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Reactive oxygen species (ROS) are critical mediators in many physiological processes
including innate and adaptive immunity, making the modulation of ROS level a powerful
strategy to augment anticancer immunity. However, current evidences suggest the
necessity of a deeper understanding of their multiple roles, which may vary with their
concentration, location and the immune microenvironment they are in. Here, we have
reviewed the reported effects of ROS on macrophage polarization, immune checkpoint
blocking (ICB) therapy, T cell activation and expansion, as well as the induction of
immunogenic cell death. A majority of reports are indicating detrimental effects of
ROS, but it is unadvisable to simply scavenge them because of their pleiotropic effects
in most occasions (except in T cell activation and expansion where ROS are generally
undesirable). Therefore, clinical success will need a clearer illustration of their multi-faced
functions, as well as more advanced technologies to tune ROS level with high
spatiotemporal control and species-specificity. With such progresses, the efficacy of
current immunotherapies will be greatly improved by combining with ROS-targeted
therapies.
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INTRODUCTION

Reactive oxygen species (ROS) are a class of highly reactive oxygen-derived chemicals, including
hydroxyl radical (·OH), singlet oxygen (1O2), superoxide anion (O2

·−), and peroxides. A group of
biological reactions, with the oxidative metabolisms within mitochondria being a major source, can
generate ROS in human body. Despite being byproducts in many occasions, ROS at suitable
concentrations and locations are vital messengers in cellular signaling and can trigger important
biosynthetic processes such as the crosslinking of extracellular matrix (Schieber and Chandel, 2014;
Zhou et al., 2020). On the other hand, given the high reactivity of ROS that can be harmful to protein,
DNA, and lipids, an antioxidant system has been built to maintain the homeostasis of ROS
generation and elimination (Yu et al., 2020). Under pathological conditions, the delicate balance
will be disturbed and usually lead to ROS accumulation and oxidative stress (Aggarwal et al., 2019).
In oncology, evidence has linked the increased ROS level with cancer initiation, progression,
angiogenesis, and metastasis (Moldogazieva et al., 2018), making ROS elimination a promising
strategy for controlling the disease (Zheng et al., 2021). Paradoxically, ROS can also be beneficial for
tumor suppression. For example, the expression of many tumor suppressor genes (e.g., p53) is
controlled by ROS (Liu et al., 2008; Perillo et al., 2020); many drugs including chemotherapeutic and
radiotherapeutic agents kill cancer cells by elevating ROS level; (Ji et al., 2021; Perillo et al., 2020) etc.
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Cancer immunotherapy strengthens one’s own immune
system to recognize and attack tumor cells. The last decade
has witnessed the rapid development of immunotherapy with
tens of different therapeutics at various treatment modalities been
approved by regulatory administrations for clinical use (Smyth
et al., 2016; Waldman et al., 2020; Yang et al., 2021). Interestingly,
ROS play multiple roles in immunity and can be explored as
potent targets to augment the magnitude and specificity of
antitumor response (Kotsafti et al., 2020). A large number of
studies have reported the benefits of ROS in anticancer immunity;
however, the paradox still exists. The often-encountered
immunosuppression, such as the attenuated T cell activation
and activity (Qu et al., 2013), raises a necessity for researchers
to build a clearer illustration about which role will ROS play
under a given condition. This review summarizes recent studies
reporting ROS-mediated enhancement or attenuation of
antitumor immunity, with an expectation of providing basic
rationales for improved immunotherapy.

INTERLACING ROLES OF ROS IN
IMMUNOTHERAPY

Among the multiple fields ROS are functioning, the following
four are of particular significance.

Macrophage Polarization
Macrophages play critical roles in tissue homeostasis by
regulating tissue development, mediating inflammatory
responses and clearing pathogens and cell debris (DeNardo
and Ruffell, 2019; Zheng et al., 2021). They are inducible in
function, with the classically activated M1 type exerting pro-
inflammatory and antitumor activities while the M2 type
functioning basically the opposite (Mills et al., 2016).
Local ROS concentration has an obvious influence on the
polarization of macrophages, and based on current evidences
ROS may induce pro-inflammatory macrophages more
dominantly than doing the opposite. They can activate

nuclear factor κB (NFκB) and p38 mitogen-activated
protein kinase (MAPK) signaling pathways and promote
the expression of M1-associated pro-inflammatory
cytokines and chemokines (Rendra, et al., 2019). This
mechanism is widely accepted in innate immunity and has
also been reported to augment the antitumor immunity. For
example, iron overload, which rapidly induced ROS
production, polarized macrophages to pro-inflammatory
phenotype, enhanced the activity of p300/CBP
acetyltransferase and improved p53 acetylation (Zhou
et al., 2018). However, other studies indicated the M2-
promoting function of ROS. Typical studies involving
diverse M2-promiting mechanisms have been summarized
in Table 1.

Therefore, ROS can induce the differentiation of macrophages
to both M1 and M2 types, raising uncertainty for the direction of
ROS modulation (Rendra et al., 2019; Zhou et al., 2020). What
further complicates the situation is that factors inducing M1
polarization may not provide benefits for cancer suppression. For
example, it was shown that black raspberries, which served as an
antioxidant, reduced the incidence of esophageal cancer by
suppressing oxidative stress and NFκB/MAPK signaling (Shi,
et al., 2017). Given the presence of pathways that lead to
contrary results, it can be envisioned that ROS may
simultaneously exert opposite influences on macrophages, and
the ultimate impact may depend on ROS concentration
(including the relative concentration of different species),
location and their interaction with therapeutic agents. It is
noteworthy that besides M1/M2 polarization, ROS influence
macrophages in many other aspects. Roux et al. showed that
ROS mediated the immunosuppression effect of macrophages by
up-regulating the expression of programmed death ligand-1 (PD-
L1) (Roux et al., 2019). When treated with ROS inducers such as
paclitaxel, PD-L1 expression was up-regulated on the surface of
tumor-associated (TAMs) in a mouse model of triple negative
breast cancer, via the activation of NFκB signaling. Note that both
M1 andM2 signatures positively correlated with the expression of
PD-L1.

TABLE 1 | Representative studies reporting the ROS-promoted M2 polarization of macrophages.

Model Tested markers ROS modulation Mechanisms
of M2 polarization

References

Mouse bone marrow-derived
macrophages

M1: CD86, TNF-α, IL-12; M2:
IL-10, CCL17/18/24

O2
•− increment by NOX; elimination

by BHA
ROS induce late-phase activation of ERK
signaling

Zhang, et al.
(2013)

Mouse RAW 264.7
macrophages

M1: CD11b; M2: CD206,
Arg-1

mtROS; reduction by antioxidant Antioxidant reduce M2 type via ROS/ERK
and mTOR pathway

Shan, et al.
(2017)

Primary human macrophages M1: TNF-α, IL12b; M2:
CD163, CD206

Increased via H2O2 addition;
reduced using MnTe

Presumably induce Stat3 activation for M2
polarization

Griess, et al.
(2020)

Monocytes in human peripheral
blood mononuclear cells

M1: not tested; M2: CD163,
CD206

Increment via CAF stimulation;
reduction by BHA

Not directly tested Zhang, et al.
(2017)

Mouse bone marrow-derived
macrophages

M1: IL-6; M2: Arg-1, Mrc1,
IL-10, Ym2, Fizz1

mtROS increment via GMFG
knockdown; reduction by
antioxidant

Increased mtROS presumably alters iron
metabolism-related protein expression

Aerbajinai, et al.
(2019)

Murine peritoneal macrophage M1: IL-6, TNF-α, IL-1β; M2:
Arg-1, Ym1, Fizz1-Relm-α

MCPIP-stimulated ROS production ROS induced ER stress and autophagy to
increase M2 markers

Kapoor, et al.
(2015)

NOX: NADPH, oxidase; Arg-1: arginase-1; mtROS: mitochondria ROS; mTOR: mammalian target of rapamycin; MnTe: MnTE-2-PyP5+; Stat3: signal transducer and activator of
transcription 3; CAF: cancer-associated fibroblasts; GMFG: glia maturation factor-λ; MCPIP: MCP-1-induced protein.
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Efficacy of Immune Checkpoint Blockades
Using monoclonal antibodies to block the immune checkpoint-
mediated immune escape has been one of the most promising
strategy for tumor control (Havel et al., 2019). The immune
microenvironment exerts a great influence on the treatment
efficacy, while ROS serve as critical mediators. A large number
of studies have shown that ROS generation would lead to
augmented expression of the programmed death-ligand 1 (PD-
L1) on cancer cells. A straight forward mechanism is that ROS
elevation leads to the upregulation or stabilization of multiple
transcription factors such as NFκB and HIF-1α, while NFκB
initiates PD-L1 expression by binding to the PD-L1 promoter
(Guo et al., 2019), and HIF-1α directly binds to a transcriptionally
active hypoxia-response element in the PD-L1 proximal
promoter (Noman et al., 2014). Note that hypoxia-induced
HIF-1α activation can either elevate ROS level via NOX or
reduce ROS by inhibiting the tricarboxylic acid cycle (Chen
et al., 2018). There are also studies reporting enhanced ROS
generation with reduced PD-L1 expression or vice versa, as
summarized in a review article (Bailly, 2020). Nevertheless, in
most occasions the PD-L1 expression is positively correlated with
ROS level, as demonstrated by using a large variety of ROS-
modulating small molecules and human oncoviruses (Montani,
et al., 2018). Meanwhile, the role macrophage plays in the
connection between ROS and PD-L1 expression is worth
noting. ROS is a critical mediator of macrophage polarization,
while PD-L1 high expression has been found to be correlated with
M2-polarization of macrophages (Zhu, et al., 2020). Therefore,
skewing the M1/M2 balance of macrophages may be a potential
route by which ROS modulate PD-L1 expression.

ROS also have an impact on programmed death-1 (PD-1)
blocking therapy at least due to the ligand/receptor relationship of
PD-L1/PD-1. Chamoto et al. reported that tumor-reactive T cells
boosted by PD-L1 blockade possessed activated mitochondria
with augmented ROS production, and improving ROS generation
using ROS precursors or mitochondrial uncouplers synergized
the antitumor activity of PD-1 blockade by expansion of effector/
memory cytotoxic T cells in draining lymph nodes (Chamoto
et al., 2017). Amore recent study reported similar results, that in a
“bilateral tumor model”, ROS increment in CD8+ T cells was
observed only in tumors that were responsive to PD-1 blockade
therapy (Kumar et al., 2020). Therefore, ROS level in tumoral and
lymphatic cells might be a potential indicator of the
responsiveness to PD-1/PD-L1 blockade therapy, especially
considering that the expression of immune checkpoints has
been accepted as a tumor-intrinsic sign of the vulnerability of
tumors to ICB therapy (Zappasodi et al., 2018).

Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is a
vital regulator of T cell function. Studies directly exploring the
effect of ROS on CTLA-4 therapy are rare to the best of our
knowledge, but ROS have an obvious influence on the
development of T regulatory cells (Tregs), on which CTLA-4
is constitutively expressed (Walker 2013). The effects are still
multi-faced. For example, macrophage-generated ROS were
functional for the induction of Tregs (Kraaij et al., 2010),
while neutrophil cytosolic factor 1-deficient mice with a lower
level of ROS also carried Tregs more reactive than those fromwild

mice (Kim et al., 2014). Obviously, the expansion of CTLA-4
blocking therapy warrants further studies on the effects of ROS.

T Cell Activation and Expansion
Activation of T cells, as the pivotal step in cellular immunity,
relies on the binding with main histocompatibility complex, the
stimulation by co-stimulatory molecules on antigen-presenting
cells, and a suitable biochemical environment that allows these
processes to happen. ROS have a great influence on T cell
activation. An example is that the local number and
phenotype of macrophages, which often function as antigen
presenting cells, can be re-/programmed by ROS as described
above. Another aspect is the ROS-tuned expression of immune
checkpoint molecules on immune cells and cancer cells. More
directly, ROS can create an oxidative environment to inactivate
T cells. It was reported that the redox level on cell surface
physically determines the reactivity of T cells (Sahaf et al.,
2003). Researchers found that mice were more susceptible to
develop severe arthritis if ROS production was diminished, and
then revealed that lower ROS level would increase the number of
reduced thiol groups on T cell membrane surface and make
T cells more prone to be activated (Gelderman et al., 2006). This is
a necessary mechanism to prevent the over-activation of T cells in
inflammatory sites, while for cancer treatment this is commonly
undesirable (Moro-Garcia et al., 2018; Yin et al., 2021). Artificially
increasing cell surface thiol by adding antioxidants (e.g.,
glutathione, GSH) or reducing ROS generation has been
employed to increase the sensitivity of T cells to stimulatory
signals (Kesarwani, et al., 2013).

Efficient expansion of tumor-specific T cells upon activation is
necessary in cell therapy, and the failure to do so has been a major
limitation for adoptive cell therapy to achieve broader
application. It was shown that the persistence of effector CD8+

T cells and CD62Lhi central memory T cells were obviously longer
if the cytosolic GSH and surface thiol were higher (Kesarwani
et al., 2015), while GSH depletion prevented T cell proliferation
despite the stimulation using antigens (Mak et al., 2017).
Pretreatment with antioxidant N-acetyl cysteine (NAC) during
ex vivo T cell expansion process significantly improved the
persistence of adoptively transferred cells and led to more
effective tumor control in a mouse model of melanoma
(Scheffel et al., 2016). The underlying mechanism was revealed
to be reduction in DNA damage by reducing ROS and the
resultant reduced activation-induced cell death (an
immunosuppressive process known to be induced by repeated
stimulation of T cell receptor) of T cells in the presence of NAC
(Scheffel et al., 2016). All these evidence suggests the necessity of
adding antioxidants to the culture media of therapeutic T cell
survival and expansion. Note that both GSH and NAC contain
thiol groups as potent reducingmoiety to scavenge electrons from
highly reactive molecules, e.g., to consume ROS.

Immunogenic Cell Death
Cancer develops with mutations, resulting in the emergence of
abundant neoepitopes (sequence-altered nucleic acids and
proteins) that are foreign to host’s immune system. Immune
responses induced by a specific neoepitope may fail to damage
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tumor cells that do not contain this neoepitope, while
immunogenic cell death (ICD), which is featured by the
release of tumor-associated antigens and danger-associated
molecular patterns, will provide a full spectrum of neoepitopes
to eliminate immune escape caused by tumor heterogeneity. ROS
generally have an inducing effect to ICD occurrence. The
induction of endoplasmic reticulum (ER) stress, surface
exposure of calreticulin, and secretion of adenosine
triphosphate (ATP), high-mobility group box 1 (HMGB1) and
heat shock protein 70 (HSP70) are requisites for ICD (Bugaut
et al., 2013; Van Loenhout et al., 2020), while many of these
processes can be triggered by ROS. An example is that bleomycin
(an anticancer drug relying on its ability to generate ROS)
induced ER stress and autophagy, which then led to
calreticulin exposure and release of HMGB1 and ATP to
trigger ICD (Bugaut et al., 2013). Actually, many
chemotherapeutic small molecules known to kill cancer cells
via ROS generation are undergoing clinical trials as ICD
inducers beyond chemo drugs, such as doxorubicin,
bortezomib, and epirubicin (Vanmeerbeek et al., 2020). Other
kinds of agents are also under exploration. For example, a
fluorinated mitochondria-disrupting helical polypeptides,
which could destabilize mitochondrial outer membrane, was
developed to over-produce intracellular ROS (iROS), induce
ICD and enhance PD-L1 blockade therapy (Jeong et al., 2021).

Particularly, a number of treatment modalities have intrinsic
capability to induce ICD by producing ROS or other critical
stimulators. 1) Photodynamic therapy (PDT), which kills cancer
cells by generating abundant ROS with the assistance of
photosensitizers and light irradiation, can induce ICD and
antitumor immunity (Panzarini et al., 2013). Cellular
internalization of photosensitizers causes high iROS level and
ER stress especially when photosensitizers localizes near the ER.
Using a ER-associated photosensitizer, hypericin, Garg et al.
found that PDT generated obvious ER stress, and caused
cancer cells to secrete ATP, display damage-associated
molecular patterns on cell surface and undergo immunogenic
apoptosis (Garg et al., 2012; Garg et al., 2012). The display of
calreticulin was crucial by providing the motifs needed for the
engulfment of PDT-treated cells by dendritic cells (Garg et al.,
2012). Using other photosensitizers other than hypericin failed to
induce the exposure of calreticulin on cell surface (Garg et al.,
2012), suggesting the necessity of choosing suitable
photosensitizers or choosing suitable drug carriers to afford
enhanced affinity to ER. 2) Sonodynamic therapy is similar
with PDT but employs ultrasound as the energy source (Li
et al., 2021), and has been reported to elicit ICD. For instance,
a nanocomposite loaded with chlorin e6 (as a sonosensitizer)
induced ICD via receptor-interacting protein kinase
3–dependent cell necroptosis (Um et al., 2020). 3)
Radiotherapy produces ROS via radiolysis and induce ICD,
although the break of double-strand DNA was previously
considered as the primary mechanism of tumor suppression in
radiotherapy. Actually, ICD-mediated antitumor immunity has
been recognized as the origin of abscopal effect in radiotherapy.

There are also studies reporting obvious inhibition of ICD-
induced immune response by elevated ROS. Kazama et al.

reported that ROS would neutralize the stimulatory capacity of
dying cells (Kazama et al., 2008). The results showed that caspase
activation against mitochondria promoted immune tolerance of
apoptotic cells by generating ROS to oxidize the HMGB1
(Kazama et al., 2008). HMGB1 potently act on dendritic cells
to stimulate immunity (Dumitriu et al., 2005), so its inactivation
promotes immune tolerance. Using a ROS scavenger to consume
extracellular ROS (eROS) enhanced the stimulatory effect of
dying cells by avoiding the oxidation of HMGB1 (Deng et al.,
2020). Therefore, as depicted in Figure 1, there might be a need to
induce ER stress via iROS and simultaneously eliminate eROS to
avoid the oxidization of the exposed calreticulin and the released
stimulatory molecules.

CONCLUSIONS AND PERSPECTIVES

ROS are continuously generated in a large variety of biochemical
reactions. Although a majority of studies are linking them to
disease states such as insulin resistance, inflammation, and
cancer, ROS play important roles in immune responses. This
warrants a very clear understanding of the multi-faced but
tunable roles of ROS. There may be more studies reporting
detrimental effects of ROS on antitumor immunity than those
indicating beneficial effects, since they can drive macrophages to
polarize to immunosuppressive types, promote the expression of
PD-L1, attenuate the efficacy of ICB therapy, deactivate T cells
and inhibit the occurrence of ICD. However, it is not wise to
simply scavenge ROS because they have pleiotropic effects in
most cases, and also because the detrimental/beneficial switch can
be easily shifted by modulating ROS concentration, location,
species, and the scenarios they are in. For example, ROS can
increase the expression of PD-L1, but it is unachievable to
eliminate PD-L1 by scavenging ROS and doing so will greatly
attenuate the immuno-stimulatory effects of ROS and cause
redox imbalance-related adverse effects. Therefore, clinical
application of directly tuning ROS level still has a long way to go.

Meanwhile, most of the reported works have studied ROS as a
whole without distinguishing their species, possibly due to the
limited specificity of detection probes (e.g., 2’,7’-
dichlorodihydrofluorescein) to ROS species (which include
·OH, O2

·− and H2O2). Free radicals (·OH and O2
·−) can readily

trigger chain reactions and produce various carbon-centered
radicals, while H2O2 are relatively long-lived and inactive
compared with free radicals and commonly exert oxidative
capability with the assistance of metal ions such as iron and
copper. Such a chemical basis provides a good reason to consider
that different species will cause varied magnitude of oxidative
stress and mediate distinct signaling pathways (Collin, 2019). The
location of the studied ROS is another parameter being important
but easily ignored. For example, ROS-producing nanomaterials
are widely employed to treat cancer, while the main location (e.g.,
intracellular or extracellular; intra-lysosomal or intracytoplasmic)
is hard to determine since the cellular internalization rate and
lysosomal escape efficiency of nanomaterials are difficult to
quantify. In this context, choosing biomaterials as ROS
inducers with well-defined pharmacokinetics will help. With
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the building of such theoretical rationales and technical
capabilities, ROS-targeted therapy will eventually synergize
with current immunotherapies.
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