
A Computational Framework to
Identify Metabolic Engineering
Strategies for the Co-Production of
Metabolites
Lavanya Raajaraam1,2,3 and Karthik Raman1,2,3*

1Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras,
Chennai, India, 2Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai, India, 3Robert Bosch Centre
for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India

Microbial production of chemicals is a more sustainable alternative to traditional chemical
processes. However, the shift to bioprocess is usually accompanied by a drop in economic
feasibility. Co-production of more than one chemical can improve the economy of
bioprocesses, enhance carbon utilization and also ensure better exploitation of
resources. While a number of tools exist for in silico metabolic engineering, there is a
dearth of computational tools that can co-optimize the production of multiple metabolites.
In this work, we propose co-FSEOF (co-production using Flux Scanning based on
Enforced Objective Flux), an algorithm designed to identify intervention strategies to
co-optimize the production of a set of metabolites. Co-FSEOF can be used to identify
all pairs of products that can be co-optimized with ease using a single intervention. Beyond
this, it can also identify higher-order intervention strategies for a given set of metabolites.
We have employed this tool on the genome-scale metabolic models of Escherichia coli and
Saccharomyces cerevisiae, and identified intervention targets that can co-optimize the
production of pairs of metabolites under both aerobic and anaerobic conditions. Anaerobic
conditions were found to support the co-production of a higher number of metabolites
when compared to aerobic conditions in both organisms. The proposed computational
framework will enhance the ease of study of metabolite co-production and thereby aid the
design of better bioprocesses.

Keywords: metabolic modelling, genome-scale models, bioproduction, concomitant production, co-synthesis,
constraint-based modelling

1 INTRODUCTION

Recent years have seen several advances in the usage of bioprocessing to produce a wide range of
chemicals (Erickson et al., 2012). Microorganisms can produce diverse and complex products from
simple carbon sources. Nevertheless, there are many challenges in designing economically feasible
bioprocesses. The advancements in synthetic biology have enabled the metabolic engineering of
organisms to improve yield and productivity (Yadav et al., 2019). Various computational strain
design algorithms have been developed to identify the genetic manipulations required to over-
produce a single product (Burgard et al., 2003; Rocha et al., 2008; Yang et al., 2011). Despite the
increase in yield achieved through such rational strain design, the bioprocesses are unable to compete
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with the traditional chemical processes in many cases (Cai and
Bennett, 2011). This is due to two main reasons: 1) the cost of raw
materials and 2) the maximum yield achievable for a given
product in a given organism and environment is limited by
the number of genetic manipulations that can be successfully
implemented in a single strain (Silva et al., 2012). The former
issue can be reduced by using agricultural waste as feedstock
instead of a synthetic nutrient medium. The latter can be
overcome by co-producing multiple products in the same
bioprocess (da Silva et al., 2014).

Co-production equips us to exploit the system in a better
fashion and produce more valuable products from the same
raw materials. A high-value, low-volume chemical can be co-
produced with a low-value, high-volume product in order to
increase the economic feasibility, as in the case of riboflavin
and butanol, respectively (Cai and Bennett, 2011). Co-
production is essential when a cocktail of metabolites need
to be produced together, rather than a single metabolite, as in
the case of biofuels and fatty acids (Xin et al., 2018). A mixture
of different alcohols or fatty acids of varying chain length need
to be co-optimized in such cases. It can also balance carbon
metabolism, as in the case of uridine, and acetoin (Fan et al.,
2018). High carbon inflow towards uridine causes excess
production of acetate, which hampers the growth of the
organism. Conversion of acetate to acetoin prevents over-
acidification of the nutrient medium and thereby improves
growth and uridine production. There are many studies that
have successfully achieved co-production of a variety of
products with/without genetic manipulation of the
organisms. Polyhydroxyalkanoates are a common class of
metabolites that are co-produced with other metabolites (Li
et al., 2017; Kumar and Kim, 2018; Yadav et al., 2021). Butanol
and hydrogen have been co-produced in Clostridium
beijerinckii (Zhang et al., 2021), and ethanol and xylitol
have been co-produced in Candida tropicalis (Raj and
Krishnan, 2020; de Souza Queiroz et al., 2021). The carbon
source, nutrient medium, pH etc., are optimized in such cases
to improve the yield of metabolites. Metabolic engineering can
further expand the number of products that are co-produced
and also improve their yield significantly. Multiple metabolites
like ethanol, isopropanol, butanol and 2,3- butanediol have
been co-produced by optimizing the acetone-butanol-ethanol
(ABE) fermentation pathway in Clostridium acetobutylicum
(Collas et al., 2012). Nisin and 3-phenyllactic acid, two
antimicrobial agents, have been co-produced in Lactococcus
lactis through genetic manipulation (Julien-Laferrière et al.,
2016). Non-native metabolites can also be co-produced with
other metabolites, as in the case of butanol and riboflavin, by
engineering the heterologous pathway in C. acetobutylicum
(Cai and Bennett, 2011).

Although many strain design algorithms have been
successfully employed for metabolically engineering organisms
to optimize a single product (Pharkya et al., 2003; Kumelj et al.,
2019), few studies have applied it for co-production. The studies
listed above only use existing literature and readily apparent
deletion targets to achieve co-production. This limits the
robustness of the bioprocesses that are designed. There is a

lack of algorithms that can be easily applied to study co-
production. In this study, we have extended the Flux
Scanning based on Enforced Objective Flux (FSEOF) (Choi
et al., 2010) algorithm to study co-production. Further, while
deletion targets can be obtained for metabolites independently
using existing algorithms like OptKnock (Burgard et al., 2003),
OptGene (Rocha et al., 2008), there are very few algorithms
that can identify amplification targets (Ranganathan et al.,
2010). In order to identify amplification targets in addition
to knock-out targets for co-optimizing a set of metabolites, we
propose a new methodology, co-FSEOF, adapting the
FSEOF algorithm. Co-FSEOF has a simple computational
framework that can be easily modified, and it also provides
the entire set of potential intervention strategies in a single run
while many algorithms are sequential, returning one
intervention target per run. The utility of the potential
intervention strategies obtained was further assessed using
Flux Variability Analysis (FVA). We applied co-FSEOF to
evaluate all possible pairs of secretory metabolites in
Escherichia coli and Saccharomyces cerevisiae. The different
pairs of metabolites that can be co-produced through a single
reaction deletion or amplification were obtained. This analysis
helps us choose favorable pairs of metabolites for which higher-
order intervention strategies can be obtained. We have
demonstrated this by identifying the amplification targets,
knock-out targets and mixed intervention strategies of size
up to three to co-optimize the production of isobutanol and
succinic acid in S. cerevisiae. Higher-order intervention
strategies were able to achieve better yield with very little
reduction in growth rate. Overall, our analyses provide an
overall picture of the biosynthetic capabilities of an
organism, particularly highlighting key interdependencies in
metabolism.

2 METHODS

2.1 Flux Balance Analysis
FBA is a widely used steady-state constraint-based modelling
approach to predict the metabolic capabilities of a variety of
organisms (Varma and Palsson, 1994; Kauffman et al., 2003;
Orth et al., 2010). The metabolic network of an organism, which
comprises all reactions known to occur in the organism, is
represented as a stoichiometric matrix S, of size m × n, wherem
is the number of metabolites, and n is the number of reactions
(Figure 1A). The entries in the jth column of S represent the
stoichiometric coefficients of the metabolites that participate in
the jth reaction. The minimum and maximum values of flux
that any reaction can assume are constrained by the lower and
upper bounds, respectively. The flux through a reaction under a
given set of conditions, at steady-state, is calculated by solving a
linear programming (LP) problem. The LP problem is
formulated as:

maxv cTv

subject to S.v � 0

while vl,i ≤ vi ≤ vu,i,∀i ∈ [1, n]
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where c is a vector of weights denoting the contribution of each of
the n reactions to the objective function, v ϵ Rn is the vector of
metabolic fluxes, vl and vu are vectors representing the lower and
upper bounds for the reaction fluxes, respectively (Orth et al., 2010).

2.2 Flux Variability Analysis
FVA is used to identify the range of fluxes of each reaction that
still satisfy the constraints, where two optimization problems are
solved for each flux vi of interest.

FIGURE 1 | Framework of co-FSEOF. (A) TheGSMM is represented as a stoichiometric matrix, which is used for FBA. (B) The flux through the product is increased
in steps, and flux changes through all other reactions are studied. The reactions that have increased fluxwith an increase in product flux are potential amplification targets.
The reactions that have decreased flux are potential deletion targets, while those with unchanged or oscillatory fluxes are excluded. (C) The targets common to products
A and B are the potential targets for co-optimization. *The union of all potential targets for products A and B is used for higher-order intervention strategies.
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vj,max/vj,min � maxv/minv·vj
s.t. S.v � 0

while vl,i ≤ vi ≤ vu,i , ∀i ∈ [1, n]
where v ϵ Rn is the vector of metabolic fluxes, vj,max and vj,min are
the maximum and minimum values of fluxes, respectively for
each reaction flux vj (Gudmundsson and Thiele, 2010).

2.3 Flux Scanning Based on Enforced
Objective Flux
FSEOF (Choi et al., 2010) is a method used to identify potential
reaction deletion and amplification targets in metabolic networks
by observing the change in the reaction fluxes when the system
moves from the wild-type flux of the target product to the
theoretical maximum flux of the product (Figure 1B). The
maximum biomass vmax,bio and maximum product vmax,prdt

fluxes are obtained by performing FBA with the biomass
reaction and the exchange reaction of the product as the
objective, respectively. The flux of the target reaction, vprdt is
pinned to x% of vmax,prdt (x � 0 → 100). The change in the flux
of a reaction, vj, is studied as the product flux, vprdt is increased,
and it is classified as a potential deletion or amplification target
based on the decrease or increase in its flux, respectively. The
reactions that undergo no change or oscillations in the fluxes are
discarded from the set of potential intervention strategies. The set
of potential intervention strategies obtained are assessed by
simulating each intervention and performing FVA on themutant.

2.4 Co-FSEOF: Co-Optimization of
Metabolites
The Genome-Scale Metabolic Models (GSMMs) of E. coli iML1515
and S. cerevisiae iMM904 were obtained from the BiGG models
database (http://bigg.ucsd.edu/) (Raj and Krishnan, 2020). The
simulations were done with the following constraints on uptakes:
−10mmol/gDW/h glucose and −2mmol/gDW/h oxygen for
aerobic conditions and −10mmol/gDW/h glucose and zero
oxygen uptake for anaerobic conditions. Exchange and transport
reactions were removed from the search space for FSEOF to increase
the relevance of the results and to reduce the computational time.
The potential intervention strategies for all secretory metabolites
(metabolites that can be secreted into the medium) in the organism
were obtained using FSEOF as described in Section 2.3. All possible
pairs of secretory metabolites were examined for co-production by
identifying their common intervention strategies which were
obtained through FSEOF (Figure 1C). These common deletion
or amplification targets constitute the potential intervention
strategies for a set of metabolites. The implementation steps of
the algorithm are summarized in Figure 2.

The reliability of the potential intervention targets is analyzed
by comparing the flux values of biomass and product in the
mutant with those of the wild-type organism. The mutant model
is obtained by deleting the reaction in case of knock-out targets or

FIGURE 2 |Workflow of co-FSEOF. The figure illustrates succinctly, the
key steps of the algorithm.
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by fixing the flux bounds of the amplification target to its
theoretical maximum. FVA is performed on this mutant
model with biomass as objective to obtain the range of flux
values for the products and biomass. Any reaction with more
than a 5% increase in the maximum product flux and less than
75% decrease in biomass flux is considered a promising
intervention strategy. FVA was performed using fastFVA to
reduce the computational time (Gudmundsson and Thiele,
2010).

To obtain higher-order intervention strategies, the potential
targets obtained earlier for a given set of metabolites were
combined, and all possible combinations of intervention
strategies of a certain size (up to three) were evaluated using
FVA. The score for each product i (total number of products, n)
and the overall score are calculated as

Scorei �
(vprdti,mut − vprdti,wt)
(vbio,wt − vbio,mut)

Overall Score � ∑
n

i�1
(Scorei)

where vprdti,mut and vprdti,wt are the mutant and wild-type
maximum fluxes of the exchange reaction of the product i,
and vbio,mut and vbio,wt are the mutant and wild-type fluxes of
the biomass reaction. Scorei denotes the score for the individual
product while overall score denotes the cumulative score for the
set of metabolites. All simulations were performed in MATLAB
R2018a (MathWorks Inc., United States) using the COBRA
Toolbox v3.0 (Heirendt et al., 2019) and IBM ILOG CPLEX
12.8 as the linear programming solver.

3 RESULTS

Metabolic engineering strategies for the co-production of all pairs
of secreted metabolites in E. coli and S. cerevisiae were obtained
using co-FSEOF as described in Section 2.4. We identified the
intervention strategies required to optimize the co-production of
metabolites in both aerobic and anaerobic conditions. Anaerobic
conditions favor the co-production of more pairs of metabolites
when compared to aerobic conditions. The intervention strategy
for each pair of metabolites is scored as in Section 2.4. The best
intervention strategy can be chosen using the overall score. In
cases where one metabolite might be favored over the others, the
individual scores, Scorei can be used to choose the best
intervention strategies. Some of the intervention strategies
obtained have been successfully verified through experimental
studies in literature. This shows the credibility of the intervention
strategies obtained.We discuss a few of the industrially significant
metabolites and their intervention strategies, along with
supporting literature. We also propose many other
intervention strategies, which form a ready short-list for
experimental validation. We were able to identify other
hitherto unexplored intervention strategies, which may be
better alternatives to those in existing literature, further
demonstrating the utility of the algorithm.

3.1 Co-Production in Escherichia coli
E. coli is one of the well-studied model organisms and has high-
quality GSMMs available. The latest GSMM, iML1515 (Monk
et al., 2017), was used in this study, and the co-production of 337
secretory metabolites was studied in both aerobic and anaerobic
conditions.

3.1.1 Aerobic Fermentation
Co-production of all pairs of metabolites was studied in E. coli,
using co-FSEOF and FVA as described in Section 2.3, 2.4. Out of
337C2 pairs of secretory metabolites, only 237 could be
successfully overproduced through deletion or amplification of
a single reaction. The intervention strategies for a few industrially
significant pairs of metabolites are listed in Table 1. One of the
important pairs of metabolites that can be easily co-produced is
L-lysine, a food additive and drug additive and cadaverine, which
is essential for polyamide production. co-FSEOF was able to
identify several reactions from the diaminopimelate pathway
(DAP), which can be over-expressed to co-produce L-lysine
and cadaverine. An experimental study by Xu et al. (2019)
demonstrates the effect of engineering the DAP pathway in
E. coli for the production of L-lysine. This indicates the
reliability of the results obtained through our computational
approach. Another significant result is the co-production of
succinate and ethanol through the amplification of
glyceraldehyde-3-phosphate dehydrogenase. Other studies have
also successfully co-produced ethanol and succinate by other
genetic manipulations (Liang et al., 2019).

3.1.2 Anaerobic Fermentation
Anaerobic conditions support the co-production of more
metabolites when compared to aerobic conditions. More
than 1,000 pairs of metabolites can be co-produced, out of
which few are listed in Table 2. L-lysine and cadaverine can be
co-produced under anaerobic conditions too. But the
maximum flux achievable is lower when compared to
aerobic conditions. The yield of metabolites like acetate,
formate, and hexanoate can be co-optimized by deleting
acetaldehyde dehydrogenase or alcohol dehydrogenase. We
also found that succinate and lactate can be co-produced by the
knock-out of pyruvate formate lyase. The effect of deletion of
pflB gene encoding pyruvate formate lyase has been
experimentally verified in E. coli for succinate production
(Zhang et al., 2009) and lactate production (Utrilla et al.,
2009) through separate studies. This shows that there are
multiple co-production strategies available in the existing
literature that can be easily utilized to design an efficient
process.

3.2 Co-Production in Saccharomyces
cerevisiae
Another industrially relevant and well-studied model organism is
S. cerevisiae. Though heterologous pathways have not been
analyzed in this study, one can easily modify the GSMM and
apply co-FSEOF to identify co-production strategies for
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TABLE 1 | Intervention strategies for co-production of pairs of metabolites in E. coli under aerobic conditions.

# Product A WT
flux A

Product B WT
flux B

Intervention Mutant
product
flux A

Mutant
product
flux B

Mutant
biomass

flux

Score
A

Score
B

Score
A + B

KO/
Amp

1 L-lysine * 1,5-Diamino
pentane

* Diaminopimelate
decarboxylase

5.81 5.81 0.22 8.84 8.84 17.68 Amp

Diaminopimelate epimerase 5.81 5.81 0.22 8.84 8.84 17.68 Amp
Dihydrodipicolinate reductase 5.81 5.81 0.22 8.84 8.84 17.68 Amp
Dihydrodipicolinate synthase 5.81 5.81 0.22 8.84 8.84 17.68 Amp
Succinyl-diaminopimelate
desuccinylase

5.81 5.81 0.22 8.84 8.84 17.68 Amp

Tetrahydrodipicolinate
succinylase

5.81 5.81 0.22 8.84 8.84 17.68 Amp

2 Succinate * Ethanol * Glyceraldehyde-3-phosphate
dehydrogenase

12.86 15.84 0.22 19.56 24.10 43.67 Amp

3 Spermidine * 5-Methylthio-D-
ribose

* Adenosylmethionine
decarboxylase

2.01 2.01 0.22 3.06 3.06 6.12 Amp

Methylthioadenosine
nucleosidase

2.01 2.01 0.22 3.06 3.06 6.12 Amp

Spermidine synthase 2.01 2.01 0.22 3.06 3.06 6.12 Amp
4 Xanthine * D-Lactate * Glyceraldehyde-3-phosphate

dehydrogenase
8.90 15.84 0.22 13.55 24.10 37.65 Amp

5 Glycine * L-Asparagine * Glyceraldehyde-3-phosphate
dehydrogenase

20.91 11.82 0.22 31.80 17.99 49.79 Amp

6 Fe-
enterobactin

* Enterobactin * 2,3-Dihydro-2,3-
dihydroxybenzoate
dehydrogenase

1.29 1.29 0.22 1.97 1.97 3.93 Amp

Isochorismatase 1.29 1.29 0.22 1.97 1.97 3.93 Amp
7 Pyruvate * L-Asparagine * Glyceraldehyde-3-phosphate

dehydrogenase
18.01 11.82 0.22 27.39 17.99 45.38 Amp

WT, wild type; *, less than 10−5 mmol/gDW/h.

TABLE 2 | Intervention strategies for co-production of pairs of metabolites in E. coli under anaerobic conditions.

# Product A WT
flux A

Product B WT flux B Intervention Mutant
product
flux A

Mutant
product
flux B

Mutant
biomass

flux

Score
A

Score
B

Score
A + B

KO/
Amp

1 Acetate 8.83 Formate 18.22 Acetaldehyde dehydrogenase 18.18 36.79 0.12 237.95 472.31 710.26 KO
Alcohol dehydrogenase 18.18 36.79 0.12 237.95 472.31 710.26 KO

2 Succinate 0.05 D-Lactate 3.76x10−4 Glyceraldehyde-3-phosphate
dehydrogenase

14.98 19.41 0.04 126.78 164.92 291.71 Amp

Acetaldehyde dehydrogenase 9.07 18.12 0.12 229.50 461.04 690.55 KO
Alcohol dehydrogenase 9.07 18.12 0.12 229.50 461.04 690.55 KO
Pyruvate formate lyase 0.49 17.76 0.12 10.57 426.65 437.22 KO

3 L-Alanine * Xanthine * Glyceraldehyde-3-phosphate
dehydrogenase

13.56 0.97 0.04 115.18 8.23 123.41 Amp

4 Spermidine * 5-Methylthio-
D-ribose

* Adenosylmethionine
decarboxylase

0.64 0.64 0.04 5.46 5.46 10.93 Amp

Methylthioadenosine
nucleosidase

0.64 0.64 0.04 5.46 5.46 10.93 Amp

Spermidine synthase 0.64 0.64 0.04 5.46 5.46 10.93 Amp
5 L-Aspartate * L-Glutamate * Glyceraldehyde-3-phosphate

dehydrogenase
6.03 4.52 0.04 51.19 38.39 89.59 Amp

6 L-Lysine * 1,5-Diamino
pentane

* Diaminopimelate
decarboxylase

2.72 2.72 0.04 23.04 23.04 46.07 Amp

Diaminopimelate epimerase 2.72 2.72 0.04 23.04 23.04 46.07 Amp
Dihydrodipicolinate synthase 2.72 2.72 0.04 23.04 23.04 46.07 Amp
Succinyl-diaminopimelate
desuccinylase

2.72 2.72 0.04 23.04 23.04 46.07 Amp

Tetrahydrodipicolinate
succinylase

2.72 2.72 0.04 23.04 23.04 46.07 Amp

7 Acetate 8.83 Hexanoate * Acetaldehyde dehydrogenase 18.18 4.53 0.12 237.95 115.26 353.21 KO
Alcohol dehydrogenase 18.18 4.53 0.12 237.95 115.26 353.21 KO

WT, wild type; *, less than 10−5 mmol/gDW/h.
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TABLE 3 | Intervention strategies for co-production of pairs of metabolites in S. cerevisiae under aerobic conditions.

# Product A WT flux A Product B WT flux B Intervention Mutant
product
flux A

Mutant
product
flux B

Mutant
biomass

flux

Score
A

Score
B

Score
A + B

KO/
Amp

1 Ethanol 15.81 L-Alanine 1.69x10−4 Sedoheptulose 1,7-bisphosphate D-glyceraldehyde-3-
phosphate-lyase

18.45 0.15 0.07 12.22 0.71 12.93 Amp

Phosphofructokinase (s7p) 18.45 0.15 0.07 12.22 0.71 12.93 Amp
2 Acetate 3.55×10−3 2,3-Butanediol 3.21x10−4 Pyruvate dehydrogenase 1.48 0.25 0.28 230.94 38.48 269.42 KO

Enolase 10.71 10.27 0.07 49.61 47.61 97.22 Amp
Fructose-bisphosphate aldolase 10.70 10.27 0.07 49.62 47.64 97.26 Amp
Glyceraldehyde-3-phosphate dehydrogenase 10.71 10.27 0.07 49.61 47.61 97.22 Amp
Triose-phosphate isomerase 10.70 10.27 0.07 49.62 47.64 97.26 Amp

3 Isobutyl alcohol * Succinate * Pyruvate decarboxylase 7.63 5.45 0.19 79.29 56.66 135.95 KO
Enolase 9.56 12.97 0.07 44.30 60.10 104.40 Amp
Glyceraldehyde-3-phosphate dehydrogenase 9.56 12.97 0.07 44.30 60.13 104.43 Amp
Triose-phosphate isomerase 9.56 12.97 0.07 44.33 60.17 104.50 Amp

4 2-Methylpropanal * Isobutyl alcohol * 3-Methyl-2-oxobutanoate decarboxylase 6.50 9.36 0.07 30.14 43.39 73.54 Amp
Acetolactate synthase mitochondrial 6.50 9.36 0.07 30.14 43.40 73.54 Amp
Dihydroxy acid dehydratase 2,3-dihydroxy-3-
methylbutanoate mitochondrial

6.50 9.36 0.07 30.14 43.40 73.54 Amp

Enolase 8.95 9.56 0.07 41.47 44.30 85.77 Amp
Glyceraldehyde-3-phosphate dehydrogenase 8.95 9.56 0.07 41.47 44.30 85.77 Amp
Acetohydroxy acid isomeroreductase mitochondrial 6.50 9.36 0.07 30.14 43.40 73.54 Amp
Triose-phosphate isomerase 8.94 9.56 0.07 41.49 44.33 85.82 Amp

5 L-Glutamate * 2-Oxoglutarate * Citrate synthase 2.93 1.95 0.07 13.58 9.05 22.63 Amp
Enolase 4.50 4.04 0.07 20.85 18.73 39.58 Amp
Fructose-bisphosphate aldolase 4.50 4.04 0.07 20.86 18.73 39.60 Amp
Glyceraldehyde-3-phosphate dehydrogenase 4.50 4.04 0.07 20.85 18.73 39.58 Amp
Isocitrate dehydrogenase 2.99 2.00 0.07 13.87 9.25 23.12 Amp
Triose-phosphate isomerase 4.50 4.04 0.07 20.86 18.73 39.60 Amp

6 Acetate 3.55×10−3 Pyruvate 3.24x10−4 Pyruvate dehydrogenase 1.48 0.25 0.28 230.94 38.48 269.42 KO
Aspartate-semialdehyde dehydrogenase 8.79 11.85 0.07 41.14 55.49 96.63 Amp
Enolase 10.71 14.42 0.07 49.61 66.83 116.44 Amp
Fructose-bisphosphate aldolase 10.70 14.41 0.07 49.62 66.85 116.47 Amp
Glyceraldehyde-3-phosphate dehydrogenase 10.71 14.42 0.07 49.61 66.83 116.44 Amp
Triose-phosphate isomerase 10.70 14.41 0.07 49.62 66.85 116.47 Amp

7 4-Aminobutanoate * L-Serine * Glyceraldehyde-3-phosphate dehydrogenase 4.77 6.98 0.07 22.10 32.34 54.44 Amp
Triose-phosphate isomerase 4.77 6.97 0.07 22.11 32.35 54.45 Amp

8 L-Alanine 1.69x10−4 L-Cysteine * Glucose-6-phosphate dehydrogenase 10.60 1.20 0.07 49.11 5.56 54.67 Amp
Phosphogluconate dehydrogenase 10.60 1.20 0.07 49.11 5.56 54.67 Amp
6-phosphogluconolactonase 10.60 1.20 0.07 49.11 5.56 54.67 Amp
Ribulose-5-phosphate-3-epimerase 10.60 1.20 0.07 49.11 5.56 54.67 Amp
Transketolase 10.60 1.20 0.07 49.12 5.56 54.68 Amp
Ribose-5-phosphate isomerase 18.16 2.21 0.08 85.44 10.40 95.84 Amp

9 sn-Glycero-3-
phosphocholine

* L-Methionine * Methionine synthase 0.02 2.19 0.07 0.11 10.17 10.27 Amp
5,10-Methylene-tetrahydrofolate reductase 0.02 2.19 0.07 0.11 10.17 10.27 Amp
Ribose-5-phosphate isomerase 0.66 1.71 0.08 3.11 8.03 11.14 Amp

10 2-Methylbutyl acetate * 2-Methyl-1-
butanol

* Ribose-5-phosphate isomerase 3.00 4.42 0.08 14.13 20.78 34.92 Amp

WT, wild type; *, less than 10−5 mmol/gDW/h.
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TABLE 4 | Intervention strategies for co-production of pairs of metabolites in S. cerevisiae under anaerobic conditions.

# Product A WT flux A Product B WT
flux
B

Intervention Mutant
product
flux A

Mutant
product
flux B

Mutant
biomass

flux

Score
A

Score
B

Score
A + B

KO/
Amp

1 2-Methyl-1-
butanol

* Isobutyl
alcohol

* Malic enzyme NADP
mitochondrial

0.03 9.64 0.05 0.20 61.30 61.51 Amp

2 Isobutyl
alcohol

* Pyruvate * Pyruvate decarboxylase 8.73 5.66 0.11 88.74 57.57 146.31 KO
Enolase 9.68 9.97 0.05 61.59 63.45 125.03 Amp
Fructose-bisphosphate
aldolase

9.68 9.96 0.05 61.67 63.47 125.14 Amp

Glyceraldehyde-3-phosphate
dehydrogenase

9.68 9.97 0.05 61.60 63.45 125.05 Amp

Triose-phosphate isomerase 9.68 9.96 0.05 61.66 63.47 125.13 Amp
3 Formate 6.26x10−4 Spermidine * Adenosylmethionine

decarboxylase
1.22 1.22 0.05 7.76 7.76 15.52 Amp

Aspartate transaminase 1.21 1.21 0.05 7.75 7.76 15.51 Amp
2,3-Diketo-5-methylthio-1-
phosphopentane degradation

1.22 1.22 0.05 7.76 7.76 15.52 Amp

5-Methylthio-5-deoxy-D-
ribulose-1-phosphate
dehydratase

1.22 1.22 0.05 7.76 7.76 15.52 Amp

5-Methylthioadenosine
phosphorylase

1.22 1.22 0.05 7.76 7.76 15.52 Amp

5-Methylthioribose-1-
phosphate isomerase

1.22 1.22 0.05 7.76 7.76 15.52 Amp

Spermidine synthase 1.22 1.22 0.05 7.76 7.76 15.52 Amp
2-Keto-4-methylthiobutyrate
transamination

1.22 1.22 0.05 7.76 7.76 15.52 Amp

4 4-Amino
butanoate

* Isobutyl
acetate

* Enolase 2.84 2.91 0.05 18.04 18.50 36.53 Amp
Fructose-bisphosphate
aldolase

2.84 2.90 0.05 18.11 18.50 36.61 Amp

Glyceraldehyde-3-phosphate
dehydrogenase

2.85 2.91 0.05 18.11 18.50 36.61 Amp

Triose-phosphate isomerase 2.84 2.90 0.05 18.11 18.50 36.61 Amp
5 2-Methyl-1-

butanol
* Glycine * Aspartate kinase 0.05 4.55 0.05 0.32 28.95 29.26 Amp

Glucose-6-phosphate
dehydrogenase

0.08 4.15 0.05 0.52 26.39 26.91 Amp

Phosphogluconate
dehydrogenase

0.08 4.15 0.05 0.52 26.39 26.91 Amp

Homoserine dehydrogenase
NADH irreversible

0.05 4.55 0.05 0.32 28.95 29.26 Amp

Homoserine kinase 0.05 4.55 0.05 0.32 28.91 29.22 Amp
6-phosphogluconolactonase 0.08 4.15 0.05 0.52 26.39 26.91 Amp
Ribulose-5-phosphate-3-
epimerase

0.08 4.15 0.05 0.52 26.39 26.91 Amp

Ribose-5-phosphate isomerase 3.31 4.01 0.06 21.52 26.04 47.56 Amp
Threonine synthase 0.05 4.55 0.05 0.32 28.91 29.22 Amp
Transketolase 0.08 4.15 0.05 0.52 26.39 26.91 Amp
Transketolase 0.08 4.15 0.05 0.52 26.39 26.91 Amp

6 Isobutyl
alcohol

* Succinate 0.67 Pyruvate decarboxylase 8.73 6.70 0.11 88.74 61.27 150.02 KO

7 L-Glutamate * Xanthine * Fructose-bisphosphate
aldolase

2.81 0.95 0.05 17.90 6.04 23.94 Amp

Glyceraldehyde-3-phosphate
dehydrogenase

2.81 0.95 0.05 17.90 6.04 23.93 Amp

Triose-phosphate isomerase 2.81 0.95 0.05 17.90 6.04 23.94 Amp
8 Sorbitol * L-Methionine * Ribose-5-phosphate isomerase 5.61 1.28 0.06 36.45 8.29 44.74 Amp
9 2,3-

Butanediol
* L-Serine * Fructose-bisphosphate

aldolase
9.30 4.74 0.05 59.21 30.19 89.40 Amp

Glyceraldehyde-3-phosphate
dehydrogenase

9.30 4.74 0.05 59.19 30.19 89.37 Amp

Triose-phosphate isomerase 9.30 4.74 0.05 59.21 30.19 89.40 Amp

WT, wild type; *, less than 10−5 mmol/gDW/h.
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heterologous metabolites. Since S. cerevisiae is a better candidate
for recombinant protein production, it is essential to study co-
production in yeast (Bill, 2014). It can also produce more
complex metabolites when compared to E. coli and is,
therefore, a favorable candidate for bio-production. The latest
GSMM iMM904 (Mo et al., 2009) was used, and the ability to
optimize the co-production of 164 secretory metabolites was
studied in both aerobic and anaerobic conditions.

3.2.1 Aerobic Fermentation
We found that many industrially important metabolites like
ethanol and L-alanine, and 4-aminobutanoate and L-serine
can be co-produced in S. cerevisiae under aerobic conditions.
We were also able to co-optimize isobutyl alcohol and 2-methyl
propanal, which are long-chain alcohols that are used as biofuels.
The deletion of pyruvate dehydrogenase increases the production
of pyruvate and acetate, as shown in Table 3. Although the
deletion of pyruvate dehydrogenase has not been experimentally
verified as yet, a similar study has been carried out in E. coli
(Moxley and Eiteman, 2021). In this study, it has been shown that
the deletion of the genes encoding pyruvate dehydrogenase
improves pyruvate production (Moxley and Eiteman, 2021). In
addition to pyruvate dehydrogenase, co-FSEOF was able to
identify several other amplification targets, which can also
improve the production of pyruvate and acetate.

3.2.2 Anaerobic Fermentation
As in the case of E. coli, anaerobic fermentation enables the co-
production of more pairs of metabolites in S. cerevisiae when
compared to aerobic fermentation. 2-methyl-1-butanol, which is
an important solvent used in the manufacture of pesticides and
paints and isobutyl alcohol, which is a biofuel, can be co-
produced by the amplification of malic enzyme, as shown in
Table 4. Formate, which is used in dyeing and printing, can be co-
produced with spermidine, a metabolite increasingly studied for
its anti-ageing properties (Minois, 2014), through the
amplification of a number of reactions. These strategies not
only include readily apparent reactions that are involved in
spermidine synthesis like spermidine synthase and
adenosylmethionine decarboxylase but also provide some non-
intuitive strategies like the amplification of aspartate
transaminase or 2-keto-4-methylthiobutyrate transaminase.
We also found that the deletion of pyruvate decarboxylase
improves the production of succinate, isobutyl alcohol and
pyruvate. The effect of deletion of pyruvate decarboxylase
has been studied in S. cerevisiae, and the improvement in the
production of pyruvate (van Maris et al., 2004) and succinate
(Zahoor et al., 2019) has been verified experimentally in
separate studies in literature.

3.2.3 Higher-Order Intervention
Strategies—Co-Production of Isobutanol and
Succinate
Higher-order intervention strategies can increase the maximum
yield achievable for any product with a little difference in growth
rate when compared to single interventions. But they are more
cumbersome to identify, as the problem becomes time-

consuming and computationally expensive. Instead of
identifying higher-order targets for all metabolites in an
organism, we have used the previous analysis to explore the
metabolic capabilities of the organism and chose one set of
metabolites to demonstrate the power of higher-order
intervention strategies.

Isobutanol is a long-chain alcohol that is an attractive biofuel
(Nanda et al., 2017). Succinic acid is an important metabolite
essential for the production of various other products like
biodegradable polymers, fatty acids, butyrolactone and
tetrahydrofuran (Akhtar et al., 2014). The co-production of
isobutanol and succinate has been proposed as a sustainable
and economical process by Xu et al. (2018). They have discussed
the development of various strains for the production of
isobutanol and succinate separately. They emphasize how the
co-production of isobutanol and succinate is not only of
economic significance, but the high amount of carbon dioxide
released from long-chain alcohol fermentation can be used for
succinate production, and is hence also of ecological importance.
But the article does not discuss any strategy to co-optimize the
production of isobutanol and succinate.

Here we identified the higher-order intervention strategies
(size up to three) for co-production of isobutanol and succinate in
S. cerevisiae in aerobic conditions. More than 3,700 interventions
can improve the yield of both the metabolites when compared to
the wild-type strain. Table 5 lists a few examples of each type of
intervention strategy obtained, which are also represented in
Figure 3. Though most of the amplification and deletion
targets are integral components of the target product and by-
product synthesis respectively, co-FSEOF is also able to find
intervention targets in distant pathways like those in pentose
phosphate pathway, shikimate pathway, and nucleotide metabolism.
This shows the ability of the algorithm to identify non-intuitive
targets. Also, a number of the targets predicted here are also found in
experimental studies reported in literature. For example, the deletion
of pyruvate decarboxylase has been shown to improve the
production of isobutanol by Kondo et al. (2012). Zahoor et al.
(2019) have shown that both pyruvate decarboxylase deletion and
fumarase deletion can increase the production of succinate. This
shows the dependability of the results obtained using the algorithm.

4 DISCUSSION

Chemical processes based on fossil fuels are cheaper when
compared to bioprocesses, which leads to reluctance in the
adoption of sustainable bioprocesses in industries. To improve
the economic feasibility of a bioprocess, we can optimize the
process variables and/or genetically engineer the microbes
(Dzurendova et al., 2020). Even then, in some cases, the
bioprocess might be less lucrative when compared to their
chemical counterparts (Zhang et al., 2021). In such cases, we
can co-produce multiple metabolites to improve the economic
feasibility and efficiency of a bioprocess. For example, in the case
of biofuels and fatty acids, we need to design processes that can
support the production of multiple metabolites of similar nature
(Xin et al., 2018). Co-production also ensures better utilization of
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microbial capabilities, and better balance in the carbon
metabolism (Fan et al., 2018). While there are multiple
computational tools and algorithms to identify intervention
strategies for a single product, there is a lack of readily
appliable algorithms for co-production. As a result, almost no
co-production study in existing literature was found to use
computational algorithms to aid rational strain design. All of
the studies rely on previous findings or readily apparent strategies
to achieve co-production. This limits the intervention strategies
designed.

In this study, we present co-FSEOF, by adapting the effective
FSEOF algorithm to study the co-optimization of a set of
metabolites. FSEOF is a well-established constraint-based
modelling algorithm, which has been used to reliably predict
metabolic engineering strategies for a variety of systems (Choi
et al., 2010; Boghigian et al., 2012; Badri et al., 2019; Srinivasan
et al., 2019). It has a simple and efficient framework and can identify
both deletion and amplification targets. Flux Coupling Analysis
(FCA) is yet another interesting algorithm that can identify
which metabolites can be coupled together. But very few
metabolites are innately coupled without interventions. Moreover,
it excludes all the reactions that do not carry flux under a given set of
conditions from the analysis. This affects the applicability of FCA
because these reactions, though not coupled, can have an effect on
target production in the presence of other interventions. co-FSEOF is
able to identify more combinations of products that can be co-
produced and also provides a wider range of intervention strategies
for a given set of metabolites.

Using co-FSEOF, we examined the co-production of multiple
pairs ofmetabolites, and both deletion and amplification targets were
obtained in E. coli and S. cerevisiae under both aerobic and anaerobic
conditions. Anaerobic fermentation enabled the co-production of a
higher number of metabolites when compared to aerobic
fermentation in both organisms. This could be due to the
incomplete respiration in the absence of oxygen that leads to the
formation of multiple by-products. Also, S. cerevisiae produces more
industrially significant metabolites when compared to E. coli. Some
of these proposed intervention strategies have been verified
experimentally by other studies in literature, as mentioned in
Section 3. This shows the efficacy of the algorithm in furnishing
reliable targets. In addition to readily apparent intervention
strategies, co-FSEOF also provides non-intuitive intervention
strategies that are present in auxiliary biochemical pathways (as
discussed in Section 3.2.2, 3.2.3).

The co-optimization analysis for all possible pairs ofmetabolites in
the network is intended to be exploratory in order to give a larger
picture of the metabolic capabilities of the organism. This analysis
showed that around 200 pairs could be co-optimized in E. coli under
aerobic conditions, and around 1,000 pairs of metabolites could be
co-optimized in the other cases. An important class of metabolites
observed in the analysis are alcohols such as ethanol, isobutanol, and
2,3-butanediol, which can be co-produced using various
interventions. Co-optimization can thus enable the efficient
production of biofuels (Collas et al., 2012). We can explore the
metabolic capabilities of the organism to identify all possible pairs of
metabolites that can be co-produced. Following this, important and

TABLE 5 | Higher-order intervention strategies for co-production of isobutanol and succinate in S. cerevisiae under aerobic conditions.

# Intervention
1

Intervention
2

Intervention
3

A4/K2 Mutant
flux
1

Mutant
flux
2

Biomass
flux

Score
A

Score
B

Score
A + B

1 Glyceraldehyde-3-
phosphate
dehydrogenase (GAPD)

Pyruvate kinase (PYK) NA 44 7.19 8.60 0.20 81.73 97.87 179.59

2 Enolase (ENO) Pyruvate kinase (PYK) NA 44 7.13 8.60 0.20 81.08 97.87 178.95
3 Glutamate-5-kinase

(GLU5K)
Phosphoglycerate
dehydrogenase (PGCD)

Pyruvate
decarboxylase
(PYRDC)

222 7.96 5.80 0.19 79.81 58.12 137.93

4 Fumarase (FUMm) Phosphoserine
phosphatase (PSP_L)

Pyruvate
decarboxylase
(PYRDC)

222 7.95 5.78 0.19 79.78 58.05 137.84

5 Aldehyde dehydrogenase
(ALCD23x)

Glycerol-3-phosphate
dehydrogenase (G3PD1iR)

NA 42 2.99 2.52 0.22 43.76 36.77 80.54

6 Succinate CoA ligase ADP
forming (SUCOASm)

Pyruvate decarboxylase
(PYRDC)

NA 42 7.63 5.45 0.19 79.31 56.69 136.00

7 Acetolactate synthase
(ACLSm)

Oxoglutarate
dehydrogenase lipoamide
(AKGDam)

Guanylate kinase (GK2) 442 4.72 6.89 0.15 34.51 50.38 84.89

8 Citrate synthase (CSm) Dihydroxy-acid
dehydratase (DHAD1im)

Prephenate
dehydrogenase
(PPND)

442 4.73 6.98 0.14 32.31 47.71 80.02

9 Aldehyde dehydrogenase
(ALCD23x)

Ribonucleoside-
diphosphate reductase
(RNDR1)

Ribulose 5-phosphate
3-epimerase (RPE)

422 2.99 2.48 0.22 43.84 36.32 80.16

10 Succinate CoA ligase ADP
forming (SUCOASm)

Phosphoserine
phosphatase (PSP_L)

Pyruvate
decarboxylase
(PYRDC)

422 7.95 5.78 0.19 79.78 58.05 137.84

4, Amplification of reaction; 2, Knock-out of reaction.
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commercially valuable pairs of metabolites can be further studied to
obtain higher-order intervention strategies, as shown in Section 3.2.3.
Exploring the higher-order strategies can expand the efficiency of the
intervention targets obtained. Since the evaluation of higher-order
intervention strategies is laborious and computationally expensive, we
have limited the size to a maximum of three manipulations at a time.
It not only enhances yield, but also provides alternate routes to
achieve a similar yield. The advantageous strategies can be chosen
based on the ease of manipulation in an experimental setup in
such cases.

The evaluation of the results is carried out using FVA, which
ensures the robustness of the targets obtained. While FBA provides
one optimal solution from the solution space, FVA gives the entire
range of values the flux can take up. This is a significant difference
that sets co-FSEOF apart from other existing algorithms like
OptKnock (Burgard et al., 2003) and OptReg (Pharkya and
Maranas, 2006). Also, the algorithm validates and returns all the
intervention strategies in a single run, contrary to the existing
algorithms, most of which are sequential and require a separate
run for each strategy obtained. The set of intervention strategies

FIGURE 3 | Pathway diagram for co-production of isobutanol and succinate. The pathways for production of isobutanol and succinate are represented along with
the intervention strategies listed in Table 5. Auxiliary pathways that are not directly related to the biosynthesis of target products but contain intervention strategies are
shown within dotted rectangles. Co-factors and other small molecules are not depicted for better clarity. Numbers on the arrows point to row numbers in Table 5.
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validated through FVA can be short-listed for experimental
verification using the scores. The overall score can be used to
compare the effectiveness of different intervention strategies. The
score is designed to incorporate both increase in product flux and
decrease in biomass flux, so that both biomass and product
production are favored in the mutant. Moreover, co-FSEOF uses
biomass as the objective throughout the analysis, and the effect of the
intervention strategies on product synthesis is studied when the
organism optimizes growth. Thereby, the intervention strategies
result in the co-optimization of product production and biomass
formation. An intervention strategy with better overall score ensures
better product synthesis along with good biomass formation. If one
product is more favored than the others economically or otherwise,
we can use the individual scores Scorei to choose the appropriate
strategy for the process that is formulated. The products can be
chosen based on their economic value, or ease of co-production. One
drawback of co-production is the cost associated with downstream
processing. But this can be overcome by choosing easily separable
products or choosing metabolites such that one is accumulated in the
cell and one is secreted out, as in the case of polyhydroxy butyrate and
succinate, respectively (Kang et al., 2010). However, this problem
does not occur in the case of biofuels where the alcohol mixture is
optimized for and therefore does not require extensive separation of
the products. Co-FSEOF not only identifies intervention strategies for
co-production of a given set of metabolites, but also allows us to
explore the different combinations of products that can be co-
produced in an easy and efficient manner.

5 CONCLUSION

Co-production can open new avenues for the sustainable production
of chemicals. Designing bioprocesses for co-production using
laboratory experiments alone is cumbersome and can result in
sub-optimal strategies. co-FSEOF empowers us to explore and
exploit microbial systems in a better fashion. It can be used to

computationally study and optimize co-production by identifying
intervention strategies for multiple metabolites and thereby improve
the efficiency of bioprocesses. It should be noted that the co-
optimization analysis was limited to pairs of metabolites to
reduce the computational time. Nevertheless, co-FSEOF can be
easily extended to co-optimize a more extensive set of
metabolites. To conclude, this study can be used to identify
various genetic manipulations that can co-optimize a set of
products, which might be challenging to achieve through pure
experimentation. It provides a novel and critical approach to
study co-production computationally. We hope this study will aid
the design and development of more sustainable bioprocesses.
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