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Melanoma is a skin disease with a high fatality rate. Early diagnosis of melanoma can
effectively increase the survival rate of patients. There are three types of dermoscopy
images, malignant melanoma, benign nevis, and seborrheic keratosis, so using
dermoscopy images to classify melanoma is an indispensable task in diagnosis.
However, early melanoma classification works can only use the low-level information of
images, so the melanoma cannot be classified efficiently; the recent deep learning
methods mainly depend on a single network, although it can extract high-level
features, the poor scale and type of the features limited the results of the classification.
Therefore, we need an automatic classification method for melanoma, which can make full
use of the rich and deep feature information of images for classification. In this study, we
propose an ensemble method that can integrate different types of classification networks
for melanoma classification. Specifically, we first use U-net to segment the lesion area of
images to generate a lesion mask, thus resize images to focus on the lesion; then, we use
five excellent classification models to classify dermoscopy images, and adding squeeze-
excitation block (SE block) to models to emphasize the more informative features; finally,
we use our proposed new ensemble network to integrate five different classification
results. The experimental results prove the validity of our results.We test our method on the
ISIC 2017 challenge dataset and obtain excellent results onmultiple metrics; especially, we
get 0.909 on accuracy. Our classification framework can provide an efficient and accurate
way for melanoma classification using dermoscopy images, laying the foundation for early
diagnosis and later treatment of melanoma.

Keywords: melanoma classification, ensemble learning, deep convolutional neural network, image segmentation,
dermoscopy images

1 INTRODUCTION

Skin cancer is a major public health problem, with more than 5 million new cases diagnosed annually
in the United States (Siegel et al., 2016; Codella et al., 2018). Melanoma is the fastest-growing and
deadliest form of skin cancer in the world; it causes many deaths each year. However, it is noticed that
melanoma multiplies more slowly in the early stages, so if it is diagnosed early and treated promptly,
the survival rates of patients can be greatly improved.

Pigmentation lesions occur on the skin surface, and dermoscopic technology was introduced to
improve the diagnosis of skin melanoma. Dermoscopy is a non-invasive skin imaging technique that
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can magnify and illuminate skin areas, and then enhance
visualization of deep skin by eliminating surface reflections.
Compared with standard photography, dermoscopy images
can greatly improve the accuracy of diagnosis (Kittler et al.,
2002; Codella et al., 2018). Dermatologists usually use
“ABCD” rule to evaluate skin lesions (Stolz, 1994; Moura
et al., 2019). This rule analyzes asymmetry, boundary
irregularities, color variations, and structures of lesions (Xie
et al., 2016). However, the differentiation of skin lesions by
dermatologists from dermoscopy images is often time
consuming and subjective, and the diagnostic accuracy
depends largely on the professional level, so inexperienced
dermatologists may not be able to make accurate judgments.
Therefore, we urgently need an automatic recognition method
that is non-subjective and can assist dermatologists to make more
accurate diagnosis.

However, there are still many challenges in automated
recognition of melanoma, we show them in Figure 1. The first
column of Figure 1 shows malignant melanoma, the second
column shows benign nevis, and the third column shows
seborrheic keratosis. First, skin lesions have great inter-class
similarity and intra-class variation in color, shape, and texture;
the different classes of skin lesion have high visual similarity.
Second, the area of skin lesions in dermoscopy images varies
greatly, and the boundaries between skin lesions and normal skin
are blurred in some images. Third, artifacts such as hair, rulers,
and texture in dermoscopy images may make it hard to identify
melanoma changes. All these factors make automatic recognition
more difficult.

To solve these problems, many researches have made
attempts. Generally, automatic analysis models include four
steps: image preprocessing, border detection or segmentation,
feature extraction, and classification. In early works, a large
number of studies used shallow models to classify dermoscopy
images, mainly using low-level features such as shape, color,
texture, or their combination (Ganster et al., 2001; Mishra and
Celebi, 2016); however, these shallow models for extracting
low-level features lack high-level representation and powerful
generalization capabilities. In recent years, convolutional
neural network has made great breakthroughs in image
analysis tasks (Krizhevsky et al., 2012; He et al., 2015; Long
et al., 2015; Shin et al., 2016; Chen et al., 2017), especially the
deep convolutional neural networks (DCNNs), which can
extract deep features and have better discrimination ability,
have achieved improved performance. So researchers started
to apply DCNN to analyze medical images (Roychowdhury
et al., 2015; Myronenko, 2018), including image-based
melanoma classification. However, deep neural networks
still face great challenges in the field of medical image
analysis. DCNN requires large datasets to obtain more
effective features, while medical image data are often
difficult to obtain and the datasets are relatively small. If a
small dataset is used directly for deep network training, it will
lead to over-fitting of the model. Moreover, a single network
may not be able to extract all the informative features, and it is
actually difficult to train a model that performs well in all
aspects. Therefore, we propose an integrated model based on

transfer learning to combine the results of multiple models to
get better performance.

In this paper, we propose a novel two-stage ensemble method
based on deep convolutional neural networks. In the first stage,
we perform the image segmentation, we use a segmentation
network to generate lesion segmentation masks, and then we
use these masks to resize the original images so that they are the
same size. In the second stage, we implement image classification,
we utilize five state-of-the-art networks to extract features, and we
add Squeeze-and-Excitation Blocks (Hu et al., 2018) to the
network to help emphasize more informative features. Then
we construct a new neural network using local connection to
integrate the classification results of these models, so that we can
obtain the final classification result. We evaluate our method on
ISIC 2017 challenge dataset and obtain the best results on some
metrics.

2 RELATED WORKS

2.1 Traditional Methods
Traditional methods are usually based on manually extracted
features to classify dermoscopy images, including features of
color and texture. The “ABCD” rule is the standard used by
dermatologists, and there are many automatic classification
methods that are based on this rule. Barata et al. (2013)
introduced two different dermoscopy image detection
systems; one used a global approach to classify skin lesions
and the other used local features and a bag-of-features (BoF)
classifier. Ganster et al. (2001) used manual features containing
shape, boundary, and radiometric features to describe lesions,
and then used KNN (K-Nearest Neighbor) to classify
melanoma. Celebi et al. (2007) extracted descriptors related
to shape, color, and texture from dermoscopy images and used
non-linear support vector machines to classify melanoma
lesions. Capdehourat et al. (2011) first preprocessed the
image with hair removal, then used segmentation algorithm
to segment each image, and finally trained the AdaBoost
classifier with descriptors containing shape and color
information.

2.2 Deep CNN Models
In recent years, convolutional neural network (CNN) has been
widely used in image segmentation (Roychowdhury et al., 2015;
Dai et al., 2016; Myronenko, 2018) and classification (Krizhevsky
et al., 2012; Simonyan and Zisserman, 2014; Szegedy et al., 2015;
He et al., 2016; Szegedy et al., 2016; Chollet, 2017; Szegedy et al.,
2017; Huang et al., 2017), object detection (He et al., 2015; Liu
et al., 2016; Redmon et al., 2016), and other scopes of computer
vision (Xiao et al., 2021; Chen et al., 2021b). CNN models have
multiple layers to extract features. The network extractor mainly
has two parts, convolutional layers and pooling layers, and the
network classifier is the fully connected layer. Convolutional
layers use convolutional kernels to carry out convolution
operation with input images to extract features. Kernels obtain
features of the whole image by sliding on it as a window. Also, the
convolution operation of each kernel is only connected to a local

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org January 2022 | Volume 9 | Article 7584952

Ding et al. Melanoma Classification in Dermoscopy Images

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


area called receptive field of the input. Receptive field and weight
sharing are important parts of convolution neural network; they
can effectively change the amount of training parameters. Pooling
operation is a kind of down sampling; its purpose is to reduce the
training time, increase the receptive field, and prevent over-
fitting, including widely used max pooling and average
pooling. In addition, the fully connected layer maps the
learned feature representation to the label space for
classification. If you need to classify the samples into n classes,
there are n neurons in the last fully connected layer.

Many CNN models have great performance on computer
vision tasks (Cao et al., 2021; Chen et al., 2021a; Feng et al.,
2021). Studies have shown that increasing the number of layers in
a network can significantly improve the performance (Simonyan
and Zisserman, 2014; Szegedy et al., 2015). In recent years, deep
CNN has been proposed and performed well in the field of
dermoscopy recognition. Codella et al. (2015) used integrated
CNN, sparse coding, and SVM for melanoma classification. Yu
et al. (2016) proposed an automatic recognition method based on
DCNN and residual learning, which first segmented skin lesions
and identified melanoma with two classifiers. Yu et al. (2018)
proposed a network based on DCNN and used feature coding
strategy to generate representative features. Xie et al. (2016)
processed the incomplete inclusion of lesions in dermoscopy
images and proposed a new boundary feature that can describe
boundary characteristics of complete and incomplete lesions. Lai
and Deng (2018) combined the extracted low-level features
(color, texture) with the extracted high-level features of the
convolutional neural network for classification. González-Díaz
(2019) proposed a CAD system called DermaKNet to help
dermatologists in their diagnosis. DermaKNet was divided into
four parts, first segmenting the lesions in the dermoscopic images
using the Lesion Segmentation Network (LSN), then using the
segmented masks to perform data augmentation on the original
data, and next the Dermoscopic Structure Segmentation Network
(DSSN) was used to segment the global and local features of the

image; finally, the image classification is performed using the
ResNet50-based network. Xie et al. (2020) proposed MB-DCNN
to perform segmentation and classification of dermoscopic
images. They first used a coarse segmentation network
(coarse-SN) to generate a coarse lesion mask, which was used
to assist the mask-guided classification network (mask-CN) to
locate and classify lesions, and the localized lesion regions were
fed into the enhanced segmentation network (enhanced-SN) to
obtain a fine-grained lesion segmentation map. They also
proposed a new rank loss to alleviate the sample class
imbalance problem. Gessert et al. (2020) proposed a patch-
based attention architecture to classify high-resolution
dermoscopic images, which was able to provide global
contextual information to improve the accuracy of
classification. In addition, they proposed a new weighting loss
to address the class imbalance in the data. Zunair and Hamza
(2020) first performed conditional image synthesis by learning
inter-class mapping and synthesizing samples of under-
represented classes from over-represented classes using
unpaired image-to-image translations, thereby exploiting inter-
class variation in the data distribution. Then the set of these
synthetic and original data was used to train a deep convolutional
neural network for skin lesion classification. Bdair et al. (2021)
proposed FedPerl, a semi-supervised federated learning
approach, which used peer learning and ensemble averaging to
build communities and encourage their members to learn from
each other so that they can generate more accurate pseudo-labels.
They also proposed the peer anonymization (PA) technique as a
core component of FedPerl. Datta et al. (2021) explored the goal
of Soft-Attention to emphasize the value of important features
and to suppress features that cause noise. Then they compared
the performance of VGG, ResNet, Inception ResNet v2, and
DenseNet architectures for classifying skin lesions with and
without the Soft-Attention mechanism. The results showed
that the Soft-Attention mechanism improved the performance
of the baseline networks.

FIGURE 1 | Some samples of dermoscopy images. From left to right: malignant melanoma, benign nevis, and seborrheic keratosis.
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3 MATERIALS AND METHODS

In this section, we introduce our proposed two-stage ensemble
network model. First, in the first stage, we train a segmentation
network to segment skin lesions to get the lesion mask, and resize
the mask area to generate lesion image with the same size. Then,
in the second stage, we use five networks with good classification
results on ImageNet to classify dermoscopy images, respectively.
Also, we propose a new neural network to integrate the five
results. The entire framework is shown in Figure 2.

3.1 Data Pre-Processing
The deep network model needs a large amount of training data to
better fit the real data distribution, and the lack of training data
may lead to over-fitting and other problems, which will seriously
affect the classification ability of the model. However, most
medical image datasets do not have much data, which is one
of the biggest challenges of medical image analysis. Data
augmentation is one of the common solutions to increase the
amount of training data, and it can improve the model
generalization ability. Therefore, we use different data
augmentation methods on the original dataset, including
rotation transform with 180°, flipping the images horizontally
and vertically, and moving the image height and width direction
by 10%, so that each original image generates five new samples.

3.2 Skin Lesion Segmentation
Lesion segmentation plays an important role in the automatic
analysis of skin lesion. It can separate the lesion from the normal
skin; therefore, the classifier can better identify the lesion features.

Unlike the classification network, which takes the images of
fixed size as input and then outputs the class of each image, it
gradually reduces the resolution of original images through
convolution and max-pooling, and the feature maps it finally
obtains are much smaller than the original image, then it classifies
the feature maps through several fully connected layers. However,
the output of segmentation network is the equal-sized prediction
maps with input images. In the segmentation network, each pixel

is a sample that needs to be classified into positive or negative.
Therefore, the segmentation network needs decoder to
compensate for the loss of feature resolution that is caused by
max-pooling. In our experiment, we use deconvolution operation
in the decoder to obtain a prediction mask with the same size as
the input image.

U-net (Ronneberger et al., 2015) is an end-to-end deep
convolutional neural network, which does not contain a fully
connected layer, but is composed of convolution layers and up-
sampling layers. U-net has an encoder and a decoder. Encoder
reduces the dimension of images and extracts feature; it is
composed of four blocks, each of which consists two 3 × 3
convolution layers followed by a ReLU activation function,
and one max-pooling layer with stride of 2. Decoder also has
four blocks, each containing a deconvolution layer, which double
the size of feature maps, and two 3 × 3 convolution layers. So as
for up-sampling operation in the decoder, U-net combines the
output of up-sampling layer with feature map of symmetric
encoder using skip-connection, so that the final output of
network can consider both the shallow spatial information and
deep semantic information. In this way, the outputs of the same
size of the corresponding blocks in the encoder and decoder can
be concatenated for segmentation and then the final prediction
map is generated through a 1 × 1 convolution layer.

We train a U-net network to segment the original images and
generate segmentation masks to show the lesion. These
segmentation masks are used to crop the original images to
help the classification network better focus on lesion features.

3.3 Skin Lesion Classification
The skin lesions have great inter-class similar visual effects; if we
train our classification network to use the original images, the
results will be less effective. So we divide our classification model
into three stages. First, we segment skin lesions from original
images using segmentation network and then resize them into a
fixed size. Next, we use five classification networks with SE block
to classify dermoscopy images. Finally, we construct a
convolution neural network to ensemble five results.

FIGURE 2 | Flowchart of our proposed model.
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3.4 Resize
The size of lesions varies greatly, and in most dermoscopy images,
the lesion area only occupies a small part of the image, and most
parts are non-lesion areas that may affect classification. In this
case, if the original images are directly classified, the size of skin
lesion will seriously affect the performance of network. Therefore,
we first segment skin lesions from the dermoscopy images, then
adjust the segmented lesion to a fixed size. Compared with the
network trained on original dermoscopy images, the network
trained on segmented and resized images can better extract
features and has better performance.

3.5 SE Block
The features extracted by a convolutional neural network can
directly affect the results of subsequent tasks, either segmentation
or classification. Therefore, improving the quality of the feature
representation of the network is crucial to improve the final
classification results. The role of the Squeeze-and-Excitation block
(Hu et al., 2018) is to further improve the classification accuracy by
emphasizing the more important and informative features in the
feature map. The SE block can be seen as a channel-wise attention
mechanism, which emphasizes the importance of some features in
the task by giving them greater weights. The specific strategy is
shown in the next section that follows.

SE block is primarily concerned with the dependencies between
feature channels. SE block does squeeze and excitation operation on
feature maps U(H × W × C). The squeeze operation includes a
global average pooling; it can map feature maps to feature vectors.
The c-th feature map can be expressed as

zc � Fsq uc( ) � 1
H ×W

∑
H

i�1
∑
W

j�1
uc i, j( ) (1)

where H and W represent the height and width of feature map
separately. Then the excitation operation includes two fully
connected layers, a ReLU activation and sigmoid activation, so
that it is able to fit complex correlations between channels by
adding non-linear processing through dimensional changes. The
formula can be expressed as

s � Fex z,W( ) � σ W2δ W1z( )( ) (2)

where δ represents ReLU function and σmeans Sigmoid, andW1

and W2 are the weights of the first and second fully connected

layer separately. In this way, the values in this feature vector are
mapped to 0, −, 1. Then the vector s can bemultiplied as a channel
descriptor with the original feature map to obtain the weighted
feature map:

x̃c � Fscale uc, sc( ) � scuc (3)

Therefore, SE block is used to standardize feature maps according
to their importance and highlight more informative feature maps,
thus it can improve the network performance effectively. The
schematic of adding SE Block to the five networks is shown in
Figure 3. We add the SE Block in the same position in each
network, that is, after feature extraction (orange box in Figure 3)
and before final classification of each network.

3.6 Network Model
For ensemble problems, in addition to the ensemble method, the
basic model of integration is also important. We use five state-of-
the-art networks as basic network for our integration, which are
Inception-v3, Densenet169, ResNet50, Inception-ResNet-v2, and
Xception. These networks all have good performance on image
classification tasks.

3.6.1 Inception-v3
Inception module (Szegedy et al., 2015) used 1 × 1, 3 × 3, and 5 ×
5 convolution layers at the same time, then concatenated three
kinds of outputs and transmitted it to the next module. In this
way, it can consider information of different scales at the same
time by increasing the width of the network. In addition,
Inception module also can split channel-wise and spatial-
wise correlation and small size of convolution kernel can
greatly reduce the parameters. On the basis of Inception
module, Inception-v3 (Szegedy et al. (2016)) replaced the 5 ×
5 convolution layer in the original Inception network with two 3
× 3 convolution layers to further reduce the amount of
parameters while maintaining the receptive field and
increasing the ability of representation. Furthermore, another
innovation of Inception-v3 was to decompose a large n × n
convolution kernel (for example, a 7 × 7 convolution kernel)
into two one-dimensional convolution kernels with the size of
n × 1 and 1 × n, respectively. This can increase the model’s non-
linear representation capability while reducing the risk of over-
fitting.

FIGURE 3 | The illustration of five network structures after adding SE Blocks.
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3.6.2 ResNet-50
ResNet (He et al., 2016) appeared to alleviate the problem of
vanishing/exploding gradients. ResNet was composed of a set of
residual blocks, each of which is composed of several layers,
including convolutional layer, ReLU layer, and batch
normalization layer. Also, for each residual block, its input
was directly added to its output via identity, a short
connection that allowed us to perform residual learning; this is
the key to solve gradient problems when training deep networks.
A residual block can be formulated as

Hl � Hl−1 + F Hl−1( ) (4)

where Hl and Hl − 1 are the output and input of the l-th residual
block, respectively. F(x) represents the residual mapping function
of stacked layers. It is obvious that the dimensions of Hl − 1 and
F(Hl − 1) should be equal. However, convolution operation
usually changes the dimensions, so a linear projection Ws is
used to match the dimensions. So Eq. 4 can be converted to

Hl � WsHl−1 + F Hl−1( ) (5)

Therefore, ResNet-50 was obtained by stacking the residual
blocks to make the final network layer count to 50.

3.6.3 Densenet169
Densenet (Huang et al., 2017) was inspired by Resnet. It also used
connections to alleviate the problem of vanishing gradients, but it
did not use residual blocks to achieve this goal. Densenet was
composed of dense blocks. In each dense block, as shown in
Figure 4, the input of the n-th layer was the result of the
concatenation of all the previous n−1 layers. In this way, when
performing related operations on the n-th layer, the utilization of
the features of all the previous layers can be maximized. This

feature reuse method can make the features work better while
reducing the amount of parameters.

3.6.4 Inception-ResNet-v2
Inception-ResNet-v2 (Szegedy et al., 2017) combined Inception
module with residual learning. It was based on Inception-v4,
which was deeper and better than Inception-v3, but had more
parameters. Inception-ResNet-v2 added residual identities to
different types of Inception modules of Inception-v4, so that
the network converged faster, and the training time of the
network was shortened.

3.6.5 Xception
Xception (Chollet, 2017) was an improvement to Inception-v3. It
mainly replaced ordinary convolution in Inception-v3 with
depthwise separable convolution. The multiple convolution
kernels of depthwise separable convolution only processed part
of feature maps produced by the previous layer. For example, for
the result of 1 × 1 convolution output from the Inception module,
depthwise separable convolution referred to using three 3 × 3
convolution kernels to operate on one-third of the channel of this
result, and finally three results from three 3 × 3 convolution
kernels were concatenated together. In this way, the amount of
parameters can be greatly reduced. Also, the author believed that
Xception can decouple the channel correlation and spatial
correlation of the features, thereby producing better
computational results.

We use these five pre-trained networks on ImageNet as feature
extractors, then add SE blocks after every extractor to emphasize
more informative features. Then, a full connected layer of 128-
dimension is used to generate the final feature vector, and finally
we use softmax classifier to obtain class predictions.

FIGURE 4 | The illustration of feature reuse of dense block.
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3.6.6 Ensemble Learning
There are usually two ways to ensemble multiple networks:
averaging and voting. Averaging refers to the average results
of multiple networks, with each network accounting for the same
proportion, so that they have the same influence on the final
result. However, for each class, some networks produce better
results, and some have relative worse effect; taking the average
directly would reduce the advantage of good networks.

For voting ensemble, we can implement it through neural
networks. In detail, the neural network we build for ensemble
learning is equivalent to a new classifier, whose input is the
classification probabilities from five networks, and whose output is
the final classification result. The reason we chose to build the classifier
with locally connected layer instead of fully connected layer is that fully
connected layer will be connected to all the outputs of the previous
layer, while locally connected layerwill only be connected to parts of the
previous layer. In this case, the part of the output of the ensemble
network will only be determined by a specific input, and the prediction
of one class will not be influenced by the other two classes because the
local connection layer extracts features for each class separately, so the
network will produce more accurate classification results. This new
network is used to integrate the results of the five networks, consisting
of two local connected layers and a softmax layer, as shown inFigure 2.
The result has an improvement over the averaging ensemble method.

4 RESULTS

4.1 Dataset
The dataset we use to evaluate our method was provided by ISIC
2017 challenge organized by The International Society for Digital
Imaging of the Skin (Codella et al., 2018). It includes 2,750
dermoscopy images and is divided into three subsets: 2,000 for
training, 150 for validation, and 600 for testing. The images in the
dataset are classified as three classes: benign nevi (BN), seborrheic
keratosis (SK), or melanoma (MM). The details of ISIC 2017
challenge dataset is shown in Table 1, MM refers to melanoma,
SK refers to seborrheic keratosis, and BN refers to benign nevi. Also,
we can see from Figure 5 that the distribution of training, validation,
and test sets is very uneven; the images of BN are far more than the
images of the other two classes in three subsets. In addition, the ISIC
2017 dataset also provides dermoscopy images with their binary
masks as their segmentation ground truth.

The ISIC 2017 challenge consists of two binary classification
subtasks: melanoma or others and seborrheic keratosis or others.

4.2 Implementation
Our method is implemented with Keras on a computer with
GeForce RTX 2080Ti GPU. The images with the size of 224 × 224

are taken as input of model, so all dermoscopy images are resized
to 224 × 224 after segmentation. We use Adam algorithm as
optimizer, and the learning rate is set as 0.0001 initially. Our
epoch number is set to 100 initially. To prevent over-fitting, we
use early stopping method with patience of 10 epochs.

4.3 Metrics
We use accuracy (ACC), recall, precision, F1-score, and AUC (area
under ROC curve) as classification metrics. They are defined as

ACC � TP + TN

TP + TN + FP + FN
(6)

recall � TP

TP + FN
(7)

precision � TP

TP + FP
(8)

f1score � 2 × precision × recall

precision + recall
(9)

where TP, TN, FP, and FN denote the number of true positive,
true negative, false positive, and false negative. The number of
three classes in our dataset are imbalanced, so in this case, ACC
cannot well reflect the performance of our classifier; therefore, we
use AUC, the same indicator as ISIC classification challenge
(Codella et al., 2018), as the main metric.

4.4 Performance on Multi-Class
Classification
Our method is divided into three parts. After segmenting and
cropping the original dermoscopy images, five pre-trained
models are used to do classification, and then the results of
these models are ensembled to generate the final result. To

TABLE 1 | Details of ISIC 2017 challenge dataset.

Subsets MM SK BN Total

Training 374 254 1,372 2,000
Validation 30 42 78 150
Testing 117 90 393 600

FIGURE 5 | The distribution of training, validation, and test sets of ISIC
2017 challenge dataset.

TABLE 2 | Classification results with or without segmentation.

Methods ACC Precision Recall f1 score AUC

Without segmentation 0.698 0.598 0.622 0.592 0.781
With segmentation 0.791 0.634 0.688 0.659 0.883
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verify our method, in this section, we modify the dataset and
convert the two binary classification tasks into a multi-
classification task. Then we compare the performance with
and without segmentation and resize, and the performance
before and after ensemble. Table 2 shows the experimental
results with and without segmentation under one pre-
trained network called Inception-v3. It can be seen that
the network has better performance running on the
segmented images than on the original images. As shown
in Figure 6, especially on ACC and AUC, the results of
network with segmentation get 0.791 and 0.883, respectively,
which are much higher than that of network without
segmentation. This is because the size of skin lesions
varies greatly, and there are some interference factors
such as artificial rulers in the original dermoscopy images.
Segmentation can remove these interference factors to some
extent, so that the network can better identify features.

In the ensemble stage, we construct a neural network model
with two local connected layers with softmax classifier to fuse the
results of five basic networks. Our new ensemble method can
further improve the performance, and is better than the
commonly used ensemble method. Table 3 lists the results of
the five pre-trained models we use and the results of averaging

ensemble and our ensemble method. (The bold numbers in the
table of this article are the maximum values of their columns) It
can be seen that the fusion model have better performance than
any single network and average method on most metrics. For the
recall and f1 scores, our ensemble method is 0.033 and 0.007
lower than Xception, but it is higher than other methods in other
metrics. Especially, it has a 2% improvement on AUC over the
result of best network, i.e., Xception. Also, our ensemble method
is better than traditional average ensemble method on all metrics
except for recall.

We also compare the amount of parameters and training
time of different networks (including our ensemble
network). From Table 4, we can see that the classification
networks have more parameters, especially Inception-
Resnet-v2, which has up to 54.87 M. However, compared
with these classification networks, our ensemble network has
very few parameters, only 423. For training time, since the
classification networks have been pre-trained on ImageNet,
we just need to fine-tune the networks during training, and
our training set is small, so we can see that the training time
of each network is relatively short (when training 100
epochs). At the same time, we can also notice that the
training time of the network is not entirely determined by
their parameters, but is also related to the parallelism of the
model and the memory access cost. In addition, these five
classification networks are independent of each other, so
they can be trained at the same time, which can also greatly
reduce training time. Finally, our ensemble network requires
very little training time, only 20 s.

4.5 Performance on Binary Classification
ISIC 2017 challenge has two binary classification tasks, melanoma
or others and seborrheic keratosis or others, so we also carry out
the experiment regarding challenge tasks. We show the results of
melanoma classification and seborrheic keratosis classification in
the form of radar diagrams, as shown in Figure 7. Polar

FIGURE 6 | Performance of our method with or without segmentation.

TABLE 3 | Results of different networks and two ensemble methods on multi-
classification task. (The bold numbers in the table of this article are the
maximum values of their columns).

Methods ACC Precision Recall f1 score AUC

Inception-v3 0.792 0.634 0.688 0.659 0.883
Densenet169 0.800 0.739 0.727 0.722 0.881
Resnet50 0.762 0.676 0.678 0.672 0.864
Inception-Resnet-v2 0.800 0.736 0.726 0.725 0.873
Xception 0.810 0.75 0.748 0.748 0.896

Average 0.793 0.724 0.724 0.719 0.880
Ensemble 0.851 0.769 0.715 0.741 0.913
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coordinates represent different metrics and each line represents a
network. It can be seen that our method performs pretty well on
both tasks. For the classification of melanoma, it is clear that our
performance is the highest in all metrics, especially in precision,
where we outperform the second highest, Densenet, by more than
10%; second, for the f1 score, which can take into account both
positive and negative samples, our method also outperforms the
rest of the networks by about 5%; finally, for our main metric,

AUC, we also surpass the other networks by a large margin. As for
the classification of seborrheic keratosis, although the advantage
of our method is not as obvious as when classifying melanoma, it
still performs well. First, our method still outperforms the other
networks in terms of AUC, which is our main metric; second, for
precision and ACC, our method leads by a small margin; and for
recall and f1, we are slightly below the performance of Inception-
Resnet-v2 and Xception. In general, our method is very efficient
for classifying melanoma, although it is not significantly superior
for classifying seborrheic keratosis, so it can improve the accuracy
of classification in this task in general.

We average the performance of all networks and ensemble
methods on two binary tasks and show them in Table 5.
When compared with a single network, it can be seen that our
ensemble method can effectively improve the performance;
especially the AUC is 1% better than the best single network,
i.e., Xception. At the same time, for precision and f1 score,
our ensemble network is also the highest one. In addition,
when compared with other ensemble methods, we use several
machine learning classifier to do ensemble as comparison.
We can see that except that ACC is 0.003 lower than Random
forest, we are significantly better than machine learning
methods on other metrics. We also illustrate this
comparison in Figure 8, so we can more intuitively see the
advantages of our ensemble method in various metrics.

TABLE 4 | The amount of parameters and the training time of each network.

Networks Inception-v3 Densenet169 Resnet50 Inception-resnet-v2 Xception Ensemble

Params 22.56 M 13.22 M 24.32 M 54.87 M 21.59 M 423
Time(s) 1,900 3,200 1,900 3,000 2,700 20

FIGURE 7 | Results of melanoma and seborrheic keratosis classification for different networks.

TABLE 5 | Average results of two skin lesion classifications of different networks.

Methods ACC Precision Recall f1 score AUC

Inception-v3 0.885 0.806 0.781 0.791 0.883
Densenet169 0.893 0.827 0.783 0.802 0.882
Resnet50 0.88 0.792 0.788 0.789 0.882
Inception-Resnet-v2 0.89 0.807 0.814 0.809 0.894

Xception 0.891 0.814 0.811 0.812 0.896
SVC1 0.911 0.798 0.66 0.719 0.813
Random forest 0.912 0.802 0.664 0.721 0.816
Extra-Trees 0.911 0.805 0.65 0.716 0.809
KNN 0.908 0.782 0.657 0.709 0.81
GBDT2 0.91 0.808 0.644 0.71 0.807
Ensemble 0.909 0.859 0.808 0.828 0.911

1Support Vector Classification.
2Gradient Boost Decision Tree.
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4.6 Comparison of Various Predictors
InTable 6, we compare ourmethodwith the top five performance in
the ISIC 2017 challenge skin lesion classification task (Díaz, 2017;
Matsunaga et al., 2017; Bi et al., 2017; Menegola et al., 2017; Yang
et al., 2017) and some excellent methods in recent years. Most of the
networks participating in the challenge used external images, which
we do not do. In Table 6, it can be seen that our method achieves
0.909 and 0.859 on ACC and precision, which are highest on these
metrics. Besides, we get 0.911 on AUC, which is 0.048 lower than
that of Datta et al. (2021). For f1 score, our method obtains 0.828,
which is 0.023 lower than the best score. However, for recall, our
model’s performance is a bit unsatisfactory, which shows that our
model still has some shortcomings in classifying positive samples.

5 CONCLUSION

In this paper, we have the following innovations: 1) we
propose a new two-stage ensemble method that integrates
five excellent classification models to classify skin melanoma;
2) we also propose a new method of segmenting the lesion
area of the dermoscopy image to generate a mask of the lesion
area, so that the image can be resized to focus on the lesion; 3)
we propose a new ensemble network that can use local
connected layers to effectively integrate the classification
results from the five classification networks. We test our
method on the ISIC 2017 challenge dataset and get pretty
good results. In future work, we will explore more effective
classification methods based on the characteristics of
dermoscopy images and the association of different classes
of dermoscopy images, especially in process of pre-
processing, because the experimental results show that our
segmented images can largely improve the accuracy of
classification.
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