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Owing to the high mortality rates of heart failure (HF), a more detailed description of the HF
becomes extremely urgent. Since the pathogenesis of HF remain elusive, a thorough
identification of the genetic factors will provide novel insights into the molecular basis of this
cardiac dysfunction. In our research, we performed publicly available transcriptome
profiling datasets, including non-failure (NF), dilated cardiomyopathy (DCM) and
ischemic cardiomyopathy (ICM) hearts tissues. Through principal component analysis
(PCA), gene differential expression analysis, gene set enrichment analysis (GSEA), and
gene Set Variation Analysis (GSVA), we figured out the candidate genes noticeably altered
in HF, the specific biomarkers of endothelial cell (EC) and cardiac fibrosis, then validated
the differences of the inflammation-related cell adhesion molecules (CAMs), extracellular
matrix (ECM) genes, and immune responses. Taken together, our results suggested the
EC and fibroblast could be activated in response to HF. DCM and ICM had both
commonality and specificity in the pathogenesis of HF. Higher inflammation in ICM
might related to autocrine CCL3/CCL4-CCR5 interaction induced chemokine signaling
activation. Furthermore, the activities of neutrophil and macrophage were higher in ICM
than DCM. These findings identified features of the landscape of previously
underestimated cellular, transcriptomic heterogeneity between ICM and DCM.

Keywords: single-cell RNA sequencing, transcriptome, heart failure, dilated cardiomyopathy, ischemic
cardiomyopathy

INTRODUCTION

Heart failure (HF) is a chronic, progressive syndrome with high mortality and mobility, and affects
approximately over 37.7 million patients worldwide (Ziaeian and Fonarow, 2016). HF is a serious
process of cardiac dysfunction, characterized by impairment of ejection of blood or ventricular filling
or both. HF brings a considerable burden to the health-care system, and leads to high rates of
hospitalizations, readmissions, and outpatient visits (Bui, Horwich, and Fonarow, 2011; Jones,
Roalfe, Adoki, Hobbs, and Taylor, 2019). The rising incidence of HF is associated with multiple
factors (Triposkiadis, Xanthopoulos, and Butler, 2019), including age, obesity, hypertension, diabetes
mellitus, ischemic heart disease, comorbidities, heredity, and environment, making it difficult to
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blame it on one specific issue (Oneglia, Nelson, and Merz, 2020;
Triposkiadis, Xanthopoulos, Parissis, Butler, and Farmakis,
2020). Since HF is associated with high and unpredictable
mortality, there is an emerging interest in potential HF
biomarkers, and this exploration benefits the strategies of
scientific prevention and advanced therapy.

Complex biological processes are involved in the pathogenesis
of HF, and cardiac abnormalities often lead to heart dysfunction.
Liu et al.(Liu et al., 2015) collected and analyzed left ventricle
issues from six individuals including one ISCH patient, two
dilated cardiomyopathy (DCM) patients and three controls as
training sets to reveal genetic signatures of HF using RNA-seq
and microarray data, which were further validated by a larger
cohort with 313 individuals with HF or non-failing (NF). (Sweet
et al., 2018) utilized RNA-seq and pathway analysis to reveal the
heterogeneous gene signatures and disease-specific mechanisms
in 64 explanted human hearts, which consisted of 37 DCM
patients, 13 ICM patients, and 14 NF controls. (Vigil-Garcia
et al., 2020) applied cardiomyocyte-specific transcriptomic
analysis to detect a specific gene set involved in the process of
pathological cardiac remodeling related to HF, and they
explained the alternations precisely, which occurred during the
transition from hypertrophic towards failing cardiomyocytes.

The advances in single-cell RNA sequencing (scRNA-seq)
technology offers us an alternative method to characterize cell
types involved in HF at the molecular level, which enables its
broad application in HF research. (Yamaguchi et al., 2020)
manifested that D1R signaling played a pathogenic effect on the
process of HF, and explained the association between the activation
of D1R and increased risk of patients with HF, using a mouse model
of pressure overload-induced HF and single-cell resolution analysis,
which aimed to uncover gene expression changes in murine models
and human patients at the early and the late stages of HF. (Martini
et al., 2019). used single-cell RNA sequencing data to describe the
cardiac immune microenvironment in the heart of mouse models
with the pressure-overload transverse aortic constriction (TAC) at
early and late time points, providing novel diagnostic or therapeutic
targets strategies for HF. However, as the sample size of scRNA-seq
data is relatively small, and the mechanistic investigation in the
variations of some cell types and cell type specific genes involved in
HF required the integrative analysis of scRNA-seq and bulk RNA-
seq data. In this study, we tried to identify some novel cell types, cell
type specific genes and key components in HF by integrating bulk
and single-cell RNA sequencing data, and anticipated to reveal cell
types involved in DCM and ICM, which will offer a clearer
demonstration of the immune inflammation response of HF.

MATERIALS AND METHODS

Data Collection
The single-cell RNA-seq data of two normal left ventricle samples
were collected from Gene Expression Omnibus (GEO) with
accession number GSE134355 (Han et al., 2020). To identify cell
types and key genes related to heart failure, we downloaded the
single-cell RNA-seq data of two normal, four dilated
cardiomyopathy (DCM), and two ischemic cardiomyopathy

(ICM) hearts samples (accession number: GSE121893 (Wang
et al., 2020)), one scRNA-seq data of one normal, two DCM and
two ICM hearts (accession number: GSE145154 (Rao et al., 2021))
for validation, and bulk RNA-seq data of 14 non-failure (NF), 37
DCM, and 13 ICM samples fromGEO database (accession number:
GSE116250 (Sweet et al., 2018)). The RNA-seq data of fibroblasts
induced by TGFβ1 and control samples, and the microarray-based
gene expression data for validation were downloaded from GEO
with accession numbers GSE97358 (Schafer et al., 2017) and
GSE5406 (Hannenhalli et al., 2006), respectively.

Cell Clustering Analysis
The unique molecular identifiers (UMIs) count-based scRNA-seq
data of the two normal left ventricle samples were used for the cell
clustering analysis, which was implemented in R Seurat v3.2.3
package. Cells with less than 500 UMIs were eliminated and
features detected in less than 3 cells were filtered. The two hearts
were integrated using the anchors by Reciprocal PCA. The
expression data was normalized by LogNormalize method with
scale factor � 1000,000, and top 2000 highly variable features were
selected by FindVariableFeatures with dispersion method. The
clusters were found at a resolution of four by FindClusters, and
T-distributed Stochastic Neighbor Embedding (t-SNE) was
applied to reduce the dimensionality. The cell-type marker
genes were detected by FindAllMarkers function at adjusted
p-value < 0.05, minimal percentage >0.25, and log2 fold
change >0.25. All the marker genes of the cell clusters were
collected from the earlier study (Han et al., 2020). This analysis
was implemented by R Seurat v3.2.3 package (Stuart et al., 2019).

Principal Component Analysis for the Bulk
RNA-Seq Data
The bulk RNA-seq data was downloaded fromGEOdatabase (GEO
accession number: GSE116250 (Sweet et al., 2018)). The FPKM-
based gene expression data were used for PCA analysis. Specifically,
gene expressions higher than 1 FPKM in more than five samples
were transformed to log2 (FPKM + 1), and the principal
components were calculated by R FactoMineR package (Le,
Josse, and Husson, 2008) and visualized by R factoextra package.

Gene Differential Expression Analysis
The pre-normalized microarray data and the RNA-seq data
normalized to log2 (FPKM or RPKM +1) were tested by
student t test and fold change. The count-based RNA-seq data
was processed in R/Bioconductor DESeq2 package (Love, Huber,
and Anders, 2014). All p-values were adjusted using the Benjamini
and Hochberg approach. Genes with an adjusted p-value less than
0.05 and a fold changemore than two were deemed as differentially
expressed genes. Those genes could be ranked by the student t
statistic to measure the differential expression levels.

Identification of Cell-types Involved in Heart
Failure
The upregulated or downregulated genes in DCM/ICM samples
were used for the identification of cell types significantly altered in
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HF. The gene set overrepresentation enrichment analysis
(Fisher’s exact test) was employed to evaluate the significance
of the differentially expressed genes (DEGs) against the cell type
specific marker genes, which was implemented in R
clusterProfiler (Yu, Wang, Han, and He, 2012) package.

Identification of Endothelial Cell Specific
Marker Genes andCardiac Fibrosis-Related
Genes in HF
The gene set enrichment analysis (GSEA) was used to calculate
the enrichment degree of those upregulated genes involved in HF
or cardiac fibrosis in endothelial cells. Specifically, all the genes
were pre-ranked by the t statistic, which represented the
differential expression levels. The GSEA analysis was
implemented in R clusterProfiler (Yu et al., 2012), and the
genes identified as core enrichment in this analysis were
considered as key components.

Gene Set Enrichment Analysis
The gene set overrepresentation enrichment analysis (ORA) was
employed to identify the Reactome pathways enriched by
previously detected endothelial cell specific marker genes and
cardiac fibrosis-related genes in HF. This analysis was
implemented in R ReactomePA package and visualized by R
clusterProfiler (Yu et al., 2012) package.

The Cell Activity Estimation
The cell activity was estimated using single-sample Gene Set
Variation Analysis (Hanzelmann, Castelo, and Guinney, 2013)
(GSVA). Specifically, gene expression profiles and cell type
specific marker genes were used as the input for GSVA to
estimate the relative activities for each cell type and each sample.

Statistical Analyses
The two-sample comparison was conducted by student t test, and
the multiple-sample comparison was implemented by analysis of
variance (ANOVA). The p-values for multiple-sample
comparisons were adjusted to q-values by the Benjamini and
Hochberg method. Any p-values or q-values less than 0.05 were
considered as statistically significant.

RESULTS

Identification and Characterization of Cell
Types in Human Left Ventricle
To identify and characterize the cell types in the human left
ventricle (LV), we collected two single-cell RNA sequencing
datasets (scRNA-seq) of left ventricle provided by earlier study
(Han et al., 2020). Subsequently, we eliminated the cells with low
quality and retained 1,324 and 1,480 cells for further analysis
(Materials and methods). As shown in Figure 1A, the cells from
the two hearts were clustered into 18 clusters by the T-distributed
Stochastic Neighbor Embedding (t-SNE) analysis, respectively.
Using scHCL method, we successfully annotated 11 cell types for
the two hearts (Figure 1A). Notably, the marker genes were

specifically expressed in the cell types (Figure 1B). These results
indicated that the cell types in the human left ventricle tissues
could be identified and well-characterized by the scRNA-seq data.

The Cell Type Marker Genes Significantly
Altered in Heart Failure
With the cell types and marker genes in the left ventricles, we
aimed to identify the cell types altered in the left ventricles of
heart failure. We analyzed the gene expression profiles of 14 NF,
37 DCM, and 13 ICM samples from previous study (Sweet et al.,
2018). The PCA and differential expression analysis revealed that
the samples from the three groups exhibited significantly different
expression patterns (Figures 2A,B). Furthermore, we also
conducted GSEA on the marker genes of cell types to test
whether those marker genes were clustered within the
upregulated or downregulated genes of ICM or DCM.
Specifically, the marker genes of fibroblast and endothelial cell
were significantly enriched within the upregulated genes in both
DCM and ICM (Figure 2C, adjusted p-value < 0.05), suggesting
that the dysfunction of the two cell types might be associated with
both DCM and ICM. Moreover, marker genes of dendritic cell,
M1/2macrophage, neutrophil, and smoothmuscle cell were more
specifically enriched within the upregulated genes in ICM
(Figure 2C, adjusted p-value < 0.05). These results indicated
that DCM and ICM had both similarity and specificity in the
pathogenesis of heart failure based on these disease-related
cell types.

Key Regulators in the Endothelial Cells and
Fibroblasts of Heart Failure
As the endothelial cell and fibroblast could be activated in
response to HF (Colombo et al., 2005), we then investigated
the key regulators in the ECs and fibroblasts of HF, and collected
scRNA-seq data of 1,082 endothelial cells from the left ventricles
of NF, DCM, and ICM samples (Wang et al., 2020). The
comparison of DCM and ICM samples with NF samples
revealed that the endothelial cell specific marker genes were
highly enriched in the upregulated genes of HF endothelial
cells (Figure 3A, FDR <0.05). Specifically, a total of 24 EC
marker genes were found to be upregulated in both HF tissues
(bulk RNA-seq) and the endothelial cells of HF samples (scRNA-
seq) (Figure 3B, p-value < 0.05). The pathway enrichment
analysis identified inflammation-related cell adhesion
molecules (CAMs) as key regulators, including CD74, HLA-B,
HLA-E, HLA-DRB1, HLA-DQA1, HES1 and CLDN5, involved in
the pathogenesis of HF (Figure 3C, FDR <0.05).

Furthermore, as transforming growth factor β1 (TGFβ1) is the
principal pro-fibrotic factor in fibroblast activation (Akhurst &
Hata, 2012), (Davis & Molkentin, 2014), which played vital roles
in cardiac fibrosis (Ma, Iyer, Jung, Czubryt, & Lindsey, 2017), we
examined whether the upregulated fibroblast marker genes in HF
were involved in cardiac fibrosis. Consistently, we identified a
large proportion of fibroblast marker genes upregulated in TGFβ1
induced cardiac fibroblast by differential expression analysis and
GSEA (Figure 4A, FDR <0.05). Among these fibroblast marker
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genes, 29 were also upregulated in both HF tissues and fibroblast
with TGFβ1 treatment (Figure 4B, FDR <0.05). The functional
characterization of these genes revealed that LTBP2, LTBP1,
COL3A1, MFAP4, COL12A1, COL1A1, COL1A2, MMP2,
TIMP2, and PCOLCE2 were primarily involved in extracellular
matrix (ECM) organization and collagen biogenesis/formation/
degradation (Figure 4C, FDR <0.05). Collectively, these results
indicated that inflammation-related CAMs and ECM proteins
such as collagens were specifically secreted by endothelial cell and
fibroblast, respectively, and might induce cardiac inflammation
and fibrosis during heart failure.

Chemokine Signaling Activation is
Associated with Higher Inflammation in ICM
As ICM had more specific immune cell types, such as
macrophage and dendritic cell (DC), than DCM, we then
estimated the activities of immune cells including macrophage,
DC, and neutrophil. Neutrophil and macrophage appeared to
have higher activities in ICM than DCM and NF (Figure 5A,
p-value < 0.05). Consistently, the marker genes of neutrophil and
macrophage were also observed to be specifically upregulated in
ICM (Figure 5B, p-value < 0.05). The cell-cell communication

FIGURE 1 | Classification and molecular characterization of the cell types in two human left ventricles. (A) The T-distributed Stochastic Neighbor Embedding
(t-SNE) analysis for the two left ventricles. Each point represents one cell, and the point colors represent the cell types. (B) The expression patterns of the cell type specific
maker genes across the cell types in the two hearts (left ventricles).
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analysis revealed that the autocrine ligand-receptor interaction
induced chemokine signaling activation in neutrophil and
macrophage might be responsible for the immune response in
ICM (Figure 5C). Particularly, the ligands, CCL3, and CCL4, and
the receptor CCR5 were specifically upregulated in ICM as
compared with DCM and normal controls (Figure 5D). These
results indicated that higher inflammation in ICM might be
associated with autocrine CCL3/CCL4–CCR5 interaction
induced chemokine signaling activation.

Validation of the Inflammation-Related
CAMs, ECM Genes, and Immune
Responses in an Independent Dataset
We collected an independent gene expression dataset from
previous study (Hannenhalli et al., 2006) for validation. The
inflammation-related CAMs such as HLA-E, HLA−DQA1,
HLA−DRB1, and CD74, and all the ECM genes were
upregulated in the HF samples of bulk RNA-seq dataset
(GSE121893, Figure 6A, p-value < 0.05). Notably, the ECM
genes were also upregulated in the fibroblasts of HF from an
independent scRNA-seq dataset (Figure 6B). Furthermore,

neutrophil and macrophage activities also appeared to be higher
in ICM compared with NF and DCM, and the upregulation of
autocrine ligand-receptor pairs in ICM, CCL3/CCL4 –CCR5, was
also observed in the validation dataset (Figures 6C,D, p-value <
0.05). Consistently, the CCL3 and CCL4 were expressed higher in
the macrophages of ICM than the DCM and normal hearts
(Figure 6E). These results further indicated that inflammation-
related CAMs and ECM proteins, which were specifically secreted
by endothelial cell and fibroblast, respectively, and chemokine
signaling activation in neutrophil and macrophage might induce
cardiac inflammation and fibrosis during heart failure.

DISCUSSION

HF is a major consequence of various cardiovascular diseases with
poor prognosis and high mortality (Shantsila, Wrigley, Blann, Gill,
& Lip, 2012). In the present study, in order to clarify the cell
heterogeneity between ischemic HF and non-ischemic HF, we
integrated two scRNA-seq datasets of 1,324 and 1,480 cells from
the left ventricles and gene expression profiles of 14 NF, 37 DCM,
and 13 ICM samples to identify HF-related cell types and key

FIGURE 2 | The differentially expressed genes in dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM). (A) The scatterplot of principal component
analysis for the samples. (B) The expression profiles of the differentially expressed genes (DEGs) in DCM and ICM. (C) The marker genes of cell types enriched within the
upregulated genes of DCM or ICM.
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FIGURE 3 | The expression patterns of endothelial cell (EC)-related key regulators involved in HF. (A) The genes specifically upregulated in ECs of HF, which are
identified by the gene set enrichment analysis (GSEA). (B) The expression patterns of genes in bulk RNA-seq and scRNA-seq data of ECs. (C) The key regulators in ECs
by gene set enrichment analysis (GSEA).
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regulators. Specifically, the marker genes of ECs were significantly
upregulated in DCM and ICM proposing that the endothelial
dysfunction might be associated with both DCM and ICM.
In contrast, DC, M1/2 macrophage, neutrophil, and smooth
muscle cell, were specifically upregulated in ICM based on the
biomarkers of cell subpopulations. ECs are the most abundant
non-myocytes in the healthy heart (Bacmeister et al., 2019). The
patterns of endothelial dysfunction inHF patients differed from the
etiologies (Oatmen, Cull, and Spinale, 2020). In patients with
ischemic HF, endothelial dysfunction is systemic and involves
both arteries and veins, conductance vessels and microvascular
beds, coronary, pulmonary, and peripheral vessels, however, the
patterns of endothelial dysfunction in non-ischemic HF are
heterogeneous with fewer features of systemic abnormalities
which have a functionally preserved endothelium in peripheral
arteries (Berezin, Kremzer, Martovitskaya, Berezina, & Gromenko,
2016).

Fibroblasts as the main effector cells of cardiac fibrosis will
be activated after injury associated with HF and participate the
process of repair and remodel the infarcted heart (Davis &
Molkentin, 2014). Cardiac fibrosis is characterized by an
increased amount and a disrupted composition of
inflammation-related CAMs and ECM proteins which might
be potential targets for heart repair and function (Humeres &
Frangogiannis, 2019; Moore-Morris, Guimaraes-Camboa,
Yutzey, Puceat, & Evans, 2015). TGF-β1 as a cytokine could
induce the transformation of cardiac fibroblasts to
myofibroblasts (Akhurst & Hata, 2012). We examined
whether the upregulated fibroblast marker genes in HF were
involved in cardiac fibrosis through GSEA and differential
expression analysis. Among these fibroblast marker genes,
29 were also upregulated in both HF tissues and fibroblast
with TGFβ1 treatment. The functional characterization of
these genes revealed that they were primarily involved in

FIGURE 4 | The expression patterns of fibroblast-related key regulators involved in HF. (A) The genes specifically upregulated in TGF-beta-induced fibroblast by
gene set enrichment analysis (GSEA). (B) The expression patterns of cardiac fibrosis-related genes in bulk RNA-seq and scRNA-seq data. (C) The key regulators
involved in cardiac fibrosis by gene set enrichment analysis (GSEA).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org January 2022 | Volume 9 | Article 7792257

Shi et al. Integrative Analysis of Heart Failure

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


ECM organization. ECM plays a vital role in cardiac
homeostasis, which provides structural support for cardiac
cells and maintains integrity and function by transducing

important signals among different cells (Frangogiannis,
2019). The transformation of ECM patterns in biochemical
in failing hearts hinged on the type of underlying injury

FIGURE 5 | The specific expression patterns of immune cell marker genes in ICM. (A) The relative abundances of immune cells including neutrophil and
macrophage across the groups. (B) The expression patterns of immune cell-specific marker genes in NF, DCM, and ICM samples. (C) The autocrine ligand-receptor
interactions in neutrophil and macrophage. (D) The expression levels of ligands (CCL3/4) and the receptor (CCR5) in NF, DCM, and ICM.
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(Travers, Kamal, Robbins, Yutzey, & Blaxall, 2016). Collectively,
our analysis confirmed that inflammation-related CAMs
and ECM proteins such as collagens were specifically secreted
by EC and fibroblast, respectively, and might induce
cardiac inflammation and fibrosis during the progression of HF.

Previous studies have suggested that inflammation is a key
factor of cardiovascular disease, with immune cell types such as
macrophages and T lymphocytes mediating essential crosstalk
in the progression to HF(Abplanalp et al., 2020). Since we
found ICM had more specific immune cell types, such as
macrophage and DC, we then focused on the activities of

immune cells including macrophage and neutrophil. The
cell-cell communication analysis revealed that the autocrine
ligand-receptor interaction induced chemokine signaling
activation in neutrophil and macrophage might be
responsible for the immune response in ICM. During the
process of cardiac inflammation, immune cells invade the
cardiac tissue and coordinate the responses of damaging.
Due to the length limitation of this article, we cannot
describe all genes in detail. Taken together, our results
suggested that higher inflammation in ICM might be
associated with autocrine CCL3/CCL4-CCR5 interaction

FIGURE 6 | Validation of the cell adhesion molecules (CAMs), extracellular matrix (ECM) genes, and immune responses. (A) The upregulation of CAMs and ECM
genes in HF samples. (B) The differential expression levels of ECM genes between the fibroblasts of NF and HF (scRNA-seq dataset: GSE145154). (C) The higher
abundance of neutrophil and macrophage in ICM. (D) The higher expression levels of CCR5, CCL3, and CCL4 in ICM. (E) The differential expression levels of CCL3 and
CCL4 between the macrophages of NF, DCM and ICM (scRNA-seq dataset: GSE145154).
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induced chemokine signaling activation. Furthermore,
neutrophil and macrophage also appeared to be higher in
ICM compared with DCM.
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