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Gesture recognition technology is widely used in the flexible and precise control of
manipulators in the assisted medical field. Our MResLSTM algorithm can effectively
perform dynamic gesture recognition. The result of surface EMG signal decoding is
applied to the controller, which can improve the fluency of artificial hand control. Much
current gesture recognition research using sEMG has focused on static gestures. In
addition, the accuracy of recognition depends on the extraction and selection of features.
However, Static gesture research cannot meet the requirements of natural human-
computer interaction and dexterous control of manipulators. Therefore, a multi-stream
residual network (MResLSTM) is proposed for dynamic hand movement recognition. This
study aims to improve the accuracy and stability of dynamic gesture recognition.
Simultaneously, it can also advance the research on the smooth control of the
Manipulator. We combine the residual model and the convolutional short-term memory
model into a unified framework. The architecture extracts spatiotemporal features from two
aspects: global and deep, and combines feature fusion to retain essential information. The
strategy of pointwise group convolution and channel shuffle is used to reduce the number
of network calculations. A dataset is constructed containing six dynamic gestures for
model training. The experimental results show that on the same recognition model, the
gesture recognition effect of fusion of sEMG signal and acceleration signal is better than
that of only using sEMG signal. The proposed approach obtains competitive performance
on our dataset with the recognition accuracies of 93.52%, achieving state-of-the-art
performance with 89.65% precision on the Ninapro DB1 dataset. Our bionic calculation
method is applied to the controller, which can realize the continuity of human-computer
interaction and the flexibility of manipulator control.
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INTRODUCTION

The deep neural network is an intelligent heuristic algorithm used
to solve complex real-world problems (He and Jiang, 2020). For
example, deep learning is used for data mining to analyze user
needs (Chen et al., 2021). The main purpose of the research on
dynamic gesture recognition is to promote the development of
dynamic human-computer interaction. The dynamic gesture
recognition model is applied to the controller of the
manipulator, which can improve the continuity and flexibility
of the manipulator control. The surface electromyography signal
(sEMG) contains a lot of information and can be used for gesture
recognition and force prediction (Ma et al., 2020; Atzori et al.,
2016; Sadikoglu et al., 2017; Baldacchino et al., 2018). Therefore,
it is convenient and feasible to use it as an information interaction
medium for human-computer interaction (Sun et al., 2020a; Hu
et al., 2019; Jiang et al., 2019a; Shahzad et al., 2019). In biomedical
signals, sEMG signals are widely accepted and decoded due to
their neural basis and ease of use, so gesture recognition based on
sEMG has become a research hotspot in manipulators and
human-computer interaction (Xiao et al., 2021; Ahn et al.,
2020; Gowtham et al., 2020). Many studies have found that
sEMG-based deep learning approaches have great potential in
gesture recognition. The gesture recognition model is applied to
the controller of the Manipulator to control its actions
(Rodríguez-Tapia et al., 2020). The control flow is shown in
Figure 1.

Surface sEMG signals represent a promising method to
decode the movement intentions of amputees and control
multifunctional dexterous hands in a non-invasive manner.
The focus of sEMG signal research was to develop pattern
recognition and classification techniques for detecting
different hand movements. Therefore, many technologies,
including fuzzy systems, neural networks, fuzzy support
vector machines (SVM), hidden Markov models (HMM),
and principal component analysis (PCA), have shown the
high accuracy of hand motion recognition (Mendes Junior
et al., 2020; Sun et al., 2020b; Cheng et al., 2021; Liao et al.,
2021). Secondly, it is mainly from designing better features to
improve the accuracy of the gesture recognition network. Then
the process of feature extraction and selection is complicated.
Third, different feature combinations have other recognition
effects on the same model (Duan et al., 2021; Yu et al., 2019;
Jiang et al., 2021a). However, deep learning can automatically

learn the characteristics of sEMG and avoid the disadvantages
of manually extracting the features. Unlike vision-based
gesture recognition methods, sEMG-based gesture
recognition is not affected by the surrounding environment,
such as background lighting and occlusion (Jiang et al., 2019b;
Tian et al., 2020; Mujahid et al., 2021). However, different arm
positions, electrode displacements, signal non-stationarity,
and force changes greatly affect the accuracy and robustness
of the sEMG-based recognition model. Finally, only relying on
sEMG for gesture recognition cannot fully characterize the
features of gestures in motion, making it difficult for the
recognition model to converge during training. Therefore,
Signal fusion technology is adopted to improve the accuracy
and robustness of the network (Xu Zhang et al., 2011; Sun
et al., 2018; Tan et al., 2020).

Dynamic gestures are a set of continuous motion gestures to
represent a specific meaning, generally including hand
movements and arm movements. In the paper, deep learning
methods are used to analyze dynamic hand movements. The
residual model and variant ConvLSTM model combined into a
multi-stream network. For a multi-stream network, each stream
independently learns representative features by ResNet. Then, it
fuses the features learned from all streams into a unified feature
map. Simultaneously, a dual-stream classifier fused with sEMG
and ACC signals is used to recognize various dynamic actions to
improve the accuracy of behavioral action recognition. The
proposed MResLSTM can directly input the preprocessed
EMG signal into the network for dynamic gesture recognition.
The contributions of this paper are as follows:

1) Surface EMG signals and ACC signals are collected to
construct datasets containing six different dynamic gestures.

2) Embedding the SE unit into the Residual module can
effectively solve channel dependence. At the same time, the
strategy of pointwise group convolution and channel shuffle is
adopted to reduce the calculation amount of the model.

3) The proposed MResLSTM achieves state-of-the-art results in
terms of dynamic hand movement recognition.

The rest of this paper is organized as follows: Related Work
discusses the related work, followed by the MResLSTM designed
in Method and the optimization of the model. Experiment shows
the experimental results and analysis, and Conclusion concludes
the paper with a summary and future research directions.

FIGURE 1 | Dexterous hand control process with sEMG signal.
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RELATED WORK

Surface EMG signals is a non-invasive technique for measuring
the electrical activity of muscle groups on the skin surface, which
makes it a simple and straightforwardmethod that allows the user
to actively control the prosthesis (Takaiwa et al., 2011; Gregory
and Ren, 2019; Wu et al., 2017). The basic principle of the
human-machine interface based on surface EMG signals is to
convert sEMG into controllable signals through algorithms such
as machine learning. With the precision, portability, and signal
processing algorithm performance of the acquisition system, the
high reliability of the man-machine interface and the robustness
of the prosthetic hand control have become a reality. Recently,
many researchers have paid more attention to deep learning in
the field of EMG pattern recognition. It can automatically learn
features of different abstract levels from many input samples,
thereby avoiding cumbersome feature extraction and
optimization processes and realizing end-to-end EMG gesture
recognition (Weng et el., 2021; Su et al., 2021; Tsinganos et al.,
2019; Chaiyaroj et al., 2019).

Atzori et al. (2016) proposed a LeNet-based convolutional
neural network model AtzoriNet for end-to-end EMG gesture
recognition. He et al. (2018) combined a Long short-term
memory network and multilayer perceptrons and conducted
experiments on the NinaPro DB1 dataset. When classifying
the 52 hand movements of 27 subjects, the accuracy rate
reached about 75%. Hu et al. (2019) proposed a CNN model
based on the attention mechanism and tested it on the
NinaProDB1, NinaProDB2, BioPatRec subdatabase, CapgMyo
subdatabase, and csl-hdemg database. Its accuracy rates are 87.0,
82.2, 94.1, 99.7 and 94.5% respectively. Geng et al. (2016)
proposed GengNet for gesture recognition based on transient
EMG signals. They applied a pre-training strategy to make the
EMG gesture recognition performance of the network surpassed
the method of extracting signal features and inputting traditional
classifier models for gesture recognition. Wu et al. (2018)
proposed LSTM-CNN for the dynamic recognition of gestures.
Mendes Junior et al., 2020 investigated multiple classification
techniques for six hand gestures acquired from 13 participants
using eight channels sEMG armband with a sampling rate of
2 kHz. Their best result, with an average accuracy of 94% was
obtained from 40 features with the large margin nearest neighbor
(LMNN) technique. Côté-Allard et al. (2020) presented an
analysis of the features learned using deep learning to classify
11 hand gestures using sEMG. The LSTMmodel is used to extract
timing information in signals. The CNN model can perform
secondary feature extraction and signal classification (Peng et al.,
2020).

As mentioned above, it is obvious that deep learning methods
can overcome the limitation of feature engineering for better
feature quality. Many studies have shown that the accuracy of
using DNN to classify surface EMG signals is generally higher.
However, EMG signal recognition based on deep learning models
is expected to improve accuracy and feature extraction
complexity (Jiang et al., 2019c; He et al., 2019; Sri-
iesaranusorn et al., 2021).

METHOD

The advantage of dynamic gesture research lies in the ability to
apply the trained model to the control of dexterous hands.
Dynamic gestures are a set of continuous motion gestures to
represent a specific meaning. The dynamic hand movement is
regarded as a dynamic transfer action in which one gesture
posture is converted to another (Zhang and Li, 2019; Zhang
et al., 2021; Liu et al., 2021). In this paper, we formulate the
sEMG-based gesture recognition problem as a DNN based
image classification problem. In the context of dynamic
gesture recognition, the EMG signal has a strong timing.
Instantaneous sEMG images and simple classifiers may not
fully capture the time information between multiple frames, so
a time window is used to sample the sEMG signal, and the
sEMG signal is converted to an sEMG image within the time
window. In this paper, the MResLSTM is proposed for
dynamic gesture recognition, and its overall framework is
shown in Figure 2.

The model includes two stages: feature extraction and
feature fusion. First, the original sEMG image is
decomposed into n patches of equal size. Then these
patches are input into a multi-stream network, and each
stream independently learns representative features by
IMResNet. During the fusion stage, it fuses the features
learned from all streams into a unified feature map. The
convolutional long short-term memory extracts
spatiotemporal feature information from local, global and
deep aspects, and combines feature fusion to alleviate the
loss of feature information. Finally, the feature map is input
to the classifier for classification. To prevent over-fitting, the
ReLU nonlinear function is applied after each fully connected
layer, batch normalization is performed, and a 50% dropout
layer is added after the fully connected layer. Many studies
have found that the recognition effect of information fusion
technology is better than that of single information. Therefore,
this paper proposes a novel dynamic gesture recognition
scheme based on the information fusion of sEMG and ACC
signals. The original signal is directly converted into images for
training the recognition network after preprocessing.

IMResNet
The IMResNet module is shown in Figure 2 and consists of two
Re-SE units. We embed the SE module into the residual network
to form a Re-SE module, the structure of which is shown in
Figure 3. The channel relationship of the image constructed by a
convolutional neural network through convolution is local. Many
researchers hope that the correlation of channels can be explicitly
constructed to enhance the feature maps obtained by
convolution. Squeeze-Excitation module (SE) is adopted to
solve the above issue. This SE module enables the network to
increase its sensitivity to signal characteristics to use these feature
information in subsequent conversions. The SE module is
composed of Squeeze and Excitation, as shown in Figure 3.

The Squeeze compresses the global information to each
channel for description through global pooling, effectively
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solving channel dependence. The output formula of the nth
channel after global pooling is as follows:

zn � 1
H ×W

∑
H

i�1
∑
W

j�1
In(i, j)n � 1, 2, ..., N, (1)

Where In is the nth channel of the characteristic image; H and
W are the height and width of the image, respectively; N is the
number of channels of the picture. Global average pooling can
make full use of the correlation of the channel, effectively
shield the distribution information in the space, and make the
calculation of the output characteristic information more
accurate. After squeezing, the Excitation is used to capture
the dependence of the channel fully. The Excitation is
implemented with 2 fully connected layers. The full
connection can use the correlation between channels to
train the accurate image scale. The first fully connected
layer compresses all channels C into C/k channels (k is the
compression ratio). The second fully connected layer is
restored to the original N channel. The purpose is to reduce
the amount of calculation.

The dynamic gesture recognition has real-time requirements,
so it is necessary to carry out a lightweight design to reduce
network calculation. This paper adopted group convolution and
channel shuffle, which greatly reduces the computational
complexity of the model while maintaining accuracy. Group

convolution minimizes the amount of calculation of the
network, but it causes the feature information between
different groups to not be exchanged. The core design concept
of ShuffleNet is to rearrange different channels to solve the
drawbacks caused by grouped convolution (Zhang et al., 2019;
Li et al., 2020). The channel reorganization of the feature map
after the group convolution ensures that the information can flow
between different groups. The IMResNet can directly input the
processed EMG image and automatically extract the features of
the image.

Variant ConvLSTM
The surface EMG signal of dynamic gestures has a strong
timing, so a timing network must be used to extract the timing
characteristics of the signal. In this article, we improve the
LSTM network structure. The LSTM unit has three thresholds:
input gate it, forget gate ft, and output gate ot. The subscript t
represents the time. In addition, use ct to represent the cell
state of the LSTM at time t. The LSTM network can process
time-series data, but if the time series data is an image, adding
a convolution operation based on LSTM will be more effective
for image feature extraction. The ConvLSTM is a variant of
LSTM (Peng et al.,). It not only can extract time-series features
but also can describe spatial features. The structure of the
LSTM cell and ConvLSTM cell is shown in Figure 4. The main
change is that the weight calculation of W has become a

FIGURE 2 | The overall framework of the MResLSTM.

FIGURE 3 | The structure of Res-SE.
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convolution operation so that the characteristics of the image
can be extracted.

ft � σ(Wfh.ht−1 +Wfx.xt + bf)
it � σ(Wih.ht−1 +Wix.xt + bf)
Ct � ft+Ct−1 + it+tanh(Wch.ht−1 +Wcx.xt + bc]
ot � σ(Woh.ht−1 +Wox.xt] + bo)
ht � ot+tanh(Ct).

(2)

Eq. 2 is the calculation formula of the LSTM unit. Where xt is
the input, Ct is the cell state, ht is the hidden state. “◦” represents
the Hadamard product.

ft � σ(WfhpHt−1 +WfxpXt + bf)
it � σ(WihpHt−1 +WixpXt + bf)
Ct � ft+Ct−1 + it+tanh(WchpHt−1 +WcxpXt + bc]
ot � σ(Wohpht−1 +Woxpxt] + bo)
ht � ot+tanh(Ct).

(3)

Eq. 3 is the calculation formula of the ConvLSTM unit. Where
Xt is the input, Ct is the cell state, and Ht is the hidden state. “*”
represents the convolutional operations, and “◦” means the
Hadamard product. The ConvLSTM has a large number of
parameters due to the convolution operation. In addition, the
convolution in ConvLSTM has no spatial attention effect. The
convolution of the three gates hardly affects the Spatio-temporal
feature fusion. Therefore, reducing the convolution operation in
the three gates can obtain better accuracy, fewer parameters and
lower computational cost. This variant of ConvLSTM is
improved on the basis of ConvSTLM, as shown in Figure 5.

The Variant ConvLSTM only retains the convolution at the
input state in the ConvLSTM structure. The rest of the
convolution operations are replaced by global average pooling
and fully connected operations. The working principle of
VConvLSTM can be expressed by:

ft � σ(WfhGP(Ht−1) +WfxGP(Xt) + bf)
it � σ(WihGP(Ht−1) +WixGP(Xt) + bf)
Ct � ft+Ct−1 + it+tanh(WchpHt−1 +WcxpXt + bc]
ot � σ(WohGP(Ht−1) +WoxGP(Xt)] + bo)
ht � ot+tanh(Ct).

(4)

Eq. 4 is the calculation formula of the Variant ConvLSTM
unit. Where Xt is the input, Ct is the cell state, andHt is the hidden
state. “*” represents the fully connected operations, and “◦”
represents the Hadamard product. GP stands for global
average pooling.

Dataset Acquisition
The acquisition of sEMG and acceleration signals is the basis for
realizing human handmovement recognition. In this article, a 16-
channel SEMG instrument is used for signal acquisition. When
the signal is collected, the installation of the equipment is shown
in Figure 6.

The ages of the experimenters were distributed among ten
persons between 20 and 30 years old. The details of the subjects
are summarized in Table 1. The electromyography cuff is worn
on the left hand, and the acceleration sensor is close to the back of
the hand. During the collection process, the forearm should be
kept as level as possible.

The sampling frequency is set to 1000 Hz, the motion cycle of
different gesture actions is set to 10 s, and a set of experiments are
collected 20 times. During the experiment, taking into account
the fatigue of the negative muscles, take a five-minute rest after
each collection and proceed to the next set of experiments. In each
experiment, the repeated method is to rest for 10 s, keep the
action for 10 s, repeat twenty times, and collect for three
consecutive days, using the same collection method every day.
This method can be used to obtain temporal and spatial
differences in myoelectric signals of the same individual. The
complete paradigm is illustrated in Figure 7.

The six gestures involving the entire hand movement are shown
in Figure 8, including two-finger left turn (TFTR), two-finger right
turn (TFTL), flat palm flip (FPTL), flat palm left turn (FPTL), flat
palm right turn (FPTR) and flat palm fist (FPMF).

EXPERIMENT

The dataset is randomly divided into two groups: one is the
training set, and the other is the test set. The training set contains
500 sets for each gesture, and each test set contains 60 sets.

FIGURE 4 | The structure of LSTM and ConvLSTM.
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Experimental environment hardware: Intel(R) Core(TM) i5-
10210U CPU@1.60 GHz; memory: 8.00 GB; system type: 64-
bit operating system, x64-based processor. All experiments are

implemented by PyTorch 1.7.0 + cu110 on NVIDIA GTX
1080Ti GPU.

Pretreatment
The process of sEMG signals collection is continuous, and the
sEMG includes active segment signals and inactive segment
information. To improve the accuracy and speed of the
recognition model, it is necessary to eliminate non-active
segment information. Research shows that the threshold
method can efficiently extract active segments. The active
segment detection formula is as follows:

S(n) � ∑
c

c�1
(SEMGc(n) − SEMGmean

c )2 ≥TH, n � 1, 2, 3, ...., n, (5)

Where c is the number of acquisition channels of sEMG; N is the
number of sampling points; SEMGc(n) is the value of the nth
sampling point of the c channel; SEMGc

mean is the average value

FIGURE 6 | Signal acquisition diagram.

TABLE 1 | Demographic information the subjects.

Subjects Hand Status Age Sex

S0 Left Healthy 25 M
S1 Left Healthy 25 M
S2 Left Healthy 26 M
S3 Left Healthy 24 W
S4 Left Healthy 26 M
S5 Left Healthy 26 M
S6 Left Healthy 23 M
S7 Left Healthy 28 M
S8 Left Healthy 26 M
S9 Left Healthy 25 M

FIGURE 5 | The structure of Variant ConvLSTM.
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of the sEMG when the c channel is relaxed; TH is the set
threshold. In this article, TH is 15% of the peak energy of
each channel.

The raw SEMG contains a lot of noise, and the signal
needs to be filtered and noise-reduced. The frequency of the
power frequency noise in the environment is mainly
concentrated at 50 Hz or the corresponding integer
multiple of the frequency. A 20-order comb filter is used
to filter it. Wavelet transform can highlight the signal
characteristics in the time domain and frequency domain.
Wavelet transform is to shift the basic wavelet function and
then perform inner product with the signal that needs noise
reduction at different scales. The wavelet transform is to
shift the basic wavelet function, and then at different scales,
the inner product with the signal that needs noise reduction,
namely:

WTx(α, τ) � 1��
α

√ ∫+∞

−∞
x(t)φp(t − τ

α
)dt, (6)

Where α>0, is the scale factor, and its function is to expand and
contract the basic wavelet φ(t) function and τ represents the
displacement. In this paper, coif5 is used as the wavelet basis
function, and the unbiased likelihood estimation threshold is

FIGURE 7 | Signal acquisition flowchart.

FIGURE 8 | Six dynamic hand movements.

FIGURE 9 | The timing diagram of sEMG.

FIGURE 10 | Raw image and feature image.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org October 2021 | Volume 9 | Article 7793537

Yang et al. Dynamic Gesture Recognition Using sEMG

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


used for threshold processing and the hard threshold function to
process noise signals. The effect after sEMG treatment is shown in
Figure 9.

The proposed recognition network compares the recognition
effect of the original EMG image and the multi-EMG feature
image as the input source. The raw image and feature image are
shown in Figure 10. The dynamic recursive feature selection
algorithm is used to calculate the correlation between each EMG
feature and the target using mutual information. The EMG
feature that is least relevant to the target is eliminated, and the
optimal feature is selected.

This paper selects four characteristics: average absolute value
(MAV), signal high and low-frequency ratio (FR), median
frequency (MDF), and power spectrum average power (MNP)
to construct a featured image. The calculation formulas for the
four characteristics are as follows:

MAV � 1
K

∑
K

i�1
|xi|FR � ∑LHC

i�LLC
Pi/ ∑HHC

i�HLC
Pi , ∑

MDF

i�1
Pi � ∑

M

i�MDF

Pi

� 1
2
∑
M

i�1
PiMNP � 1

M
∑
M

i�1
Pi, (7)

Where xi represents the peak value of the i-th point of SEMG in
the time sequence; K represents the number of signal sampling
points. Pi represents the power value of the i-th point of SEMG on
the spectrum; M is the signal bandwidth. LLC and LHC are the
lower and upper cut-off frequencies of the low-frequency band,

respectively; HLC and HHC are the lower and upper cut-off
frequencies of the high-frequency band, respectively.

Experimental Results and Analysis
The calculation amount of a multi-stream network is larger than
that of a single network. Therefore, it is necessary to construct a
comparative experiment between a multi-stream network and a
single network. In the comparison experiment, the input of both
recognition models is all the original EMG images. At the same
time, no ACC information fusion is added. In addition, the input
matrix format of a single network model is different, and the
input data format needs to be fine-tuned.

The experimental results are shown in Table 2. It can be seen
from Table 2 that the gesture recognition effect of the multi-
stream network is better than that of the single network. The
multi-stream network can extract more key features and prevent
the gradient from disappearing.

Information fusion increases the workload of data collection,
improves the complexity of the network, and reduces the
identification efficiency of the network. Therefore, to verify the

TABLE 2 | results of different networks.

Network model Accuracy (%)

Single-stream network 73.21
Multi-stream network 84.35

TABLE 3 | results of information fusion.

Information fusion Accuracy (%)

ACC 90.71
---- 84.35

TABLE 4 | results of the different input sources.

Input source Accuracy (%)

Raw img 90.71
Feature img 93.52

FIGURE 11 | The recognition rate of 10 subjects on MResLSTM.
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effectiveness of the fusion acceleration signal, a corresponding
comparative experiment was carried out. In the experiments, the
acceleration (ACC) signal is input into the network as an
independent branch, the raw sEMG image is the input source
of the network, and other conditions remain unchanged.

The comparison results are shown in Table 3. Only using
SEMG for dynamic gesture recognition, its recognition effect is
not as good as information fusion on the same model. The
characteristic signals of a variety of signals are not entirely the
same. Combining them may produce complementary
information. These complementary features can improve the

recognition accuracy of the network. However, sometimes
information fusion can also lead to information redundancy.

To judge the effectiveness of feature extraction, the feature
image and the original EMG image are used as the input source of
the network to conduct a comparative experiment. During the
experiment, both networks added ACC signals. The difference is
the input source of the network.

The experimental results are shown in Table 4. The
recognition effect of the input feature image is better than the
original EMG image. The featured image effectively retains the
critical information, which significantly improves the recognition
accuracy of the multi-stream network.

The average recognition rate of the proposed MResLSTM is
93.52%. However, it can be seen from Figure 11 that the
recognition effect of the model is affected by individual
differences. Experimental results show that the recognition
rate difference between subjects is about 8%. The reason may
be that the position of the acquisition instrument has changed or
that the hand movement is fast or slow during the signal
acquisition process.

To show the advantages of our model, more comparisons with
other neural networks should be added, so it is necessary to
conduct an experiment on the public dataset Ninapro DB1. The

TABLE 5 | Comparison results of different approaches on NinaPro DB1.

Algorithms Accuracy (%)

Atzori_Net[Atzori et al.2016] 66.73
Geng_Net[Geng et al.2016] 77.80
Gene_ELM[Cene et al.2019] 75.11
Yu_CNN[Yu et al.2019] 79.50
GoogleNet 81.27
Wei_MSCNN[Wei et al.2019] 85.00
MResLSTM(our) 89.31

FIGURE 12 | Gesture recognition rate under different conditions.
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NinaPro DB1 dataset contains 52 different gestures of 27 healthy
subjects, different from the gestures contained in the data set used
in this article. It is necessary to fine-tune the model’s classifier to
enable it to perform 52 classifications. The experimental results
are shown in Table 5. Experimental results show that our
proposed multi-stream network is better than other algorithms.

Through the comparison of various recognition algorithms in
Table 5, it can be seen that the recognition rate of theMResLSTM
on the public dataset is 89.31%, which is 4 percentage points
higher than MSCNN. It is not difficult to see from the
comparative experimental results that with the further
development of deep learning in EMG gesture recognition in
recent years, the advantages of deep convolutional neural
networks in the research of EMG pattern recognition have
become more and more apparent. Among them, the average
gesture recognition rate based onmulti-stream CNN proposed by
Wei reached 85.00%. The network is divided into a multi-stream
decomposition stage and a fusion stage. In the multi-stream
decomposition stage, each stream independently learns
representative features through CNN. Then in the fusion stage,
it merges the features learned from all streams into a unified
feature map and then inputs it into the fusion network to
recognize gestures. The experimental results show that the
multi-stream network can make up for the single input data
information and retain richer features.

When the following four experiments are performed, the data
batch size is 128, and Epoch is 200. The four experiments are as
follows: Experiment 1: the recognition model is a single network
structure, and the input source is the original EMG image.
Experiment 2: the recognition model is a multi-stream
network structure, and the input source is the raw EMG
image. Experiment 3: The recognition model is a multi-stream

network structure, and the input source is the original EMG and
ACC signal image. Experiment 4: The recognition model is a
multi-stream network structure, and the input sources are
characteristic EMG images and ACC signal images. The
training accuracy and verification accuracy during network
training are shown in Figure 12.

Comparing Experiment 1 and Experiment 2, it can be seen
that the multi-stream network converges faster during
training, and the network is more robust. Secondly, the
multi-stream network can retain more key features and
improve the recognition accuracy of the network.
Comparing Experiment 2 and Experiment 3, we can find
that Signals fusion can effectively compensate for the
shortcomings of single information, making the learned
features richer. Comparing Experiment 3 and Experiment 4,
we can see that the overall recognition rate of the original EMG
image as the input of the network model is low. This is because
only limited abstract features can be extracted from the
original EMG image through convolution operation.

Figure 13 is the training loss graph of four different
experiments. Loss1 represents the loss function of Experiment
1, and Loss2 indicates the loss function of Experiment 2. Loss3
means the training loss of Experiment 3, and Loss4 represents the
data input is the loss of Experiment 4.

It is not difficult to see from Figure 13 that the network is
challenging to converge when a single network is trained with the
original sEMG as the input source. This is because a single
network has limited features extracted from the sEMG, which
is prone to overfitting. The multi-stream network can retain more
effective information, making the accuracy and stability of gesture
recognition better. Multi-stream networks have better
generalization capabilities.

FIGURE 13 | Training loss value under different conditions.
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CONCLUSION

Themotivation of research on dynamic gesture recognition based on
sEMG signals is that it can promote the flexible control of
manipulators. In this paper, the MResLSTM is proposed for
dynamic gestures recognition. The problem of gesture recognition
research based on EMG signal is that the amount of data is relatively
small and easy to overfit. A multi-stream network structure can
retain more crucial information to solve the issue. The strategy of
pointwise convolution and channel shuffle is adopted to achieve the
real-time requirements of the recognition model. This article uses
feature correlation to select key features. The recognition rate of the
MResLSTM on the feature image is 93.52%, and the accuracy on the
original EMG image is 90.71%. Experimental results show that
decent feature images can improve the recognition accuracy of
the network. The comparative experiment results on the dataset
Ninapro DB1 show our proposed model outperforms the state-of-
the-art methods.

SEMG signals are one of the most widely used biological
signals to predict the movement intention of the upper limbs.
Converting sEMG signals into effective control signals often
requires a lot of computing power and complicated processes.
The high variability of sEMG and the lack of existing data limit
the application of gesture recognition technology (Li et al., 2021;
Aranceta-Garza and Conway, 2019). In future work, high-density
sEMG (Chen et al., 2020) and multiple information fusion will be
the direction of dynamic gesture recognition research. Secondly,
the influence of the speed and cycle of hand actions on the model
will be a meaningful direction.
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