
Online Learning for Foot Contact
Detection of Legged Robot Based on
Data Stream Clustering
Qingyu Liu1*, Bing Yuan2 and Yang Wang3

1Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and
Technology, Wuhan, China, 2Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan
University of Science and Technology, Wuhan, China, 3Golden Leaf Production and Manufacturing Center of China Tobacco
Henan Industrial Co., Ltd., Zhengzhou, China

Foot contact detection is critical for legged robot running control using state machine, in
which the controller uses different control modules in the leg flight phase and landing
phase. This paper presents an online learning framework to improve the rapidity of foot
contact detection in legged robot running. In this framework, the Gaussian mixture model
with three sub-components is adopted to learn the contact data vectors corresponding to
running on flat ground, running upstairs, and running downstairs. An online data stream
learning algorithm is used to update the model. To deal with the difficulty in obtaining
contact data at landing moment online, a “trace back” module is designed to trace back
the contact data in the memory stack until the data meet with the probability contact
criterion. To test if the foot is in contact with the ground, a projection method is proposed.
The acquiring data vector during the leg flight phase is projected onto an independent
random vector space, and the contact event is triggered if all projected random variables
fall within 1.5σ of the corresponding Gaussian distribution. Experiments on a legged robot
show that the presented algorithm can predict the foot contact 16ms in advance
compared with the prediction using only leg force, which will ease the controller design
and enhance the stability of legged robot control.
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INTRODUCTION

The ability to negotiate unstructured terrain is the most significant advantages of the legged robot
compared with wheeled and tracked vehicles. Due to the discrete foot point characteristic in legged
locomotion, like the human and other legged animals, the robot goes through a series of foot contact
in locomotion. Based on different foot contact states, a finite state machine is usually adopted to
identify the gait phases, and then different control modules will plan the leg motion trajectory to
balance the robot. Thus, robust perception of the foot contact arises as a crucial ability in legged robot
control. Though a force sensor mounted on the foot could be a straightforward solution (Wagner
et al., 2017), it is easily damaged due to the foot–ground impact and the unknown rough terrain.
Furthermore, the foot force sensor would increase the inertia of the leg.

Rather than using an indirect perception method like visual sense (Jiang et at., 2021), the endpoint
force estimator is a classical approach to detect the endpoint contact state (Morinaga and Kosuge,
2003; Ortenzi et al., 2016; Camurri et al., 2017). To avoid calculating the acceleration of the joint
angle, a more feasible approach based on the generalized momentum is adopted (De Luca et al., 2006;
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Manuelli and Tedrake, 2016). Considering the floating nature of
the mobile robot trunk, Flacco et al. (2016) developed a
formulation of the residual based on the floating-base
dynamics of the humanoid to estimate the external force. A
further extension to the multi-contact situation was done by
Manuelli and Tedrake (2016) on an atlas robot. Some other works
can be used as reference (Haddadin et al., 2008; Li et al., 2019;
Dong et al., 2020; Wang et al., 2020; Yousefizadeh and Bak, 2020).
The main drawback of these contact detection methods is that
they only use the robot dynamic information, such as joint angle
and angular velocity. These data are always noisy, and the kinetic
parameters of the robot may change as the robot runs for a long
time, which would degrade the detection performance.

To make a more robust contact prediction, data fusion in the
probability framework was introduced by Hwangbo et al. (2016).
This approach fused dynamics, differential kinematics, and
kinematics using a hidden Markov model (HMM) to infer the

contact state. Kim and Lee (2017) used the IMU data of the human
body, leg, and foot to predict the foot contact. The Kalman filter is
another framework to fuse the acquired information (Miezal et al.,
2017; Yang et al., 2019). Camurri et al. (2017) used approximate
ground reaction forces as input to a contact probability prior to
determining if the foot is fully in contact with the ground. A most
impressive work in this directionwas presented by Bledt et al. (2018b),
and the contact detection algorithm had been applied to the MIT
Cheetah 3 robot (Bledt et al., 2018a). They used the extended Kalman
filter to fuse the estimated leg force, gait phase, and leg height and
achieved very high detection accuracy.

Though the current data fusion methods work well in foot
contact detection, some model parameters need to be selected very
carefully, and the robustness to robot kinetic parameters change is
unknown. The learning approach provides a promising solution to
this challenge. Rotella et al. (2018) employed fuzzy C-means (FCM)
clustering to differentiate contact from leaving states using the contact
wrench and IMU data. Piperakis et al. (2019) directly learned the gait
phase by clustering, in which foot contact detection is an implied
process. But both of the approaches need the measuring forces, and
the clustering process is completely off-line. Ma et al. (2019) and Lin
et al. (2021) trained a Gaussian mixture model (GMM) to cluster the
contact data set. However, they both assumed the availability of a very
sophisticated force and visual perception system. Neural networks are
also used to learn robot contact (Sharkawy et al., 2020).However, all of
these learning algorithms were done off-line. In real legged robot
application, the robot should deal with impact and unknown rough
terrains, so a contact detection method which can adapt to changing
robot parameters and environments is desirable.

The main contribution of this paper is to present an online
learning framework for foot contact detection of a legged robot.
The detection algorithm adapts the model parameters to different
terrains for a fast and accurate detection. For online learning, a
“trace back” scheme for an online contact data acquisition
method is proposed. A projection technique is adopted for a
fast prediction of the contact states based on the GMM.

MATERIALS AND METHODS

Robot
The proposed foot contact prediction framework is verified on an
electric motor actuated hopping robot DynJump, as shown in

FIGURE 1 | Experimental platform.

TABLE 1 | Parameters of the robot.

Item Type/Value

Total mass 5 kg
Structural material Aluminum alloy
Upper leg length 0.25 m
Lower leg length 0.24 m
Foot material Rubber
Knee train gear ratio 2.1
Power supply 48 V
Motor mass 1.5 kg
Max motor stall torque 48.8 Nm at 48 V
Continuous motor stall torque 20.5 Nm at 8.4 V
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Figure 1. The hip joint is actuated directly by the motor while the
knee joint is actuated through train driving. The parameters of
the robot are listed in Table 1.

To focus on the study of foot contact prediction, the robot
hopping motion is constrained in a vertical direction through a
guide rail. The control board communicates to the motor driver
through the CAN protocol at 250 Hz.

Robot Control
As we only focus on verifying the foot contact detection, a
classical finite state machine is adopted as a high-level control
scheme. The robot states are divided into the flight phase and
contact phase based on the foot contact states as shown in
Figure 2.

In the flight phase, a pre-calculated foot point trajectory is
tracked through a position control scheme. The controller would
bring the leg length to a predefined nominal leg length and leg
angle for the next landing. After the leg landing, the leg motion is
planned based on a virtual spring–mass model (Piovan and Byl,
2015). The detection algorithm for the state switching control will
be discussed in the following section. The robot trunk vertical
velocity is estimated at the landing moment to initialize the
calculation of the robot trajectory after landing. As the robot
is only subjected to the force of gravity in the flight phase, the
initial velocity can be derived as

vc � v0 − g · (tc − t0) (1)
where vc and tc are the velocity and time at the moment the foot
contacts the ground and g is the gravity constant. For determining
the exact moment when the foot leaves the ground, we actively
shorten the leg at the later stage of the contact phase, and the
corresponding time and robot vertical velocity are recorded as t0
and v0.

Probability Contact Prediction Model
As the contact is an impact between the robot and the
environment, variables associated with the interaction can be
used to indicate the contact state of the foot. Though foot force
can reflect the physical interaction between the foot and the
ground, we can only estimate it based on the dynamics of the leg
due to the absence of the foot force sensor. In robot dynamics,
sensor noise and transmission clearance may introduce errors in

foot force estimation. Furthermore, the kinetic parameters are
always changing and unknown, so it is not very reliable if we only
used the foot force to predict the contact. Although we can adopt
a higher threshold to increase the reliability, a larger time delay in
contact detection will degenerate the robot control performance.

The foot height and the gait cycle represent the kinematic
interaction between the robot and the environment. For a
running gait of the robot, like trotting gait, the robot will
completely leave the ground during running, and the accurate
foot height is difficult to obtain based on proprioceptive
perception. Similarly, the gait cycle is highly dependent on the
terrain and gait. So limited prediction performance would be
obtained if we used kinematics information only.

Based on the analysis above, an indicator vector s = [fyhfoottg]
T

is defined to estimate the contact probability of the foot contact.
Here fy is the vertical foot force, hfoot is the foot height relative to
the leaving ground level, and tg is the gait cycle. Though Kalman
filter is suitable for fusing the measuring data, a method which
can learn from real data online would have advantages in
environment adaption and be more robust to robot kinetic
parameter uncertainty.

The GMM
To deal with different types of terrain, a GMM is adopted. Based
on the insight into the legged locomotion in different terrains, we
divide the terrains into three categories, and each is modeled
using a basic Gaussian model, which is a sub-component of
the GMM.

One basic Gaussian model accounts for the flat ground that
has different roughness, and the others correspond to the robot
going upstairs and downstairs as shown in Figure 3. We can
easily obtain the foot contact probability of incoming data as

p(x|Θ) � p(x∣∣∣∣π, μ,Σ) � ∑K
k�1

πkN(x∣∣∣∣μk,Σk) (2)

where the Θ is the model parameters, π is the weight of the
particular Gaussian model, μ is the mean value, Σ is the
covariance matrix, K is the number of the sub-component of
the GMM. And the posterior probability of the data x belonging

FIGURE 2 | Robot states in hopping.

FIGURE 3 | Three categories of terrain in hopping.
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to component k, which is also known as responsibilities p(k|x), is
given by Bayes’ theorem as

γk(x) � p(k|x) � πkN(x∣∣∣∣μk,Σk)∑lπlN(x∣∣∣∣μl,Σl) (3)

Indicator Vector Calculation
Foot point force: The foot force is a primary indicator of the
contact. A generalized momentum method as in De Luca et al.
(2006) is used to estimate the joint torque τ̂e corresponding to
the external force on the foot point; it follows that

τ̂e � λp(t) − λ∫
t

0

(τ + CT _q − g + τ̂e)dt (4)

where q ∈ Rn is the joint angles, n is the number of degrees of
freedom, p =Mq is the generalized momentum, andC ∈ Rn×n is a
factorization of the Coriolis terms, which makes _M − 2C a skew-
symmetric matrix. Then the estimated foot point force f̂ e �
[fx fy]T can be calculated using the Jacobian matrix J as

f̂ e � JTτ̂e (5)
We hypothesize that there is no singular position during the

flight phase, as the leg is always in a bent position during hopping.
Foot height: As the terrains are unknown, we estimate the foot

height relative to the leaving ground level. If the ground is flat, the
foot is expected to land when the height is back to zero, and if
there is a step, the height at landing would be significantly higher
or lower than zero. The foot height can be expressed as

hfoot � v0t − 1
2
gt2 − (lt − l0) (6)

where v0 is the initial vertical speed of the robot trunk, g is the
gravity acceleration, t is the time relative to the leaving ground
moment, lt is the leg length function depending on the joint angle,
and l0 is the initial leg length. We should note that as we assume
that the robot runs in a sagittal plane and the pitch angle is
constrained, v0 can be derived by taking the derivative of the
function lt.

Gait cycle: In a stable gait, the robot movement is always
periodic, and therefore, the foot contact event is triggered
periodically. In the viewpoint of probability, a cyclic
movement means that a contact event most likely happens
after a specific period of time from the previous foot contact.
Thus, a gait time is adopted as one of the indicators for foot
contact prediction. The gait cycle is calculated as in (7).

tg � t − tc (7)
where t is the robot running time and tc is the time of the previous
foot contact.

Foot Contact Prediction
When the robot is in the flight phase, the robot should estimate
the contact state based on the sampling indicator vector
calculated in previous section. With the GMM, the probability

density of the newly coming data vector can be obtained.
However, it is tedious to integrate the GMM density function
to gain the distribution function, which means that it is
computationally inefficient to infer the contact state by the
probability density of the random vector. In this paper, we
project the indicator vector along the direction which
decouples the random vector into three independent random
variables.

The projection matrix is determined using the covariance
matrix in GMM (Horn and Johnson, 2012). As the covariance
matrix is a semi-definite symmetric matrix, there exists a matrixC
that satisfied D = CΣCT, where D is a diagonal matrix with
diagonal entries σ21, σ22, and σ23 and Σ is the covariance
matrix. The matrix C can be determined using the elementary
transformation. Then the random vector can be projected as

sp � Cs (8)
And the mean of the random variable vector of sp is Cμ, and μ is
the mean before projection. The three elements in vector sp are
three independent random variables, and the variances are σ21,
σ22, and σ23 . So we define the contact vector set Sc as

Sc � {s ∣∣∣∣ sp
� Cs,

∣∣∣∣sp1 − μ1
∣∣∣∣< 1.5σ1 , ∣∣∣∣sp2 − μ2

∣∣∣∣< 1.5σ2 , ∣∣∣∣sp3 − μ3
∣∣∣∣< 1.5σ3}

(9)
where sp � [sp1, sp2, sp3]T and μ � [μ1, μ2, μ3]T. The definition
means that if the three projected random variables are all located
in 1.5σ of the Gaussian probability density function, we assume
that the leg contact event is triggered.

Initial Model Parameter Training
Though we expect that the robot can adapt to different terrains
online, an off-line learning to obtain a group of initial parameters
can speed up the online learning process. We used the classic two-
step expectation maximization (EM) method for training. The
two steps can be summarized as follows.

E-step: The responsibilities can be computed as

γik �
πkp(xi∣∣∣∣θt−1k )

∑k′πk′p(xi∣∣∣∣θt−1k′ ) (10)

M-step: The parameters in the Gaussian component can be
calculated as

μk �
∑irikxi
rk

(11)

Σk � ∑irik(xi − μk)(xi − μk)T
rk

(12)
And for the next iteration,

πk � 1
N

∑
i

rik � rk
N

(13)

In the data training procedure, a series of hopping experiments
were conducted for data collection. The robot hopped on flat
ground, upstairs, and downstairs. A high landing force threshold
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was adopted for reliable contact detection as the GMM had not
yet been established. The threshold was determined based on the
estimated foot force in a robot free-fall experiment, as shown in
Figure 4. The corresponding fly phase time, estimated leg force,
and foot height were simultaneously recorded at 200 Hz by the
control board. We found that there was a non-negligible time
delay in landing detection due to the high landing force threshold.
We manually selected the contact data on the force cure after we
collected all the experimental data. For each terrain, 30 contact
data points were collected, and the learning process was done in
the MATLAB 2018b environment.

Online Model Adaption for Different
Terrains
As the terrain is unknown and the robot parameters may change
over time, an online GMM adaption is desirable for robot control.
As there are many online data stream clustering methods (Kokate
et al., 2018), we would focus on dealing with the outlier point
caused by the chatter effect, which balances the response time and
model stability. Another problem in online clustering for leg
contact detection is how to identify the sensory data
corresponding to the foot–ground contact moment without
the foot force sensor or external force sensors mounted on the
ground. We cannot use the predicted contact results of GMM as
the data are used for training the prediction model. A likelihood
criterion of the foot contact event is used to find the exact contact
data. This method would lead to a large time delay that cannot be
used for contact prediction, but the data can then be used for
online training of the GMM.

Here we use a modified version of SWEM (Dang et al., 2009).
Three independent data sets are established corresponding to
three GMM components. When the contact data were acquired,
the probability density of the data in each of the three GMM
components is calculated. The contact data would be put into the
data set corresponding to the GMM component, which has the
maximum probability density. When the number of newly
arriving data in any of the three data sets reaches 5, the GMM
will be updated as in the algorithm presented in this section.

We define that g(10) is the GMM of the data from the
beginning 1 to N, and the newly arriving data are xN+1, ···,

xN+M as in Song and Wang (2005). Different from many other
applications, only one contact datum is available in one gait cycle,
so we define a time window with five data points, and only one
basic Gaussian model is used to model the five data points. The
maximum likelihood method is used to estimate the parameters.

zlnL(θ)
zθj

� 0 (14)

where j is the number of the parameters and L(θ) is the likelihood
function, L(θ) � ∏n

i�1f(xi, θ). This calculation is conducted for
every five newly arriving data. When we obtain the mean and
variance matrix of the Gaussian model, a T2 statistic testing for
the equality of the mean to the existing mean value in GMM is
conducted (Song andWang, 2005). Once the mean value is tested
to be equal to any existing basic model, the Gaussian model will
be merged to the corresponding basic Gaussian sub-model in
GMM with the rule

μ � Nπjμj +Mkμk

Nπj +Mk
(15)

Σ � NπjΣj +MkΣk

Nπj +Mk
+ Nπjμjμ

T
j +Mkμkμ

T
k

Nπj +Mk
− μμT (16)

π � Nπj +Mk

N +Mk
(17)

where μj and Σj are the mean and covariance of the jth sub-
component of GMM; πj is the weight of the jth sub-component in
GMM; μ, Σ, and π are the new mean, covariance, and weight,
respectively; N is the total number of data that have been used for
update; and Mk is the data number in the time window.

If the mean value is tested to be different from any basic
Gaussian model in the GMM, the new Gaussian model will be
labeled as a temporary outlier Gaussian model. For the outlier
Gaussian model, it will also be merged to the nearest basic
Gaussian sub-model in GMM, but a fading rule will be
applied to it until it is determined as an outlier model or a
shift of the existing basic Gaussianmodel. Themerging procedure
will be carried out in two steps.

Firstly, the temporary outlier Gaussian model will be merged
to the existing outlier Gaussian model with the fading rule as

μ � λM0μ0 +Mkμk

M0 +Mk
(18)

Σ � λM0Σ0 +MkΣk

M0 +Mk
+ λM0μ0μ

T
0 +Mkμkμ

T
k

M0 +Mk
− μμT (19)

where μ0 and Σ0 are the mean and covariance of the existing
outlier Gaussian model, respectively; μk and Σk are the mean
and covariance of the temporary outlier Gaussian model,
respectively; μ and Σ are the new mean and covariance,
respectively; M0 is the total number of data in the outlier
set; and λ is the fading factor.

We should note that this procedure will be carried out in every
model update no matter if the data are outliers or not. When the
mean of the newly coming data is tested equal to the existing
mean in GMM, the μk and Σk in (18) and (19) are set to zero; thus,
the existing μ0 and Σ0 are faded down by factor λ.

FIGURE 4 | Vertical foot force in free-fall experiment.
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Secondly, the resulting new outlier model will be merged with
the nearest basic Gaussian component. But the parameters μ, Σ,
and π of the present basic Gaussian component are reserved in
the memory. When the next time window data come, if it is tested
equal to any basic Gaussian component, the model will be merged
as formulas (15)–(17), or if it is tested as an outlier model, the
model will be moved to the outlier set and merged to the existing
outlier model as formulas (18) and (19). Then the merged model
will be merged with the nearest basic model.

When the outlier data situation emerges three times in
succession, we assume that a concept shift happens, which
means that the terrain or gait changes. Then the
corresponding outlier data will be moved out of the outlier set
and merged to the nearest basic component. The resulting GMM
is considered as a new initial model for the newly arriving data.
On the other hand, if the outlier data situation does not emerge in
three consecutive time windows, themean and the covariance will
soon decrease to zeros due to the fading factor.

Online Contact Data Acquisition
As we learn the contact model online without the force sensor
mounted on the ground or foot, identifying which data are the
contact data becomes a difficult task. Though the contact
prediction module presented above will give an indication, we
need to get the data in another way in order to update the
prediction model and improve the prediction performance.

To collect the contact data, a “trace back”module is proposed.
The algorithm includes two steps: firstly, we would detect the
contact event using the GMM or leg force threshold, and then we
would trace back from the contact event time to find the exact
contact data.

Two situations are considered in the contact event detection:
one is when the contact is triggered by the GMM, and the other is
when the contact is triggered by the estimated foot force. It is
obvious when the contact event happens in the first situation as
the GMM will give an indication. However, when the robot
encounters a new terrain or if the robot is unstable, the
estimated foot force will firstly trigger the contact event. A
typical estimated foot force trajectory during hopping is
shown in Figure 5A. A fact we should note is that the
estimated foot force changes to positive when the foot just
leaves the ground, which is inconsistent with the physical

truth as the foot force should either be negative or zero under
the definition of foot force direction in this paper. This estimation
bias occurs when the leg shortens rapidly to force the robot to
enter the flight phase, which will converge to zero in about 20
sampling cycles before the next foot landing. A time criterion is
added to filter this abnormal condition. A likelihood technique is
used to determine if the contact event is triggered. The
distribution function of the contact force is used to verify the
contact probability at each time stamp. We test five consecutive
foot force data to ensure that the contact event detection is
reliable. The adopted distribution function is shown in
Figure 5B, and the contact event criterion is defined in (20).

1 − F(xp) · F(xp−1) · F(xp−2) · F(xp−3) · F(xp−4)< 0.01 (20)
where xp is the coming data corresponding to the present
sampling time and xp−n is the data at n previous sampling
time. The criterion means that if the misjudgment probability
is below the threshold in a five-sample time window, we assume
that the foot is in contact with the ground in the present sampling
time. During robot running, a sliding window containing five
data points is built, and the data in the sliding window will be
tested if they satisfy the criterion in (20) in every control cycle. As
the contact test is a conservative estimation, the resulting contact
moment is several time steps after the leg contact, which is the
reason why we cannot use this method to indicate the leg contact
event for robot control.

As shown in Figure 6, as the lower point on the curve satisfies
the contact criterion, a contact event happens. Once a contact

FIGURE 5 | (A) Foot force during hopping. (B) Contact force distribution function.

FIGURE 6 | Trace-back scheme.
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event is confirmed, a “trace back” method is invoked to find the
exact contact time moment. The contact probability is calculated
in reverse order along the curve from the present data until the
contact probability of the data is less than 0.5. The last data point
in this procedure, with a probability of more than 0.5, will be
adopted as the contact data. The “trace back” algorithm is shown
in Table 2. In the algorithm, if the contact event is triggered,
i.e., the trigger flag variable trigger = 1, a “trace back” procedure is
employed to calculate the contact probability of Fp−k until the
corresponding probability is less than 0.5.

Once five contact data are collected, a local Gaussian model is
built using (14). To determine which sub-component of the
GMM is to be updated, a testing procedure is adopted to
determine if the mean value of the new arriving data is equal
to any of the existing sub-models. Here, we use Hotelling’s T2 test,
which is applicable for multivariate normal data. The H0
hypothesis is the mean value of the contact data µ = µj, where
µj the is one of the mean values of the sub-component of the
GMM. When the sampling size is small, the T2 statistics can be
expressed as

T2 ∼ n(�x − μj)TΣ−1
0 (�x − μj) (21)

where n is the number of the samples, Σ0 is the covariance matrix
of the sub-model in GMM, and �x is the mean of the samples. If
the H0 hypothesis is satisfied, we can derive that

n − d

d(n − 1)T
2 ∼ Fd,n−d (22)

where Fd,n−d refers to an F distribution with d numerator degrees
of freedom and n − d denominator degrees of freedom, n is
number of the samples, and d is the dimension of the data
vector. We can refer to the F distribution table to find out if
the derived random variable in (22) obeys the F distribution, thus
determining whether the H0 hypothesis is true. If the H0
hypothesis is true, the data will be used to update the GMM;
otherwise, the data would be considered as outlier points if the
mean is not equal to any means of the sub-components of
the GMM.

RESULTS

HoppingWith Foot Force Contact Detection
For comparison, the robot hopping data of contact detection with
only foot force were collected. The foot force threshold was 40 N
in the hopping experiment, which means that the landing control

program would be triggered when the estimated foot force
exceeded 40 N. The threshold was selected based on
experimental data, which could prevent an incorrect
estimation of the contact state due to the evaluated error of
the foot force and the noise in data measurement. A time criterion
was added to the contact detection in this experiment, in which
the contact event was triggered only 50 ms after the leg left the
ground. Hopping data on flat ground are shown in Figure 7. Data
of hopping upstairs and downstairs are shown in Figure 8; the
tdelay is the time delay between the leg in contact with the ground
and the leg force exceeding 40 N; tu and td are the flight times of
hopping upstairs and downstairs, respectively. The time delay is
unavoidable because we have to ensure that the contact is not
triggered by the noise or evaluated error. In hopping experiments,
the time delay is about 16 ms.

Initial GMM Training Through Hopping Data
To establish the initial GMM, we collected three groups of contact
data, corresponding to hopping on flat ground, hopping upstairs,
and hopping downstairs. In hopping-upstairs and hopping-
downstairs experiments, we placed a wood plank under the
foot when the robot was in the flight phase to mimic hopping
upstairs and took away the plank after the robot took off to mimic
hopping downstairs. The thickness of the wood plank was 1.5 cm,
which was limited to the ability of the motor and transmission
system. Though the height is relatively small compared with the
size of the leg, it does verify the effectiveness of the prediction
method as the higher the stair is, the farther different contact data
in the phase space are away from each other, which will ease
contact detection.

The contact data were processed in MATLAB 2018b and were
selected manually in this stage. Then, the contact data were
clustered using the fitgmdist function in MATLAB with a
component parameter of 3. The classification result is shown
in Figure 9.

Contact Prediction Using GMM
After the learning process, the GMM could predict the contact
time more accurately, as shown in Figure 10. In each control
cycle, the maximum probability of coming data in the three
components is calculated first. Then, the mean value of the
coming data vector will be projected into a space where the
three projected variables are independent as in (8). If all of the
values are within 1.5σ, we believe that the contact happens. By
using the actual contact data to renew the GMM, the model
detects the contact event as soon as the leg lands.

The GMM predicted the contact in stepping upstairs and
downstairs, which was also more precise than the prediction
using contact force, as shown in Figure 11.

The main advantage of the learning method is that it can adapt
to the change in terrains. In a terrain-changing experiment, the
robot firstly hopped on flat ground, and then some wood strips
were placed on the ground to mimic the changing of terrain
roughness. The estimated vertical foot forces and estimated
contact time are shown in Figure 12. Three gait cycles on flat
ground are shown in the figure, and the GMM predicted the
contact time precisely.

Algorithm 1 | Table 2 Trace-back Algorithm
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FIGURE 7 | Contact detection with foot force on flat ground.

FIGURE 8 | Contact detection with foot force in hopping upstairs and downstairs.

FIGURE 9 | (A) Initial Gaussian model visualized by contact cycle and foot height. (B) Initial Gaussian model visualized by contact cycle and foot force.
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As the GMMmodel was updated only when five new gait data
had arrived, the GMMprediction performance degenerated when
the terrain just changed. The leg force prediction module was
evoked to detect the foot landing, leading to a detection time delay
of about six control cycles. In the first updating phase of the
GMM model, including the last gait cycle on flat ground and the
first four gait cycles on rough terrain, there was only one gait cycle
where the GMM predicted the foot contact. In the second GMM
updating phase, the GMM successfully predicted the foot contact
in two gait cycles. After two updating phases, the GMM could

always predict the foot contact with a higher time delay of about
two control cycles as the variance of the GMM gets higher, as
shown in Table 3.

FIGURE 10 | Hopping on flat ground with GMM contact prediction.

FIGURE 11 | Hopping upstairs and downstairs with GMM contact prediction.

FIGURE 12 | Hopping on roughness-changing ground.

TABLE 3 | Covariance matrices on flat ground and rough terrain.

Covariance matrix on flat ground Covariance matrix on rough terrain

⎡⎢⎢⎢⎢⎢⎣ 2.00 −0.49 0.46
−0.49 1.83 1.04
0.46 1.04 2.33

⎤⎥⎥⎥⎥⎥⎦ ⎡⎢⎢⎢⎢⎢⎣ 6.23 −2.86 −0.12
−2.86 3.07 0.05
−0.12 0.05 3.96

⎤⎥⎥⎥⎥⎥⎦
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DISCUSSION

Learning Vs. Data Fusion
Another effective contact detection approach is the data fusion
technique, which combines different data to enhance accuracy. In
the robot hopping experiments, the robot could detect the contact
in one cycle delay, while the data fusion method applied to MIT
cheetah 3 introduces a delay of four to five control cycles (Bledt
et al., 2018a). This result shows that the proposed learning
method can perform better if the robot runs on the same
terrain with cyclic gait, which is true in most cases. Every
animal or human would have preferred walking and running
speeds, and the terrain types are limited in daily life. The gait
contact parameters of hopping are distributed over a small area if
the robot moves in the same terrain with the same gait.

How Does the Learning Algorithm Adjust to
Different Terrains to Achieve Fast
Detection?
On flat ground, the elements in the covariance matrix would be
small, and the prediction would be very accurate, while in rough
terrain, the absolute values of the matrix elements increase, and
the prediction becomes a little rough. Themost important point is
that the elements in the covariance matrix will go back to being
small if the terrain is a flat ground again, which means that the
learning prediction method can predict the contact as accurately
as possible. Owing to the online learning method, the prediction
algorithm can adapt to different terrains that the robot has never
encountered before.

Acquiring Data Online
A difficulty in learning the leg contact detection online is that the
contact data for updating the GMM cannot be collected directly,
as there is no force sensor to indicate the moment when the foot is
just in contact with the ground. A “trace back” strategy is
presented in this article. When the contact event is triggered
by the GMM prediction module or leg force criterion, the update
module will trace back the contact data in the memory stack until
the data meet with the probability criterion.

How Does Accurate Contact Prediction
Affect Running Gait?
A state machine control strategy is usually adopted to control a
legged robot’s running gait. A contact event will trigger a shift in
state, and the control module will change as well. So an accurate
detection of the contact event is critical, which is even more
important in high-speed running. In our experiment, the control
cycle is 4 ms, and the learning detection module can predict the
contact event four control cycles in advance. In the fast running
gait of a quadruped, the total gait cycle could be less than 300 ms,
and the contact period for each leg can be less than 40 ms
(Hudson et al., 2012). And the contact period includes the leg
compressing phase and leg extending phase, with each period

being 20 ms. So the proposed prediction method would ease the
control strategy design and enhance the control performance.

CONCLUSION

This paper presents a learning contact detection framework
for legged robot running control. The algorithm continuously
learns the characteristics of the contact data during robot
running, including the period between two consecutive
landing events, foot height, and contact force. A GMM is
adopted to describe the three situations in running gait:
running on flat ground, running upstairs, and running
down stairs. Experimental results show that the mean
value and covariance matrix of the contact data vector
differ discernibly among different terrains, which enables
learning detection.

To deal with the change in terrain and gait, an online learning
scheme is presented. A main difficulty in online learning is
acquiring contact data online without the help of force
sensors. A “trace back” technique is proposed in this
paper: when the contact event is triggered by the GMM or
foot force threshold, the algorithm will trace back the contact
data in the memory stack until the data meet with the
probability criterion. And the GMM will be updated online
after every five contact data points are collected, so the GMM
can change with the terrain and gait. The learning contact
detection algorithm was verified on a hopping robot. The
detection model changed with the terrain by adapting the
GMM parameters or, more specifically, by updating the mean
value and covariance matrix of the sub-model in the GMM.
Experimental results show that the learning algorithm can
predict the foot contact to the ground four control cycles in
advance compared with the detection method with only leg
force. In the future, the algorithm will be applied to different
robots and terrains to further verify its effectiveness, and
more gait parameters can be added to the GMM to enhance
prediction performance.
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