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Three-dimensional (3D) co-culture models have closer physiological cell composition and
behavior than traditional 2D culture. They exhibit pharmacological effects like in vivo
responses, and therefore serve as a high-throughput drug screening model to evaluate
drug efficacy and safety in vitro. In this study, we created a 3D co-culture environment to
mimic pathological characteristics of rheumatoid arthritis (RA) pannus tissue. 3D scaffold
was constructed by bioprinting technology with synovial fibroblasts (MH7A), vascular
endothelial cells (EA.hy 926) and gelatin/alginate hydrogels. Cell viability was observed
during 7-day culture and the proliferation rate of co-culture cells showed a stable increase
stage. Cell-cell interactions were evaluated in the 3D printed scaffold and we found that
spheroid size increased with time. TNF-α stimulated MH7A and EA.hy 926 in 3D pannus
model showed higher vascular endothelial growth factor (VEGF) and angiopoietin (ANG)
protein expression over time. For drug validation, methotrexate (MTX) was used to
examine inhibition effects of angiogenesis in 3D pannus co-culture model. In
conclusion, this 3D co-culture pannus model with biological characteristics may help
the development of anti-RA drug research.
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INTRODUCTION

Joint is a dynamic tissue that supports us to move, but it may suffer destruction of bone and cartilage
because of arthritis like RA. Due to the genetic factor or immune system disorder, synovial
membrane in RA patients presents abnormal proliferation of synovial cells and migration of
inflammatory cells (Deane et al., 2017). Synovial joint is usually rich in blood vessels, which is a
unique manifestation of RA. New vessels and hyperplastic fibrous tissue contribute to angiogenic
disorders and form a complex vascular tissue called pannus (Veale et al., 2017). Angiogenesis not
only provides more means for the spread of inflammatory cytokines and the infiltration of leukocyte
but aggravate the formation of pannus (Maruotti et al., 2006; Elshabrawy et al., 2015). RA pannus is
an aggressive and invasive tissue with massive leukocyte infiltration, proliferative synovial
membranes and neovascularization, which is directly responsible for cartilage destruction and
bone erosion (Lee andWeinblatt, 2001). The development of pannus is highly relevant to the growth
factors, pro-inflammatory cytokines and chemokines. Growth factors, such as vascular endothelial
growth factor (VEGF) and basic fibroblast growth factor (bFGF) are described as the key regulators
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in proliferation, migration and vascular formation. Pro-
inflammatory cytokines like tumor necrosis factor (TNF)-α,
interleukin (IL)-6, which provide inflammatory conditions in
RA synovium, have direct and indirect effects on other cell types
to produce pro-angiogenic factors (Semerano et al., 2011).

In recent years, RA have become the most common form of
inflammatory arthritis. Patients need to rely on drugs for control
as it is an incurable disease (Doan and Massarotti, 2005; Yu et al.,
2018). Inhibition of angiogenesis can be a helpful strategy for
early prevention and treatment of RA (Veale and Fearon, 2006;
MacDonald et al., 2018; Balogh et al., 2019). However, RA drug
testing has low accuracy and drug development cycle is long.
Although animal model is the most effective way to study RA
drugs before clinical trials, ethics and experimental accuracy
limits rapid and efficient evaluation of drug safety and efficacy
(Li and Izpisua Belmonte, 2019). To overcome these difficulties,
co-culture models are often used to mimic physiological
environment of pannus for RA study and anti-RA drug
screening (D’andrea et al., 1998; Kasama et al., 2001; Nozaki
et al., 2007; Chu et al., 2018; Gou et al., 2018). IBOLD et al.
developed a 3D pannus model in vitro as a high-throughput
screening assay. Chondrocytes from porcine donors were isolated
and seeded them into wells to form extracellular matrix (ECM).
After 14 days, it would be coated with human synovial fibroblasts.
They found that intercellular communication between these 2 cell
types occurs both through gap junctions and ATP-mediated
paracrine stimulation. (D’andrea et al., 1998). In the co-culture
model of chondrocytes and synovial cells, D’ANDREA et al.
found that the Ca + signal between these 2 cell types can be
affected by 18α-glycyrrhetinic acid, suggesting they have
communication in pannus tissue (Nozaki et al., 2007).
Monocytes or polymorphonuclear neutrophils (PMNs) were
seeded onto fibroblasts and Kasama et al. found that the
expression of VEGF in co-culture groups are higher than
synovial fibroblasts, monocytes or PMNs alone groups, which
means VEGF expression in pannus can be also regulated by the
interaction of synovial fibroblasts and activated leukocytes (Chu
et al., 2018). Nozaki et al. isolated pannus tissue from RA patients
and the inflammatory cells including macrophages, T cells and
fibroblasts. They collected these cell types without enzyme
digestion and found that inflammatory cells could develop
into pannus-like tissue spontaneously in vitro. This pannus
model continuously secreted MMP-9 and TNF-α, IL-8 and
M-CSF, which related with osteoclastogenesis (Gou et al.,
2018). Although these studies revealed useful characteristics of
3D pannus models in vitro, it is still difficult to construct a long
lasting and strong repeatability pannus model to test anti-RA
drugs due to the limitations of fabrication techniques.

Recent advances in 3D fabrication technology have allowed
direct assembly of cells and biocompatible materials to form
in vitro cellular models for artificial organ regenerations, the
study of disease mechanisms and drug screening. This promising
technique has the advantages of accurate control of cell
distribution, high simulation of physiological
microenvironments and cost-effectiveness, which is suitable for
constructing complex 3D in vitromodels (Mandrycky et al., 2016;
Ma et al., 2018; Ong et al., 2018; Zhu et al., 2020). Therefore, 3D

printing has been applied in the establishments of disease
pathogenesis and drug screening model in hepatocellular
carcinoma (Sun et al., 2020; Xie et al., 2021), breast cancer
(Swaminathan et al., 2019; Lv et al., 2021), cervical tumor
(Zhao et al., 2014; Pang et al., 2018), bladder cancer (Kim
et al., 2019), and neurodegenerative diseases (Thomas and
Willerth, 2017). To apply the potential value of 3D printing
on anti-RA drug research, in this paper we constructed the
in vitro pannus model by 3D printing of endothelial cells
(EA.hy 926)/Synovial fibroblasts (MH7A) and gelatin/alginate
and characterized its biological function. To our knowledge, RA
synovial tissue fibroblasts produce pro-angiogenic growth factors,
cytokines under the induction of inflammatory mediators or
hypoxia. Under the condition of pro-angiogenic and
inflammatory factors, endothelial cells therefore promote cell
proliferation, migration and tube formation (Szekanecz et al.,
2005; Elshabrawy et al., 2015; Alam et al., 2017; Croft et al., 2019).
BothMH7A cell line (synovial fibroblasts) and EA.hy 926 cell line
(endothelial cells) are widely used to be the cell model in RA
research as they are considered valuable in preclinical trials
(Komorowski et al., 2006; Cheng et al., 2019; Qu et al., 2019;
Kong et al., 2020). In addition, we used gelatin/alginate as they
can mimics ECM to provide the cells a better natural
microenvironment. They show good biocompatibility and
good molding effect when building 3D biological scaffolds,
and these structures could have long retention time (Sun et al.,
2020; Lv et al., 2021). The schematic of 3D pannus scaffold
printing process has been showed in Figure 1. Biological
characterization of 3D printed pannus models on calcium
cross-linking toxicity, cell proliferation, cell survival, cell
morphology and VEGF and Angiopoietin (ANG) protein
expression will be evaluated. Our findings may offer a basic
view of 3D printed pannus model in drug screening application.

MATERIALS AND METHODS

Cell Culture
Human endothelial cells (EA.hy 926) were generously given by
professor Qin’s Laboratory and the cells were cultured in
Dulbecco Modified Eagle Medium (DMEM) with 4.5 g/L
glucose, supplemented with 10% fetal bovine serum (Gibco,
Thermo Fisher Scientific) and 1% penicillin/streptomycin
(Sigma-Aldrich, MO, United States). Human synovial
fibroblasts (MH7A) were purchased from the Riken Cell Bank
(Tsukuba, Japan). The cells were maintained in Roswell Park
Memorial Institute (RPMI) cultivation medium (Hyclone,
Thermo Fisher Scientific, Wilmington, DE, United States) plus
10% fetal bovine serum (Gibco, Thermo Fisher Scientific) and 1%
penicillin/streptomycin (Sigma-Aldrich). For TNF-α co-culture
model, EA.hy 926 and MH7A were pretreated with 20 ng/ml
TNF-α for 6 h before printing. All culture experiments are under
the condition of humidified air with 5% CO2 in 37°C.

Bioink Preparation
Gelatin/alginate was purchased from Sunp Biotech (Beijing,
China). The lyophilized powder was dissolved in DMEM
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medium at 56°C. The mixed ink should be pasteurized by 70°C for
30 min and 4°C for 10 min three times at constant temperature
water bath and stored at 4°C until use. Before the experiment, the
ink was kept at 37°C for 2 h. For co-culture bioink, 2.5×106 cells of
each EA.hy 926 andMH7Awere resuspended in DMEMmedium
and homogeneously mixed with gelatin/alginate ink at a volume
ratio at 1:4, resulting in a final cells density of 106 cells/ml.

3D Scaffold Formation and Culture
3D Cell Printer (SPP1603, SUNP, China) were used to fabricate all
the 3D scaffold models. The temperature of the nozzle and printing
bed were 23 and 15°C, respectively. 25G needle was chosen and the
scanning speed was controlled at 3 mm/s. The models were printed
in an eight-layered square grid pattern with the size of 10 × 10mm
cross sectional area and 2.4 mm thickness. The inks were loaded
into 3 ml printing syringe and precooled at the printing chamber for
10min. Preprinted on the 35 mm petri dishes and ensured that the
bioink was smoothly extruded. After printing, hydrogel scaffolds
were immersed in CaCl2 solution for 5 min for crosslinking with
alginate, providing better strength to the scaffolds. All scaffolds were
gently blown with a pipette to remove bubbles. Then the scaffolds
were washed with sterile physiologic saline once and finally cultured
in DMEM medium. The scaffolds were crosslinked and the
medium was changed every 3 days.

Calcium Cross-Linking Toxicity
EA.hy 926, MH7A and co-culture mixed cells were seeded into
96-well culture plates (3,000 cells/well) for 24 h. The cells were
stimulated by 3% CaCl2 solution for 5 min and washed by
physiologic saline, and then they were cultured in DMEM
medium for another 24 or 48 h. To evaluate cellular metabolic
activity, Cell counting kit-8 (CCK-8, Dojindo, Japan) were added
into each well at the volume of 10% of the total, protected against

exposure to light. After 3 h incubation at 37°C, fluorescence of the
culture medium was detected by microplate reader (PerkinElmer,
Waltham, MA) at 450 nm. The data was then normalized to the
standard and calculated cell viability.

Cell Proliferation Analysis
Cell proliferation in printed scaffolds was studied using CCK-8
on cultured days 1, 3, 5 and 7. Cells were incubated in amixture of
culture medium and CCK-8 for 2 h. The values of fluorescence at
450 nm were compared among different printed groups.

Cell Survival
Cell survival test in 3D scaffolds was carried out on day 1, 3, 5, 7
after printing. Fluorescent Live/Dead assay (C2015M, Beyotime,
China) was used according to the instruction manual. Briefly,
medium was removed and the scaffolds were then washed twice
with phosphate buffer solution (PBS). Subsequently, Calcein-AM
and propidium iodide (PI) was mixed with detection buffer at the
dilution ratio of 1:1,000 and 1.5:1,000, respectively. The cell laden
scaffolds were incubated at 37°C for 30 min in dark, then washed
three times with PBS. Calcein-AM marks viable cells green and
propidium iodide (PI) shows dead cells red. Images were obtained
from fluorescence microscopy (Leica, Germany).

Cell Morphology Imaging and Analysis
The scaffold shapes were taken with camera (Supplementary Figure
S1). Two dimensional cell morphology of EA.hy 926 and MH7A was
captured using inverted optical microscope (Carl Zeiss, Germany) at
cell density of 80%. Three-dimensional scaffoldwas examined by using
fluorescencemicroscope (Leica, Germany) on cultured days 1, 3, 5 and
7. The imageswere taken in three randomfields at 100×magnification.
Cell diameters were measured by Image J (NIH, United States)
software and analyzed by Origin (Originlab, United States).

FIGURE 1 | Schematic of the 3D scaffold printing process. Fabrication of pannus mimic with gelatin /alginate and EA.hy 926/MH7A cells.
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Enzyme-Linked Immunosorbent Assay
The experiment was divided into four groups: blank (no cell)
group, co-culture group, TNF-α pannus model group and TNF-α
pannus treated by 100 nM MTX for 24 h group. The
concentrations of VEGF and ANG protein in the culture
medium of 3D scaffold were detected on day 1, 3, 5, 7.
Secretory cytokines were examined using corresponding
commercial ELISA kits (R&D Systems, United States). A
standard curve was constructed for each assay according to
the manufacturer’s instructions. The cytokine concentrations
of each sample were calculated on the basis of the standard curve.

Statistical Analysis
All the data were presented as mean ± SD. Statistical significance
was evaluated by Students T Test. Differences were considered to
be significant for p < 0.05. *p < 0.05; **p < 0.01; ***p < 0.001. Each
experiment was performed in triplicate (n � 3) on at least
independent three samples (N ≥ 3).

RESULTS

Calcium Toxicity on Cells in 2D Planar
Culture
To test the cytotoxic effect of calcium on EA.hy 926 and MH7A
and 1:1 co-culture mixture, CCK-8 was used to determine the cell
viability. As is shown in Figure 2, after stimulating by calcium for
5 min and cultured in DMEM for 24 h, The percentage of EA.hy
926 cell viability decreased to 26.53 ± 4.34, but it rose to 54.49 ±
6.17 at 48 h MH7A cells also had the same trend, 21.05 ± 3.30
percent at 24 h and 43.01 ± 4.24 percent at 48 h, respectively. In
terms of 1:1 co-culture mixture, they performed 38.29 ± 3.71 at
24 h and 55.62 ± 4.17 at 48 h.

Cell Distribution and Viability in 3DScaffolds
To determine cell distribution and survival in 3D gelatin/alginate/
EA.hy 926/MH7A model, we used calcein-AM/PI staining assay
to analyze live/dead cells on day 1, 3, 5 and 7. As we can see, the
cells were evenly distributed in gelatin/alginate scaffold. Cell

viability was stable about 80% during the in vitro culture of
EA.hy 926/MH7A in 3D scaffold (Figure 3A). The cellular
proliferation in 3D scaffolds was detected using CCK-8 kit on
the same time. Figure 3B demonstrates that compared with day 1,
cells had 1.36-fold proliferation on day 3, 1.75-fold proliferation
on day 5, and 2.03-fold proliferation on day 7. There were
significant differences between day 1 (0.39 ± 0.12) and day 5
(0.68 ± 0.05) and 7 (0.79 ± 0.05). Overall, the proliferation rate of
co-culture cells had a stable increase stage from day 1 to day 7.

Development of Co-Culture Spheroids
Within Cell Laden Scaffold
Inverted optical microscope was used to observe the cell
morphology in 2D planar culture. EA.hy 926 shows epithelioid
morphology and MH7A shows epithelioid and polygonal
morphology (Figure 4A). The cells and cellular distribution
pattern in printed scaffolds were characterized using
fluorescence microscope on day 1, 3, 5, 7. Compared with 2D
planar culture, cells turned to be spheroids within 3D scaffolds,
and they were observed to form larger spheroids after 3 days of
bioprinting. The spheroid size increased over time. Figure 4B
shows spheroid distribution in the 3D co-culture cell laden
scaffold. At day 1, 7.09% of the spheroids were at the diameter
range of 20–30 μm. At day 3, the size between 20–30 μmwas up to
28%. The percentages of over 30 μm at day 5 and day 7 were 10.65
and 14.73%, respectively (Figure 4C).

Effect of 3D Engineered Scaffold on VEGF
and ANG Expression
The experiment was divided into four groups: blank (no cell)
group, co-culture group, TNF-α pannus model group and TNF-α
pannus treated by MTX group. The culture medium of the three-
dimensional scaffold was collected on day 1, 3, 5, 7. Figure 5A
shows that the cell co-culture scaffold and pannus scaffold
secreted more VEGF protein on day 5 and 7 compared with
that on the first day, but there was no significant difference
compared with the no cell group on the same day (p > 0.05).
Figure 5B illustrates the content of ANG secreted protein in the
co-culture scaffold on day 1 was different from that of the no cell
group (p < 0.05), and there was a significant difference from day 3
to day 7 (p < 0.001). On the day 7, the ANG protein concentration
of the TNF-α pannus model group was different from that of the
blank group (p < 0.05). Although the ANG concentration
decreased in the pannus MTX group, there was no significant
difference when compared with that in TNF-α pannus group.

DISCUSSION

RA is a chronic and systemic autoimmune disease, and immune
dysregulation occurs earlier than joint inflammation. Current
medications for RA are glucocorticoids (GCs), nonsteroidal anti-
inflammatory drugs (NSAIDs), disease-modifying antirheumatic
drugs (DMARDs) and biological therapies, which provide
clinically meaningful pain relief and control inflammation in

FIGURE 2 |Cytotoxicity of calcium on EA.hy 926 andMH7A and 1:1 co-
culture mixture in 2D planar. Cells were treated with CaCl2 solution for 5 min
and washed with physiologic saline once. After 24 and 48 h, their viability was
determined using CCK-8 assay (mean ± SD, *p < 0.05; **p < 0.01; ***p <
0.001, t-test). Con � no calcium stimulation; SD � standard deviation.
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patients. However, several side effects, including cytopenia,
psoriasis, lung disease and liver damage, have been proved in
treatments with these drugs (Burmester and Pope, 2017; Abbasi
et al., 2019). Thus, the discovery of a safe and effective drug for
RA treatment remains a crucial challenge.

Over the last 2 decades, angiogenesis has been reported to play
an important role in the deterioration of RA. RA pannus is an
aggressive and invasive tissue with rich proinflammatory cytokines
like TNF-α, IL-1β and IL-6, which is directly responsible for
cartilage destruction and bone erosion (Lee and Weinblatt,

FIGURE 3 | Cell survival and proliferation in the 3D cell laden pannus tissue model. (A) Cell survival at different time points after printing. Live and dead cells were
labelled with calcein-AM (green) and PI (red), respectively. Scale bar, 750 μm. (B) Proliferation rates of cells in 3D co-culture cell laden scaffolds at day 1, 3, 5, and 7.

FIGURE 4 | Cellular morphological differences between 2D planar culture and 3D scaffolds. (A) EA.hy 926 and MH7A cells morphology in 2D planar culture. EA.hy
926 cells look epithelioid and MH7A cells are epithelioid and polygonal. Scale bar, 100 μm. (B) 3D Gelatin /alginate/EA.hy 926/MH7A scaffolds observed by a
fluorescence microscope on culture days 1, 3, 5, and 7. Scale bar, 100 μm. Black arrows indicate cells and cellular spheroids in 3D scaffolds. (C)Distribution of spheroid
diameter in 3D cell laden scaffolds on day 1, 3, 5, and 7.
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2001; MacDonald et al., 2018). Numerous researchers have studied
on inhibition of angiogenesis in RA (Zhang et al., 2017; Yang et al.,
2018; Li et al., 2019; Zhai et al., 2019). In order to screen anti-RA
drugs in a more accurate and efficient way, here we developed a 3D
printed model to mimic the microenvironment of RA pannus. In
terms of cell composition, we chose vascular endothelial cells and
synovial fibroblast. Since EA.hy 926 and MH7A cells are widely
used in drug discovery in RA and they are cell lines, we chose them
to ensure the effectiveness and repeatability of our model.
However, single cell model failed to offer a complex
microenvironment to evaluate cellular response to drugs
accurately (Sun et al., 2019). In the microenvironment, we
added inflammatory factors (TNF-α) to simulate the
inflammatory microenvironment. Compared to monolayer cell
culture, 3D printing model is close to the space environment of
the actual RA pannus tissue, enhancing the communication
between cells and thereby improving the accuracy and efficiency
of drug detection. For example, Kim et al. showed that cells grown
in 2D culture conditions exhibit different gene and protein
expression from those observed in vivo. And it was confirmed
that cell proliferation rates in 3D culture was higher than that in the
2D cell culture because they mimic cell-to-cell interaction. They
also found that there was a different anticancer effect between these
two models. The drug effect in the 2D cell culture model is
exaggerated, which explains why immunotherapies have shown
excellent efficacy in research studies but not in clinical studies and
patients (Kim et al., 2019). Thus, in this study we constructed the
3D pannus model based on the co-culture system of MH7A and
EA.hy 926 cells. Alginate and gelatin are natural biomaterials. Both
of them have high printability and good biocompatibility with cells.
In addition, micro-extrusion printing has been shown that they can
print cell laden scaffold in a controllable way with high cell
viability. Despite cells experience stress condition during
printing, they still have good cell viability with hydrogel
(Mandrycky et al., 2016; Panwar and Tan, 2016). To maintain
sufficient mechanical strength, printed scaffold needs to crosslink
with CaCl2 solution every 3 days. Our result showed that CaCl2
solution had a cytotoxic effect among EA.hy 926 cells, MH7A cells,
and 1:1 co-culture mixture groups in 2D planar. Cell viability
decreased to around 30% after calcium stimulation for 5 min at
24 h, but cell viability regulated to around half at 48 h. According to
the manufacturer’s instruction, the recommendation time for

crosslinking is 4–8 min, and we chose 5 min in order to hold
the shape of the scaffold. As the concentration and ratio of gelatin
and sodium alginate are confidential and there would be difference
between 2D culture and 3D hydrogel scaffold, we further tested cell
survival using calcein-AM/PI staining assay and measured cell
proliferation using CCK-8 assay in 3D cell laden scaffold. The
survival result showed that the viability of the co-culture mixture
was around 80%. The proliferation rate of co-culture cells increased
steadily from day 1 to day 7, which illustrates the gelatin/alginate
bioink is biocompatible with cell growth. Earlier studies have
demonstrated that cell viability and behavior in the scaffold is
influenced by biomaterial type, material viscosity, printing speed,
printing temperature and extrusion pressure (Zhao et al., 2015; Li
et al., 2018). During our exploration on printing process, we
noticed that too low temperature would lead to over
coagulation of bioink. The bioink was so difficult to extrude
that shear forces increased, resulting in cellular injury and death.

Compared with the morphology of MH7A cells and EA.hy 926
in 2D planar culture and 3D printed scaffold, we found thatMH7A
showed epithelioid and polygonal morphology and EA.hy 926
presented epithelioid morphology while they looked spheroids
from day 1 to day 7. What’s more, after we measured the
diameter of cellular spheroids on day 1, 3, 5 and 7, we observed
that cells were assembled to be larger spheroid with time.

VEGF and ANG are considered fundamental in the formation
of pannus. VEGF is one of the key regulators of angiogenesis as
they are related to proliferation, migration and vascular tube
formation (Marrelli et al., 2011). ANG acts later in the
pathogenesis of pannus compared to VEGF. ANG is increased
to form and increase blood vessel stability (Clavel et al., 2003). In
order to verify the biological function of our 3D printed scaffold,
we conducted ELISA assay to detect concentrations of VEGF and
ANG protein. The results showed that the expression of VEGF and
ANG in the co-culture and pannus group increased with days, but
the co-culture group showed a more obvious effect. This may be
because the cells in pannus groupwas induced by TNF-α before the
model was constructed, but we did not provide an external
inflammatory environment afterwards, resulting in the
incomplete performance of the pannus characteristics. MTX has
been showed that it could reduce VEGF content in CIA rat model
to relieve angiogenesis (Chen et al., 2021). Hirata S also illustrated
that MTX inhibited both basal and vascular endothelial cell growth

FIGURE 5 | Concentration of VEGF and ANG secreted protein in the supernatant of the three-dimensional scaffold on Day 1, 3, 5, and 7. (A) A. VEGF secreted
protein concentration (pg/ml); (B) ANG secreted protein concentration (pg/ml).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org November 2021 | Volume 9 | Article 7642126

Lin et al. 3D Printing of Pannus Mimic

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


factor-stimulated tritiated deoxyuridine (3H-UdR) incorporation
into vascular endothelial cell in a dose-dependent manner (Hirata
et al., 1989). So MTX was added after the model was printed, and
the concentration of pro-angiogenic factors decreased compared
with the pannus group for 7 days.

However, there are some differences between our 3D pannus
scaffold and the actual pannus tissue. Here we only chose vascular
endothelial cells and synovial fibroblast to mimic the cell
composition of RA pathological pannus tissue instead of using
all cell types. The pro-angiogenic factors in vivo, such as growth
factors, hypoxia inducible factors, cytokines, chemokines, matrix
metalloproteinase and adhesion molecules are also complex in
deterioration of pannus. In this study, we constructed a 3D co-
culture model for RA pannus tissue and provided a basic view of
its biological characteristics. Further work on the comparison of
pathological characteristics between pannus model of RA in vitro
and clinical pannus specimens is needed, and improvements of
this scaffold should be processed in the future.

CONCLUSION

We report the construction of in vitro RA pannus co-culture
model by applying 3D printing technique with EA.hy 926/MH7A
and gelatin/alginate. The 3D pannus model showed a good cell
viability and interaction to mimic the microenvironment of
pannus in vivo. The concentration of VEGF and ANG protein
in the supernatant of the 3D pannus model increased over time.
In addition, adding MTX to the 3D pannus model can down-
regulate the expression of pro-angiogenic factors. Further studies
are required to develop more details to construct the platform for
drug screening, but this studymay offer a basic view of 3D printed
pannus model in drug screening application.
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