistochemistry (IHC), where we
observed an increased expression of PD-L1 in combination
therapy–treated patients reconfirming the DSP data
(Figure 3E). Another biomarker, B7-H3 (CD276), also
increased at the mRNA and protein levels in the tumor
regions of combination therapy–treated patients (Figures
4A,B). The IDO1 expression was also up-regulated markedly
at both the mRNA and protein levels within the tumor regions of
combination therapy patients (Figures 4C,D). Of note, CD45
only increased at the protein level but not at the mRNA level
(Figure 4E), suggesting the need to evaluate the TME at both the
omic levels. In addition, stromal ROI profiling identified an
increased protein expression of STING (stimulator of
interferon response CGAMP interactor 1) and CD14 in the
chemotherapy group, a sign of immune exclusion in the
presence of the chemo agent alone (Figures 4F,G).

Of further importance, a holistic view of the tumor
region–based clustering (both unsupervised hierarchical
clustering and principal component analysis (PCA)) resulted
in concordant findings that the RNA expression profiling
correlates strongly with therapeutic options (Figures 5A–C).
Further to these findings, both unsupervised hierarchical
clustering and PCA analyses also yielded two distinct therapy-
guided groups at the mRNA level in the stromal regions (Figures
6A–C). These ROI region–defined grouping could not be
observed when tumor and stroma are mixed (Figures 6D,E),
emphasizing the importance of spatially oriented information for
patient stratification and biomarker discovery.

DSP Profiling of RNAs and Proteins Reveals
Therapy-Oriented Differences
We compared the DSP profiling of RNAs and proteins in
common within the same regions at the subhistological
resolution of a few hundred square micrometers in size. The
purpose was to gain insights into the dynamic changes between

FIGURE 4 | Differentially expressed mRNA and protein markers in
tumor or stroma ROIs of chemotherapy or combinational therapy
patients. Boxplots of CD276 mRNA (A) and protein (B) expression in the
tumor ROIs of chemotherapy or combinational therapy patients (the
Mann–Whitney test p < 0.05, non-adjusted). Boxplots of IDO1 mRNA (C)
and protein (D) expression in the tumor ROIs of chemotherapy or
combinational therapy patients (the Mann–Whitney test p < 0.05, non-
adjusted). Boxplots of CD45(E), CD14(F), and STING(G) expression in
the stroma ROIs of chemotherapy or combinational therapy patients (the
Mann–Whitney test p < 0.05, non-adjusted).
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RNA and protein. Seventeen common targets [AGR1, CD4, CD8
(CD8A), and CD20 (MS4A1), CD68, CTLA4 (cytotoxic
T-lymphocyte–associated protein 4), GZMB, 4-1BB
(TNFRSF9), IDO1, LAG3, PD-1 (PDCD4), CD45 (PTPRC),
PDL1 (CD274), FOXP3 (forkhead box P3), VISTA (V-domain
immunoglobulin suppressor of T cell activation), B7-H3
(CD276), and Tim-3 (T-cell immunoglobulin and mucin
domain 3)] were filtered out and plotted based on their
expression correlation for individual ROIs (Figure 7A). An
overall correlation between RNAs and proteins was moderate
(R2 � 0.58, p < 0.05). Genes including PD-L1, CD4, and VISTA
exhibited strong correlations at the RNA and protein levels.
CTLA4, FOXP3, and GZMB exhibited weak correlations

(Figure 7B). The transcriptomic and proteomic correlation
differed between therapy groups, with an overall higher
correlation in the chemotherapy group than in the
combinational therapy group (p < 0.05) (Figures 7C–E). The
most pronounced alteration of GZMB and CD276 showed high
concordance in the chemotherapy patients but minimal or
negative correlations in combination therapy patients (Figures
7C,D). Despite the likelihood of low levels of transcripts in
specific ROIs (in the case of GZMB and CD276), low
correlations of FOXP3 and CTLA4 due to the low level of
protein below the baseline suggest that transcriptional
information may not be fully interpreted at protein levels to
execute their biological function. Therefore, posttranslational

FIGURE 5 | Unsupervised hierarchical clustering and PCA of tumor regions based on mRNA expression. (A) Unsupervised hierarchical clustering of mRNA
expression in the tumor ROIs of chemotherapy or combinational therapy patients. ROIs are grouped based on treatment options and patient IDs. (B,C) PCA plots of
mRNA expression in the tumor ROIs grouped by patients (B) or therapies (C), respectively.
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modifications likely play pivotal roles in a particular cellular
context (Shiratori et al., 1997; Chikuma et al., 2000).

DISCUSSION

High-plex profiling, specially combining proteomic and
transcriptomic data on the same tissue section at the sub-
histological levels, is challenging to be achieved. Previously,
the TMEs of non–small-cell lung cancer (NSCLC), melanoma,

pancreatic cancer, prostate cancer, bladder cancer, soft tissue
sarcoma, and breast cancer were analyzed using DSP, but mainly
on the protein expression (Ihle et al., 2019; Toki et al., 2019;
Cabrita et al., 2020; Gundle et al., 2020; Stewart et al., 2020;
Zugazagoitia et al., 2020). This is likely due to either their protein-
focused study design or the archived samples in the studies such
as the TMAs are practically difficult for the quantitative RNA
profiling.

This study looked at the spatial-directed proteogenomic
profiling on 4 Stage III CRC formalin-fixed paraffin-embedded
(FFPE) patient samples to provide insights into the therapeutic
mechanisms and biomarkers discovery, and compare the
biological differences between mRNA and protein under the
same experimental setting. The correlation matrix provided a
distinct association between ROIs and genes, respectively, with
strong tumoral and stromal ROI clusters confirming the
robustness of the technology. The immune and epithelial
markers at mRNA and protein levels were also co-clustered
separately, suggesting a strong association of those genes
within the particular TMEs. Our results are in line with the
other single-cell analyses of CRC patients, where they showed co-
clustering of different T-cell subpopulations (Zhang et al., 2018;
Lee et al., 2020). Comparison between therapy-guided expression
at both the mRNA and protein levels showed high consensus
between the common biomarkers to differentiate tumor from
stroma regions (higher level of EpCAM, pan-cytokeratin, and
ki67), indicating general robustness of this technology for
proteogenomic co-profiling. The only difference of elevated
VEGFA (vascular endothelial growth factor A) at the mRNA
level associated with chemotherapy alone may be caused by the
protein panels non-inclusive of that target (Supplementary
Figures S4A–F). The stromal markers expressed more
dynamic alterations upon therapeutic induction, and common
pathways altered in the stroma in response to both therapies
mainly include cytokine regulation, T-cell activation and
selection, cell adhesion molecule regulation, interleukin-2
production, myeloid leukocyte activation, and antigen
processing and presentation of both at the RNA and protein
levels (Supplementary Figures S5A–C and Figures 6A–C).

From a refined TME perspective, we were able to distinguish
the tumor and stroma region–associated specific expression
programs with the discovery of PD-L1 high expression at both
the mRNA and protein levels in combinational therapy–treated
CRC patients and confirmed with follow-up IHC staining.
Considering all four patients are MSS based on the IHC data
(nuclear expression of MLH1 (MutL homolog 1), MSH2 (MutS
homolog 2), MSH6 (MutS homolog 6), and PMS2 (PMS1
homolog 2, mismatch repair system component))
(Supplementary Figure S3), a high level of PD-L1 (CD274)
within specific TMEs may evoke a better immunogenic
response and serve as a prognostic marker for
immunotherapies for MSS CRC patients. A subset of immune
markers was concomitantly elevated in the combination therapy
group (chemo + immuno), suggesting more dynamic
immunoactivities in tumor-associated regions therein. In
particular, elevated B7-H3 mRNA is largely in line with a
recent large cohort IHC profiling showing an increasing

FIGURE 6 | Unsupervised hierarchical clustering and PCA of stromal
regions based on mRNA expression and all ROI clustering. (A) Unsupervised
hierarchical clustering of mRNA expression in the stroma ROIs of
chemotherapy or combinational therapy patients. ROIs are grouped
based on treatment options and patient IDs. (B,C) PCA plots of mRNA
expression in the stroma ROIs grouped by patients (B) or therapies (C),
respectively. (D,E) PCA plots of mRNA expression in all ROIs (tumor and
stroma) grouped by patients (D) or therapies (E), respectively.
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pattern of this molecule in primary CRC and correlated partially
with the PD-L1 expression. Our finding of high expression of
IDO1 at the proteogenomic levels coincides with TCGA (The

Cancer Genome Atlas) and other studies, where higher
expression of IDO1 at the mRNA level was observed in
primary CRC (Guil-Luna et al., 2020; Kitsou et al., 2020; Le

FIGURE 7 | All ROI-based correlation analyses of the 17 common mRNA and protein. (A) Protein (x-axis) and mRNA (y-axis) expression counts were log-
transformed and plotted. The correlation coefficient is 0.57 (p < 0.05), and colors denote individual patients. (B) Ranked bar chart of common protein and mRNA
correlation of individual targets based on all ROIs. (C,D)Ranked bar charts of common protein andmRNA correlation of individual targets for chemo and chemo/immune
patient groups. (E) Boxplot of individual ROI correlation based on common genes between therapies.
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Naour et al., 2020). Given the limitation of bulk-tissue analysis for
biomarker discovery, our finding further strengthened the bona
fide importance of assessing the IDO1 expression pattern in
TMEs, consequently providing helpful information for clinical
study design for checkpoint inhibitors. Increased common
immune marker CD45 at the protein level dictates the
importance of extending discovery from the transcriptional
level to the proteomic level and may suggest proteins are
likely to serve as better biomarkers than mRNA in the TME
under a specific context. Indeed, many immune-related mRNA
expressions failed to be prognostic factors in colorectal
carcinoma (Lu et al., 2020).

Evidence is furthered by looking at the tumor surrounding
stroma where upregulation of STING and CD14 was observed in
chemotherapy-only patients, suggesting a lack of positive
immune infiltration in these patients. This finding is also
consistent with the recent discovery of STING as an
independent prognostic factor in the early- and late-stage
CRC, indicating a critical role of STING in regulating
immunogenic response (Chon et al., 2019). Considering
STING agonists are being developed in clinical trials, this may
infer a newly explorable direction for combinational clinical
regimes (Chon et al., 2019; Pan et al., 2020). A study of 298
CRC patients also found that the CD14 level was lower in tumors
than adjacent normal tissues, indicating a potential role of
monocytes/macrophages in driving checkpoint
inhibitor–mediated antitumor effect. Tumor region–defined
compartmentalization also revealed therapy-specific expression
signatures at the mRNA level, and these distinct features were
evident at both the tumor and stroma regions. This expression
profiling–based patient stratification cannot be identified when
the tumor and stroma data are mixed at the bulk level, again
implying the significance of interrogating spatial information and
sample purity for mechanism elucidation and biomarker
discovery. Although statistical power could be reinforced by
analyzing multiple ROIs with similar expression
characteristics, considering only two patients in each group,
many of these findings must be further validated with more
patient samples. Nevertheless, with the precision of the ROI
selection technique, we were unprecedently capable of
comparing the protein and RNA expression of specific
important markers in the TMEs, which has not been
conducted in CRC in such a fine-toned manner. Although
general proteogenomic correlation is decent, different genes
show various degrees of expression consistency. The low
consistency of key molecules CTLA4 and FOXP3 is due to the
low expression at the protein level. Posttranslational
modifications of those two proteins were discovered, providing
additional insights into the TME (Shiratori et al., 1997).
Moreover, the overall correlation is lower in combinational
therapy–treated patients, indicating a more dynamic
proteogenomic interplay in specific patients, likely due to
either different tumor biology intrinsically or treatment-
associated causations.

Despite the findings we made here, our study is limited in part
by patient numbers. Although the ROI-based individual datasets
have proven to be reliable both technically and biologically,

statistic stringency and the power of the analysis have to be
further strengthened by exploring additional CRC patients.
Paired pretreatment biopsy samples may reveal more
information to identify how tumors evolve and adapt in
response to chemotherapy with or without coadministration of
checkpoint blockades and may help design future clinical
strategies in CRC. Nevertheless, by employing DSP, with only
limited samples, high-plex proteogenomic profiling of over 40-
plex proteins and 84-plex mRNA on CRC patients was depicted
at a very high resolution, which has never been achieved with
previous methods (Wang et al., 2021b). In summary, we provided
valuable research resources and preliminary data by focusing on
specific TME regions histologically unobtainable with other
technologies and ensured future application in various
contexts to disentangle underlying biology within the complex
and heterogenous TMEs.

MATERIALS AND METHODS

Clinical Patient Characteristics
Tumor specimens from four patients were obtained during
surgery from Beijing Cancer Hospital. Samples were
immediately fixed and paraffin-embedded. All patients were
TNM classified as stage III colorectal cancer (T3) with no
metastasis at diagnosis. Before surgery, two patients received
neoadjuvant chemotherapy with capecitabine and oxaliplatin
(CAPEOX). The other two patients received the CAPEOX
chemotherapy combined with sintilimab (a monoclonal
antibody that binds to PD-1). All four patients were
pathologically evaluated pre-and posttreatment. All patients
were microsatellite stable (MSS) based on IHC data of MLH1,
MSH2, MSH6, and PMS2. Anti-MLH1 antibody (GM002), anti-
MSH2 antibody (RED2), anti-MSH6 antibody (EP49), and anti-
PMS2 antibody (EP51) were obtained from Gene Tech
Biotechnology (Shanghai China). All four patients had
histological tumor regression with AJCC/NCCN grade (TRG)
of 2/3 based on posttreatment pathological evaluation. Three
serial sections of tissue samples (5 μm thickness) from individuals
were freshly prepared for the DSP protein, RNA profiling, and
IHC, respectively, to allow parallel comparison. Detailed patient
information is provided in supplementary (Supplementary
Table S1). All tissue samples had informed consent from the
patients as documents in Beijing Cancer Hospital for research
purposes.

Exploring Colorectal Cancer TME Using
DSP at a Proteogenomic Scale
Digital spatial profiling (DSP) was performed on slide-mounted
FFPE samples as described previously (Wang et al., 2021a). For
protein profiling, slides were preprocessed with deparaffinization
and rehydration before incubation with a tricolor fluorescence
morphology marker panel targeting Pan-CK (epithelial and
tumoral regions), CD45 (immne cells), and SYTO13 (nuclear)
together with target-specific oligo-conjugated primary antibodies
cocktails for 40 proteins. For RNA profiling, a panel of probes for
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84 mRNAs were hybridized at 37°C overnight in a hybridization
oven and then incubated with the aforementioned morphological
antibody panel. Detailed protein and RNA target information can
be found in supplementary (Supplementary Tables S2, S3). For
both the protein and RNA profiling, multicolored morphology
markers allow compartment visualization to guide the selection of
regions of interest (ROIs). This one-step overnight incubation
was then followed by 20x high-precision scanning on a GeoMx
DSP system and circular ROI selection. To ensure reliable
quantification and inter-ROI data comparison, surface areas of
ROIs were drawn between 2 × 104 and 1.2 × 105 μm2 for protein
profiling or between 3.8 × 104 and 3.8 × 105 μm2 for RNA
profiling. Conjugated target-specific oligos were released upon
UV light illumination and collected in 96-well plates. Heat-dried
oligos were then hybridized to unique NanoString barcodes,
purified on the nCounter Prep station, and counted on the
nCounter analysis system using standard procedures (Merritt
et al., 2020; Wang et al., 2021b).

Immunohistochemistry
Immunohistochemistry (IHC) was performed on (FFPE) patient
sections using prevalidated PD-L1 antibody (13684S, Cell
Signaling Technology Danvers, MA). After deparaffinization
and rehydration in xylene and ethanol, antigen retrieval was
performed in 1x EDTA retrieval solution (pH 9.0) with heating.
Slides were then blocked with goat serum (x0907, Dako) for 1 h
and followed by primary antibody incubation at 1:200 dilution.
After overnight incubation, slides were incubated with goat anti-
rabbit antibody (E046201, Dako), then developed with DAB
substrate (k3468, Dako), and counterstained with hematoxylin
(CTS-1090, Biotechnologies). Slides were scanned with a
brightfield microscope (Aperio CS2, Leica) and processed by
ImageScope software (Leica).

Data Processing and Statistical Analysis
To adjust system and experimental bias and to counteract ROI
size variation effects, raw digital count files (RCC) for individual
ROIs were normalized by ERCC RNA spike-in controls before
downstream processing. This quality control step generated
normalization positive factors from individual ROIs. The ROI
inclusion criteria were limited on aminimum surface area of 1.6 ×
103 μm2 for protein and 1.6 × 104 μm2 for RNA, and minimum
nuclei counts of 20 for protein and 200 for RNA generally. Any
ROIs resulting in a normalization positive factor higher than 3 or
lower than 0.3 were excluded from the downstream analysis. QC-
qualified ROI count files were then normalized by the geometric
mean of housekeeping genes (Histone H6, GAPDH, and S6 were
used for protein. RAB7A, OAZ1, UBB, POLR2A, and SDHA were
used for RNA). The normalized data were log-transformed with
or without being median-centered before comparison and
plotting. For proteogenomic comparison, gene and protein ID
were matched by Entrez ID for the following genes: AGR1, CD4,
CD8 (CD8A), CD20 (MS4A1), CD68, CTLA4, GZMB, 4-1BB
(TNFRSF9), IDO1, LAG3, PD-1 (PDCD4), CD45 (PTPRC),
PDL1 (CD274), FOXP3, VISTA (VSIR), B7-H3 (CD276), and
Tim-3 (HAVCR2). All data were processed and analyzed in DSP
analysis software and R version 3.6.0 with relevant packages. The

correlation analysis was computed using the “Pearson” method.
Hierarchical clustering and correlation matrix were done with
“pheatmap” package. The principal component analysis (PCA)
was conducted by “FactoMineR” and “factoextra” packages.
Volcano plots were created with log2FC set at 1 and adjusted
p-value at 0.05 for cut-off (dashed lines). Venn plots were created
with the “VennDiagram” package. For the differential expression
analysis, a non-parametric Mann–Whitney U-test was used, and
p-value was set to 0.05 at a significant cut-off. Due to the limited
number of probes and samples, in some cases, p-value was
presented without adjustment. Other relevant plots were
generated by “ggplot2” package. For function and pathway
annotation and enrichment analysis, differentially expressed
genes (gene symbol) were submitted and processed in
Metascape online interface (https://metascape.org).

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of Beijing Cancer Hospital.
The patients/participants provided their written informed
consent to participate in this study.

AUTHOR CONTRIBUTIONS

Conceptualization: NW, AW, and ZD; methodology: NW, RW,
XL, LX, JW, and LZ; visualization: NW, RW, XZ, XL, ZS, and LZ;
supervision: AW and ZD; writing—original draft: NW, RW, ZS,
and LZ; writing—review and editing: NW, LZ, AW, and ZD.

FUNDING

This work was supported by the R&D fund from Fynn
Biotechnologies and Beijing Hospitals Authority Clinical
Medicine Development of Special Funding Support
(ZYLX202116).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fbioe.2021.757378/
full#supplementary-material

Supplementary Figure 1 | Full section images and ROI selection strategies for
additional patients. The multicolor labeled whole tissue sections are shown on the
left panels (20x magnification), and all tumor and stroma ROIs are displayed on the
right panels (green: Pan-cytokeratin, red: CD45, and blue: SYTO13). (A,B)
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Chemotherapy-treated patients. (C,D)Chemotherapy- and immunotherapy-treated
patients.

Supplementary Figure 2 | Correlation matrices for protein and mRNA,
respectively. (A,B) Gene-wise association plots based on all ROIs. 84-plex
mRNA is shown on the left panel and 40-plex protein on the right. (C,D) ROI-
wise association plots based on 17 common target expression profiles. mRNA is
shown on the left and protein on the right. Color bars are grouped based on
treatment options, ROI categories (tumor/stroma), and patient IDs.

Supplementary Figure 3 | IHC staining of four patients. All markers are
presented with representative images (100x), including MSH6, PMS2, MLH1,
and MSH2, and all proteins show positive nuclear staining based on pathological
assessment.

Supplementary Figure 4 | Differential expression profiling of tumor versus stroma
ROIs in two treatment groups. (A–C)mRNA expression profiling between tumor and
stroma regions. Volcano plots show differentially expressed genes in two treatment
groups, respectively (dashed lines represent log2FC�1 on the x-axis and adjusted
p�0.05 on the y-axis). The Venn diagram shows the common and unique
differentially expressed mRNA markers between therapies. (D–F) The protein
expression profiling between tumor and stroma regions. Volcano plots show
differentially expressed genes in two treatment groups, respectively (dashed lines
represent log2FC�1 on the x-axis and adjusted p�0.05 on the y-axis). The Venn
diagram shows the common and unique differentially expressed protein markers
between therapies.

Supplementary Figure 5 | Gene and pathway annotation of unique differentially
expressed mRNA in chemotherapy groups. (A) The unique gene list (gene symbols)
was processed and analyzed using a Metascape online tool, and functional
annotations are ranked by −log10 p-value. (B,C) Enrichment network charts
from unique gene lists where nodes are individual genes and color codes are
gene identities or p-values.

Supplementary Figure 6 | Gene and pathway annotation of unique differentially
expressed protein in chemotherapy groups. (A) The unique gene list (gene symbols)
was processed and analyzed using a Metascape online tool, and functional
annotations are ranked by −log10 p-value. (B,C) Enrichment network charts
from unique gene lists where nodes are individual genes and color codes are
gene identities or p-values.

Supplementary Table 1 | Patient clinical information.

Supplementary Table 2 | DSP probe list for mRNA.

Supplementary Table 3 | DSP probe list for proteins.

Supplementary Table 4 | Differential expression of mRNA in tumor ROIs for two
chemotherapy-treated patients. Genes are ranked by p-value.

Supplementary Table 5 | Differential expression of mRNA in stroma ROIs for two
chemotherapy-treated patients. Genes are ranked by p-value.
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