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Mitochondria are the primary organelles which can produce adenosine triphosphate (ATP).
They play vital roles in maintaining normal functions. They also regulated apoptotic
pathways of cancer cells. Given that, designing therapeutic agents that precisely target
mitochondria is of great importance for cancer treatment. Nanocarriers can combine the
mitochondria with other therapeutic modalities in cancer treatment, thus showing great
potential to cancer therapy in the past few years. Herein, we summarized lipophilic cation-
and peptide-based nanosystems for mitochondria targeting. This review described how
mitochondria-targeted nanocarriers promoted highly efficient cancer treatment in
photodynamic therapy (PDT), chemotherapy, combined immunotherapy, and
sonodynamic therapy (SDT). We further discussed mitochondria-targeted nanocarriers’
major challenges and future prospects in clinical cancer treatment.
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INTRODUCTION

Cancer is a threat to human beings, and the incidence and mortality rate are rising nowadays. It can
be described like a state of multifaceted cellular deregulation which involves bioenergetic regulations
and proliferation (Dong and Neuzil, 2014). It is extremely important to find effective ways against
various cancers (Yang et al., 2020). There are many traditional therapies for cancers such as surgery,
radiotherapy, and chemotherapy (Dolmans et al., 2003). New methods such as immunotherapy have
been used recently (Kelland, 2007). Mitochondria’s role in cancer has also been widely recognized in
the last 10 years (Lu et al., 2016).

Otto Warburg observed that mitochondria were dysfunctional in cancer cells (Warburg, 1956).
Because of the central role of mitochondria, they were called “culprits” for the malignancy of cancer
cells. Nowadays, mitochondria serve as a potential target for cancer therapeutics. They are dynamic
eukaryotic organelles which control metabolic activities and vital functions of cells. Mitochondria
produce adenosine triphosphate (ATP) for cell survival; they also control lethal functions of cells,
such as necrosis and apoptosis (Kroemer, 2003). Mitochondria-targeted therapeutic agents can play
in the central point of cells. So it is an efficient way of leading the therapeutic agent to the
mitochondria in eliminating cancer cells.

Mitochondria are the cells’ powerhouses, maintaining cells’ lives and playing a vital role in
regulating their death, which occur on their membranes upon permeabilization (Armstrong, 2006;
Ubah and Wallace, 2014). Around 1995, mitochondria not only were regarded as an area for energy
production but also controlled cell death regulation (Ubah and Wallace, 2014). Once mitochondrial
membrane permeabilization (MMP) happens, cells will die via various death pathways such as
necrosis or apoptosis. Mitochondrial dysfunction such as increasing oxidative stress and
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FIGURE 1 | Mitochondrial metabolism of a normal cell and a cancer cell. In the normal cell, pyruvate was carried into the mitochondria and converted into the
tricarboxylic acid cycle. However, in the cancer cell, pyruvate did not enter into the mitochondria as it converted to lactic acid and acidified the extracellular milieu (Ralph

MATRIX

deregulation of apoptosis and/or impaired oxidative
phosphorylation plays a vital role in the pathophysiological
mechanism. They also control the pathogenesis of other
acquired pathologies and congenital anomalies which include
cancer and other diseases (Ferrin et al., 2011; Serviddio et al.,
2011; Victor et al., 2011).

Mitochondria play an important role in the regulation of ROS
production, bioenergetics, and apoptotic cell death, thus having a
targeting ability as well as therapeutic benefits (Ubah and
Wallace, 2014). They function as targeting subcellular
organelles in the treatment of many diseases and attract
attention in the research community of medicine and biology
significantly. Many ways have already been developed to deliver
kinds of drugs to mitochondria. Under normal conditions, ROS is
needed for signaling. When apoptosis is inhibited in cancer cells,
ROS helps in the neoplastic transformation. What is more, in
order to support cancer cells’ survival in harsh tumorigenic
conditions, for example hypoxia and nutrient depletion,
mitochondria will provide flexibility through several ways
either by up- or downregulation (Wallace, 2012).

Healthy and cancerous mitochondria are different in structure
and function, such as energy production pathway, respiratory
rate, membrane potential, and gene mutations (Figure 1)
(Gogvadze et al, 2008; Ralph and Neuzil, 2009; Jeena et al.,

2019). In healthy normal cells, mitochondria control the
regulation of various functions to keep the growth and death
cycle of cells (Kroemer, 2006). While in cancer cells,
dysregulation of mitochondrial metabolism always occurs
because of higher metabolic demand with rapidly proliferating
cells (Wisnovsky et al., 2016). Cancer cells have extensive
metabolic reprogramming. They are much susceptible to
mitochondrial perturbations than some healthy cells (Nadege
et al,, 2009). Owing to that, mitochondria can be used for the
designation of selectively targeting systems for treating cancer.

Recently, nanomedicine has become popular in treating
cancer. Nanoparticles have characters of small size, high
versatility, high surface-volume ratio, and stability in vivo
(Wicki et al., 2015). Mitochondria-targeted carriers such as
nanoparticles and liposomes are active molecules. They can be
delivered instead of being directed to the mitochondria
selectively. The research area of cancer-selective carriers and
nanoparticles is highly active (Biasutto et al, 2010).
Transporters are required for macromolecules and small-
molecule drugs during cellular internalization, reducing the
burden on targeting the mitochondria of cancer cells
selectively to the transporters (Ubah and Wallace, 2014). It is
a major obstacle because of the elevating clearance rate by the
reticuloendothelial ~ system (RES), and other organs,
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FIGURE 2 | A schematic representing the mitochondria-specific targeting strategy (D’Souza et al., 2011).

nanoparticles, and liposomes will eliminate in a rapid speed, thus
limiting the use of nanoparticles and liposomes in cancer therapy
(Torchilin, 2005). However, recent research found that carrier
size reduction to below 200 nm will allow for accumulating in
cancer cells efficiently because of permeability and retention
effect enhancement (Biasutto et al., 2010). In our review, we
discuss about the progress in mitochondria-targeted-nanocarrier
cancer therapy in many aspects such as PDT, chemotherapy,
combined immunotherapy, and sonodynamic therapy.

MITOCHONDRIA AND
MITOCHONDRIA-TARGETED
NANOCARRIERS

Introduction of Mitochondria-Targeted
Multifunctional Nanoparticles

Mitochondria contain the inner mitochondrial membrane,
intermembrane space, and outer mitochondrial membrane
(Friedman and Nunnari, 2014). Each membrane has a distinct
protein population (Porporato et al, 2018). Mitochondria are
energy-producing structures and play the major part for cells’
aerobic respiration (Bhandary et al., 2012). Thus, mitochondria
are called the “powerhouse of the cell” (Peixoto et al., 2010). They
play important roles in apoptosis regulation, cell signaling, and
energy metabolism in drug-induced cancer cell death and are thus
considered targets in cancer chemotherapy (Grad et al., 2001).
Many scholars have reviewed the development of
chemotherapeutic drugs for mitochondria in fighting cancer
(Costantini et al., 2000; Wen et al., 2013; Wu et al., 2018a).
Cancer cells have rapid proliferation and need more
mitochondria. Mitochondria play a vital role in the energy
metabolism and regulation of the cell cycle. It is also known
that mitochondria play an important role in triggering cell death
and complex apoptotic mechanisms through several mechanisms
which include release or activation of proteins, energy
metabolism, and disruption of electron transport (Hiendleder
et al., 1999; Waterhouse et al., 2001; Gulbins et al., 2003). MMP is
the critical point leading to programmed cell death. MMP is
under the control of the permeability transition pore complex

(mPTPC), which is a multiprotein complex that is formed at the
contact position between the inner membranes and outer
membranes of mitochondria. Apoptosis controls tissue
homeostasis, while inhibition of apoptosis helps in the
changeable process of normal cells to cancer cells (Costantini
et al., 2000). Most types of cancer are linked with the dysfunction
of apoptosis (Kaufmann and Gores, 2000; D’Souza and Weissig,
2004). Cancer cells are in favor of the glycolytic process even
under aerobic conditions for the source of ATP. Adaptations
often result in changing mitochondrial function which includes
mutations in mitochondrial DNA (mtDNA) (Carew and Huang,
2002). Thus, mitochondria are described as a “prime target” for
pharmacological intervention (Szewczyk and Wojtczak, 2002).

In Figure 2, the approach of selecting accumulation to
targeting tumor mitochondria was underlined, wherein a two-
step accumulation process is needed. The first one is intratumoral
drug accumulation, and the other is drug accumulation in
mitochondria (D’Souza et al., 2011).

Nanomaterials are good tools for diagnosis, targeted therapy,
and molecular imaging. Targeting, imaging, therapeutics, and
other multiple functionalities could be integrated into one
nanoparticle (Zhang et al., 2011). Nanocarriers such as
liposomes, micelles, and solid nanoparticles behave in a non-
chemical way to modify the disposition of drug molecules. A
nanocarrier system loaded with some drugs can afford targeted
delivery. Most of the nanocarriers can be additionally modified in
order to target to specific tissues or specific cells and afford cell-
specific recognition (Torchilin, 2007; Ganta et al., 2008; Mishra
et al,, 2010). Enhanced permeability and retention (EPR) effect
can help nanoparticles passively target the place of leaky
vasculatures (Hatakeyama et al, 2007; Ma et al, 2009;
Nallamothu et al., 2006). Nanocarriers can affect the drug
accumulation of tumor and mediate the accumulation of
mitochondria within tumor cells (D’Souza et al,, 2011). Thus,
mitochondria-targeted anticancer approaches can be used in
clinic. Nucleic acids, antioxidants, anticancer agents, and
proteins can be delivered into nanostructures through
mitochondrial targeting of cancer cells (Zhang et al, 2011).
Examples such as small-molecule-based nanosystems, peptide-
based nanosystems, and liposome-based nanosystems had been

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

November 2021 | Volume 9 | Article 784602


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Zeng et al.

Targeting Mitochondria for Anti-Tumor

Lipsome based nanosystem

Many range of morphologies

Ability to envelope

Compositions

Protect types of therapeutic biomolcculcs‘

Differential release character

Lack of immunologic response and low cost

Small molecule based nanosystem
Accumulate in mitochondria selectively

Induce enhanced cytotoxicity to cancer cells

Different types of
nanosystems have
been used for
mitochondria
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successfully used in mitochondrial targeting. These nanosystems
were widely used in targeting cancer cells, especially to the
mitochondria of cancer cells (Figure 3).

Based on mitochondria’s redox balancing, involvement in
bioenergetics, and regulation of several cell survival or death
pathways, it is reasonable to target the mitochondria for
therapeutic benefit (Ubah and Wallace, 2014). Mitochondria-
targeting drug delivery shows value in cancer treatment. The
interior negative mitochondrial transmembrane potential is
130-150 mV (Weissig and Torchilin, 2001). Through directly
attaching delocalized lipophilic cations to nanocarriers or drug
molecules, mitochondria-targeting drug delivery can be achieved
(Hu et al,, 2014).

Triphenylphosphonium  (TPP) always acts like a
mitochondrial targeting ligand and can be taken by the
mitochondrial membrane. It is a small molecule which can be
used primarily for mitochondrial targeting (Patil et al., 2019).
Although TPP is the most used mitochondrion tropic ligand and
is able to deliver cargos to the mitochondria, the targeted drug
delivery of TPP derivatives is limited due to its rapid clearance in
circulation (Mo et al., 2012; Marrache et al,, 2014; Yue et al,,
2016). A recent study showed that PEGylation is the most used
strategy and is responsible for nanoparticle stealth from the
reticuloendothelial system. It improved the stability and
resulted in an enhanced accumulation in tumor tissue via
improving EPR effect. However, PEGylation’s shielding effect
can prevent the cellular uptake of the NPs (Han et al, 2015).
Other small molecules such as guanidine, berberine, and
rhodamine can also target to mitochondria.

Ma et al. (2018) revealed that an interparticle plasmonic
coupling effect activated nanoevents which cause hyperthermia
in mitochondria to strike tumor cells selectively and not damage
adjacent normal cells. Avoiding damage to adjacent normal cells
is extremely important especially in brain tumor. This

mitochondria-templated accumulation strategy could provide
an effective model in striking tumor and protecting adjacent
normal tissue.

Lipophilic Cations-Based
Mitochondria-Targeted Nanocarriers

At the beginning of the 1960s, liposomes were discovered, and in
the 1970s they were proposed as a drug carrier system (Bangham
et al,, 1965a; Bangham et al., 1965b). Liposomes are currently
considered as the archetype of all pharmaceutical nanocarriers.
These nanovesicles can sequester lipophilic drugs in their
phospholipid bilayer membranes and hydrophilic drug
molecules in their aqueous inner space (Weissig, 2012).
Liposome-based systems have the ability to deliver agents to
the mitochondria and treat cancer. Using liposomes as a vehicle
has many advantages in drug delivery such as many ranges of
morphologies, ability to envelope, compositions, protection of
types of therapeutic biomolecules, differential release character,
lack of immunologic response, and low cost (Tros de Ilarduya
etal., 2010). Kawamura et al. (2020) developed the MITO-Porter
system which can be used to deliver genes, proteins, nucleic acids,
and small molecules to the mitochondria specifically through
membrane fusion.

Peptides-Based Mitochondria-Targeted

Nanocarriers

Because of ease of synthesis, size, low toxicity, and
biocompatibility, peptides have the potential of being
mitochondria-targeting ligands (Wu et al., 2018b). The peptide
should have optimum positive charge and hydrophobicity to
penetrate the mitochondrial membrane (Horton et al.,, 2008).
Three types of peptides are widely used in constructing
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FIGURE 4 | P-M-Dox overcomes multidrug resistance through simultaneous drug-efflux circumvention and mitochondrial targeting (Zhou et al., 2019).

mitochondria-targeting nanosystems, such as mitochondria-  found that chimeric peptides can encapsulate doxorubicin and
targeting signal peptides (MTSs), mitochondria-penetrating  target to tumor mitochondria in in vitro studies. DDS could
peptides (MPPs), and Szeto-Schiller (SS) (Qin et al., 2021). control the release of doxorubicin and help in PDT in

Zhou et al. (2019) synthesized Dox modified with  mitochondria. Although drug resistance is a big obstacle in
mitochondrial membrane-penetrating peptide (MPP) which is  traditional chemotherapy, the DDS strategy gave a new way to
combined with (HPMA) copolymers (P-M-Dox) and provided it overcome it.
as a promising way to deal with cancer which is drug-resistant by
drug efflux circumvention simultaneously and mitochondrial

delivery directly (Figure 4). MITOCHONDRIA-TARGETING
MTSs enter the mitochondrion through tightening the NANOSYSTEMS FOR CANCER THERAPY

mitochondrial import machinery on the outer mitochondrial . . .
membrane. However, MTSs are too insoluble to cross the Mitochondria-Targeted Nanocarriers
plasma membrane, limiting their intracellular applications  in PDT
(Wu et al, 2018b). Lindgren et al. (2000) combined cell- Compared with conventional therapeutic strategies for cancer
penetrating peptides (CPPs) and MTS to serve as cell-  treatment, PDT has characteristics of high selectivity, rapid
permeable mitochondrial targeting peptides which can deliver  action, and no severe side effects (Hilf, 2007; Yang et al,
agents. Lin et al. (2015) utilized MTS-CPP successfully for the ~ 2019). PDT is a safe treatment which relies on oxygen to
mitochondrial delivery of nucleic acids and proteins. produce cytotoxic ROS under visible light and photosensitizers
The SS peptide is made of four positively charged amino acids. ~ (PS) in cells (Castano et al., 2006). PS can combine together to
Due to the antioxidant effect of SS peptides, they can be carrier =~ induce cancer cell death (Jeena et al, 2019). Under light
components in treating mitochondria-related diseases (Dai et al.,  irradiation, PS can be excited and can transfer energy to
2011). The newly established amphiphilic mitochondria-  molecular oxygen to generate ROS. In the tumor
targeting chimeric peptide drug delivery system (DDS) can  microenvironment, oxygen (O,) can convert into singlet
overcome drug resistance (Han et al., 2016). Han et al. (2016) oxygen (*O,) and cause damage to cancer cells (Ethirajan
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etal, 2011). All these procedures occur in the area where the light
is irradiated particularly. Thus, PDT agents can cause less bad
effects than other conventional drugs.

However, there exists a barrier for PDT of behaving actively in
the cancer area. The tumor microenvironment is always hypoxic,
thus hampering the production of toxic singlet oxygen. Inhibition
of mitochondrial respiration can increase the production of intra-
mitochondrial oxygen, thus enhancing the efficiency of PDT.
Therefore, PDT becomes hotter if mitochondria are targeted
compared with subcellular targets or any other cells. PDT
agents can be modified with metal complexes which have
lipophilic cations, IR-780-based PS, or cyanine (Jeena et al,
2019). Combination of PS with cationic peptides is the most
common adopted method to direct the PS inside the
mitochondria of the cell.

Mitochondria-targeted PS behave with thousand times
efficacy than those localized in the extracellular matrix or the
cell membranes (Saneesh Babu et al., 2017). A hollow silica lattice
structure which was based on multistage DDS combined with
encapsulated catalase and chlorine e6 (Ce6) (a photosensitizing
agent) was utilized representatively (Yang et al., 2018). Combined
with programmed death-ligand 1 (PD-L1), this nanosystem can
improve PDT efficacy and enhance the infiltration of cytotoxic T
lymphocytes (CTLs) into tumors, indicating the metastasis of
cancer and potent inhibition. Glycolysis inhibition can lead to

compensatory activation of their oxidative phosphorylation in
cancer cells (Qin et al,, 2021). Cutting off the energy supply to
realize the simultaneous inhibition of both oxidative
phosphorylation and glycolysis is the most direct strategy for
cancer treatment.

Huo et al. (2019) established a system which consists of
photosensitizer ~ (Ce6)-encapsulated ~ mesoporous  silica
nanoparticles (MSNs) and W;30, nanoparticles (WONPs)
(Figure 5). The overexpressing cathepsin B cleaved peptide
linkers and can allow WONPs and MSNs to target the nucleus
and mitochondria in cancer cells, respectively. Then, laser
irradiation was applied in order to trigger PDT which was
mediated by Ce6 and WONPs. At last, this strategy could
damage both the nucleus and mitochondria, cutting off the

energy supply.

Mitochondria-Targeted Nanocarriers in
Chemotherapy

Chemotherapy is extraordinarily critical in systemic therapy of
cancer therapy. Chemotherapeutics such as doxorubicin (Dox),
cisplatin (Pt), and their combinations are commonly used in
cancer therapy (Zheng et al., 2014). However, chemotherapy has
its own shortcomings such as drug resistance of cancer cells, low-
targeting selectivity to malignant areas, and some adverse side
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effects to healthy tissues (Xue et al., 2012). Thus, it is significant to
circumvent obstacles and improve the efficiency of
chemotherapy. There are many nanosized chemotherapeutic
formulations, which include liposomes, polymeric micelles,
and albumin NPs which have been used in different stages of
clinical trial (Mehra et al., 2015). For example, Abraxane and
Doxil have been demonstrated to improve the patients’ safety and
decrease the toxic side effects.

Mitochondria-targeted anticancer agents can conjugate
mitochondria-targeting moieties, such as TPP, cationic
peptides, or pyridinjium, with anticancer drugs such as
doxorubicin, chlorambucil, cisplatin, and camptothecin (Jeena
et al., 2019).

TPP is known as a mitochondrial targeting ligand. Studies
showed that doxorubicin (Dox) and TPP-linked cisplatin (Pt) can
disrupt mitochondrial DNA (mtDNA), raising the levels of the
mitochondrial reactive oxygen species (mtROS) and leading to
mitochondrial dysfunction (Jin et al., 2018; Babak et al., 2019).
However, some anticancer effects cannot be achieved by
delivering traditional drugs to mitochondria (Luo et al., 2021).
Luo et al. (2021) reported new activatable mitochondria targeting
organoarsenic prodrugs by incorporating traditional DNA
targeting chemotherapy drugs with mitochondria-targeting
organoarsenicals through cleavable linkers for treating cancer
effectively (Figure 6). Under the help of the TPP-targeting group,
prodrugs can accumulate in the mitochondria selectively. The
prodrugs were able to release trivalent organoarsenicals and
chemotherapeutics upon reduction, leading to mitochondria-
mediated apoptosis in cancer (Luo et al., 2021).

Han et al. (2015) established a self-delivery system PpIX-PEG-
(KLAKLAK), which was designated as PPK. PPK has a high
drug loading ability and capacity in reactive oxygen species. The
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B 0
)/
Immature DC DC activation
l and maturation
by a combination
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D80, 86 necrotic cells
MHC
T cell - Tumor antige
activation ; , \3
‘\,»
Mature DC
FIGURE 7 | Mitochondria-targeted NPs act upon light activation inside
the mitochondria to produce ROS and cause cell death via apoptosis and
necrosis (Marrache et al., 2013).

in situ generation of reactive oxygen species in mitochondria
could enhance PDT efficacy through a long-time irradiation,
thus leading to cell death and decrease in mitochondrial
membrane potential. They demonstrated that PPK with a
dual-stage light irradiation can be a good nanoplatform to
treat cancer.
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Mitochondria-Targeted Nanocarriers in
Combined Immunotherapy

Immunotherapy can boost the protective immune responses and
emerge as a promising treatment in cancer (Topalian et al., 2015).
On the one hand, immunotherapy can harness the immune system
to achieve an anticancer effect. On the other hand, it engendered a
long-term memory effect and had characteristics of anti-relapse.
However, immunotherapy of cancer faces challenges of having low
tumor immunogenicity and an immunosuppressive tumor
microenvironment (Turley et al,, 2015). Dendritic cell (DC)-based
cancer immunotherapy was also limited by the low potency of
generating tumor antigen-specific T cell responses. Marrache et al.
(2013) demonstrated that mitochondria-targeted nanoparticle-based
light-activated breast cancer cell antigens have the potency of
stimulating DCs for cancer immunotherapy (Figure 7).

Mitochondrial antigen presentation was considered as a
reason for autoimmune disease development. Matheoud et al.
(2016) showed that Parkin and Pink 1 proteins are in adaptive
immune responses and demonstrated autoimmune mechanisms
to be possible which involved Parkinson disease (PD) antigen
presentation. This finding was the first to link a
neurodegenerative disease like PD to autoimmunity. Voo et al.
gave a mitochondrial immune target of CD4" T cells which
expanded from a melanoma patient. By high-dose IL-2 from
this patient, the tumor-infiltrating T cells can be expanded,
demonstrating a peptide which translated from another open
reading frame of the mitochondrial cytochrome b (cytb) (Yang
et al., 2014). Pierini et al. established a cancer vaccine which was
based on using aberrant mitochondrial protein and isolating it
from the tumor as an important immunotherapeutic strategy
(Yang et al., 2014; Pierini et al., 2015). It was the first vaccine
which based on mtDNA-mutated peptides and derived from
tumor cells that induced an immune response.

All these studies indicated cancer patients who bear mutations
in mitochondrial DNA. Tumor-associated mitochondrial
antigens meet the criteria of an ideal tumor-associated antigen
(Pustylnikov et al., 2018). The implementation of the immune
system as the mechanism in targeting unhealthy mitochondria
within cancer cells attracts researchers’ interest.

Mitochondria-Targeted Nanocarriers in

sonodynamic Therapy

Sonodynamic therapy (SDT) is an excellent treatment for
cancer; it utilizes ultrasound (US) irradiation and
sonosensitizers to damage cancer cells (Qian et al., 2016; Pan
etal, 2018; Zhu et al., 2018b). SDT is able to target the zones of
lesion precisely and thus will not damage surrounding normal
tissues at the same time (Qian et al., 2016; Pan et al., 2018; Zhu
et al, 2018b). Ultrasound is a cheap method with a non-
radioactive stimulus mechanical wave and has mini-
invasiveness and deep penetration of tissue. Sonosensitizers
can transfer energy upon a high-energy input to oxygen
molecules and then generate reactive oxygen species (ROS)
subsequently, leading to further cytotoxicity for therapeutic
purposes (Chen et al,, 2014). What is more, US can directly
induce cancer cell apoptosis itself (Qian et al., 2016).

Targeting Mitochondria for Anti-Tumor

FIGURE 8 | As-synthesized US-responsive NDs for efficient SDT which
include deep penetration, tumor cell- or mitochondria-targeting ability, ADV,
and guidance or monitoring by multimodal (US, PA, and FL) imaging (Zhang
et al., 2019).

In cancer therapy, one of the most difficult concerns for
nanomedicine is the accumulation of nanovesicles and
selective localization in the tumor area (Kim et al.,, 2018; Mura
et al., 2013). The critical part of the process is the diffusion of
nanovesicles from the surface of cancer areas which could be
reached from blood vessels to poorly perfused inside core areas
(Mura et al.,, 2013; Wong et al., 2011; Liu et al., 2015; Kim et al,,
2018). Nanoparticles with size up to 400 nm accumulate in
tumors passively through an EPR effect, resulting from the
specific leaky structure of tumor vasculature (Bae and Park,
2011; Chauhan et al., 2012).

Ultrasound combined with drug-loaded microbubbles (MBs)
has been studied for improving drug delivery efficiency (Chertok
etal.,, 2016; Ho and Yeh, 2017). It was found that MBs had a short
lifespan in vivo, thus restricting the duration of therapeutic effects
(Ho and Yeh, 2017). Upon ultrasound irradiation, acoustic
nanodroplets (NDs) with liquid cores can transform into MBs.
This process is called acoustic droplet vaporization (ADV),
creating a non-demand production of MBs, vascular disruption,
and tissue erosion (Kagan et al., 2012; Mura et al., 2013; Ho and
Yeh, 2017). Some ligands for active targeting can be integrated into
nanovesicles and can help improve the therapeutic efficacy of
cancer cells (Zhao et al.,, 2018; Zhu et al., 2018a). Mitochondria-
targeting drugs can explore the susceptibility of mitochondria to
ROS (Li et al,, 2013; Yang et al., 2016; Zielonka et al., 2017; Wang
et al,, 2018). PDT demonstrated successfully in some preliminary
works, as shown in previous studies (Jung et al., 2017; Noh et al.,
2018). Thus, SDT is also believed to be effective when including
mitochondria-targeted sensitizers (Shimamura et al.,, 2016).
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Zhang et al. (2019) found that IR780-NDs which were US-
activated NDs with a core/shell structure were constructed with
enhancing deep penetration mitochondrial targeting and for SDT
with concurrent FL/US/PA imaging guidance. The NDs
accumulate in the area of cancer from the circulation system of
blood through the EPR effect. Because of the susceptibility of
mitochondria toward ROS, the inherent mitochondria-targeting
capability can further increase the ROS cytotoxicity during the SDT
process. Through US irradiation, ADV occurs, that is, acoustic
NDs transfer into MBs. ADV induces tissue erosion and vascular
disruption, thus allowing much more droplets to leave the systemic
circulation and enter the tumor stroma, then penetrate into the
inner tissues, which are farther from the blood vessels. Loading
with IR780, the diffusion of NDs to deeper tumor could be assisted.
Therefore, IR780-NDs combined with is a promising theranostic
nanoplatform for cancer therapy (Figure 8) (Zhang et al., 2019).

CONCLUSION AND PERSPECTIVES

Mitochondria are essential organelles for ATP generation and are
the center of cell death regulation. The functions between normal
cells and cancer cells of mitochondria are different. Thus, it may
offer the potential for designing anticancer agents which can
deliver mitochondrial targeting drugs to kill cancer cells
selectively. Targeting the mitochondrial delivery of anticancer
drugs plays an important role in diseases in recent decades.
Cancer stem cells have unique characteristics which make
them much vulnerable to mitochondria-targeting drugs like
some natural compounds. Thus, identifying mitochondria-
targeting drugs from various natural substances presents a
promising way for further research.

Nanostructures have the potential for delivering drugs;
however, due to various biological barriers of nanomedicines,
clinical applications are in the early stage and the efficacy is
limited. The combination of nanostructure or stimulus
responsiveness with a desired mitochondria-targeted drug-free
strategy can greatly enhance the efficacy in treating cancer. Here
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