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Comprehensive monitoring of performance is essential for swimmers and swimming
coaches to optimize the training. Regardless of the swimming technique, the swimmer
passes various swimming phases from wall to wall, including a dive into the water or wall
push-off, then glide and strokes preparation and finally, swimming up to the turn. The
coach focuses on improving the performance of the swimmer in each of these phases. The
purpose of this study was to assess the potential of using a sacrum-worn inertial
measurement unit (IMU) for performance evaluation in each swimming phase (wall
push-off, glide, stroke preparation and swimming) of elite swimmers in four main
swimming techniques (i.e. front crawl, breaststroke, butterfly and backstroke).
Nineteen swimmers were asked to wear a sacrum IMU and swim four one-way 25m
trials in each technique, attached to a tethered speedometer and filmed by cameras in the
whole lap as reference systems. Based on the literature, several goal metrics were
extracted from the instantaneous velocity (e.g. average velocity per stroke cycle) and
displacement (e.g. time to reach 15m from the wall) data from a tethered speedometer for
the swimming phases, each one representing the goodness of swimmer’s performance.
Following a novel approach, that starts from swimming bout detection and continues until
detecting the swimming phases, the IMU kinematic variables in each swimming phase
were extracted. The highly associated variables with the corresponding goal metrics were
detected by LASSO (least absolute shrinkage and selection operator) variable selection
and used for estimating the goal metrics with a linear regression model. The selected
kinematic variables were relevant to the motion characteristics of each phase (e.g.
selection of propulsion-related variables in wall push-off phase), providing more
interpretability to the model. The estimation reached a determination coefficient (R2)
value more than 0.75 and a relative RMSE less than 10% for most goal metrics in all
swimming techniques. The results show that a single sacrum IMU can provide a wide
range of performance-related swimming kinematic variables, useful for performance
evaluation in four main swimming techniques.
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INTRODUCTION

Swimming coaches seek comprehensive monitoring of
performance to develop and refine a competition model for
their top athletes. During a competition, the swimmer goes
through several swimming phases from wall to wall, including
a dive into the water or wall push-off, then glide and strokes
preparation and finally swimming up to the turn at the end of the
lap and repeating the same sequence in the next lap. Therefore, to
have a comprehensive performance evaluation, studies have
focused on various swimming phases, since the swimmers aim
to master all of them (Mooney et al., 2016). As the principal goal
of a swimmer is to reduce the swimming time by increasing the
velocity, performance evaluation goal metrics in different phases
are based on time records and velocity. Flight distance (Ruschel
et al., 2007), time to 15 m (Vantorre et al., 2010), average velocity
per stroke (Dadashi et al., 2015), swimming phase average
velocity (Mason and Cossor, 2000), turn time (5 m before to
10 m after the wall) (Mooney et al., 2016) or lap time are examples
of common goal metrics.

Recently, wearable IMUs (inertial measurement unit) have
been used more for swimming motion analysis in all competitive
swimming techniques (Guignard et al., 2017b), because of the
challenges of video-based systems application in aquatic
environments (Callaway et al., 2010). They are used in a
multitude of studies for variable extraction in various
swimming phases, such as start (Vantorre et al., 2014),
swimming (Davey et al., 2008), and turn (Slawson et al.,
2012). Novel orientation analysis algorithms made it possible
to estimate the 3-dimensional orientation of IMU with high
accuracy by fusing accelerometer, gyroscope and
magnetometer data (Madgwick et al., 2011). This approach is
implemented in swimming for inter-segmental coordination
assessment (Guignard et al., 2017a), posture recognition
(Wang et al., 2019) and intra-stroke velocity (Worsey et al.,
2018). In another study, a new analysis approach is proposed
and trunk elevation, body balance, and body rotation are used as
new indices for swimming analysis (Félix et al., 2019; Morouço
et al., 2020). Considering the significance of phase related
kinematic variables, we have recently proposed a macro-micro
approach for swimming analysis using IMUs (Hamidi Rad et al.,
2021). In our approach, swimming bouts, laps and swimming
technique are detected in macro analysis. Afterwards in micro
level, each lap is segmented into swimming phases of wall push-
off (Push), glide (Glid), strokes preparation (StPr), swimming
(Swim) and turn (Turn) from wall to wall. In the next level of
micro analysis, the kinematic variables within each swimming
phase (micro variables) are extracted from IMU data.

These studies show there is still a substantial undiscovered
potential for kinematic variable extraction with IMUs in
swimming analysis. However, the association between the
swimming kinematic variables extracted by IMU and the
above-mentioned goal metrics is still unclear. Furthermore, as
the variables provided by the IMU are claimed to be associated
with the swimmers’ performance, they can be used for estimating
the goal metrics of performance evaluation. As a result, the
relationship between IMU kinematic variables and goal

metrics is yet to be studied to prove IMU potential not only
for swimming kinematic variable extraction, but also for
performance evaluation and training optimization.

The main objective of this study is to find the association
between swimming kinematics extracted using a sacrum-worn
IMU and goal metrics in different swimming phases. We
hypothesized that the micro variables extracted from IMU
data are associated with the goal metrics used for performance
evaluation, regardless of the swimming technique. Following the
macro-micro approach for swimming analysis (Hamidi Rad et al.,
2021), within each swimming phase (Push, Glid, StPr and Swim),
we selected the kinematic variables that are highly associated with
goal metrics. We then used the selected kinematics to estimate the
goal metrics. Using the underlying model we can explains how
kinematics determine the performance.

MATERIALS AND METHODS

Measurement Setup and Protocol
Nineteen elite swimmers took part in this study, whose attributes
are shown in Table 1. They were informed of the procedure and
gave their written consent prior to participation. This study was
approved by the EPFL human research ethics committee (HREC,
No: 050/2018). One IMU (Physilog® IV, GaitUp, CH.) was
attached to swimmer’s sacrum, using waterproof band
(Tegaderm, 3M Co., USA). The sensor contained a 3D
gyroscope (±2000 °/s) and 3D accelerometer (±16 g), with a
sampling rate of 500 Hz (Figure 1). A functional calibration
was performed after sensor installation with simple movements
in land (upright standing and squats) before the measurement to
make the data independent of sensor placement on swimmer’s
body (Dadashi et al., 2013). During the measurements, the
swimmers were asked to perform four one-way trials in each
swimming technique (i.e. front crawl, breaststroke, butterfly,
backstroke) with a progressive velocity (70–100%) in a 25 m
indoor pool, starting with wall push-off inside water. The trials
were separated with 1-min rests, and the total duration of the
measurement was around 1 hour per swimmer.

Two systems were used as references in our study to validate
the goal metrics estimated by the IMU. The first one was a set of
four 2-D cameras (GoPro Hero 7 Black, GoPro Inc., US) used for
detecting the swimming phases. The cameras synchronized with
the IMU, using the LED light of a push-button (Hamidi Rad et al.,
2021) were attached to the pool wall (distributed along the length
of the pool) to videotape all the lap from wall to wall underwater
with a 60 Hz rate (Figure 1). The second reference system was a
tethered speedometer (SpeedRT®, ApLab, Rome, Italy), attached
with a belt to the waist of the swimmer. The speedometer
calculated the displacement and velocity of the swimmer at a
rate of 100 Hz and was used for finding the reference values of
goal metrics in different swimming phases. As the speedometer
was installed on the starting block above the swimmer’s level, it
caused a parallax problem (Le Sage et al., 2011). Since the device
level difference with respect to the still pool water was known
(62 ± 1 cm), the velocity projection along the swimming direction
was separated as the forward velocity of the swimmer.
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Performance Evaluation
The general flowchart for performance evaluation is outlined in
Figure 2. The algorithm includes three parts: 1) IMU data
preparation 2) phase detection and phase-based micro
variables extraction, 3) kinematic variable selection and goal
metrics estimation. IMU data preparation aims to transfer the
data to the global frame to achieve the true motion data of
swimmer’s sacrum. Then we divided each lap into four phases of
Push, Glid, StPr and Swim by camera or IMU (Hamidi Rad et al.,
2021). In order to observe the error induced by IMU-based phase
detection, the rest of the analysis was done once with swimming

phases detected by cameras and once by the IMU for comparison,
the results of which are illustrated in supplementary materials.
Using the data in global frame (acceleration (AccX, AccY, AccZ),
angular velocity (GyrX, GyrY, GyrZ) and orientation (Roll,
Pitch, Yaw)) within the detected phases, we extracted the
micro variables of each phase.

In the third part of this approach, we used the extracted
phase-based micro variables to estimate the goal metrics.
First, LASSO (least absolute shrinkage and selection
operator) variable selection is used to rank and select the
micro variables with higher importance (Fonti and Belitser,

TABLE 1 | Statistics of the study participants. All variables are presented as mean ± standard deviation. Record50m is the average and standard deviation of 50 m record of
the swimmers separately for each swimming technique.

Male Female Age (yrs) Height (cm) Weight (kg) Record50m (s)

9 10 19.5 ± 2.7 177.5 ± 7.5 67.9 ± 8.3 Front crawl 25.85 ± 1.65
Breaststroke 34.76 ± 3.87
Butterfly 28.55 ± 2.47
Backstroke 30.19 ± 1.88

FIGURE 1 |Measurement setup including one IMU attached to the sacrum, four cameras to capture the whole lap and tethered speedometer to record swimmer’s
displacement and velocity. IMU data is transferred from sensor frame (x,y,z)S, first to anatomical frame (x,y,z)A using functional calibration (I), and then to the global frame
(X,Y,Z)G using the gradient-descend based optimization algorithm (II). The global axes of acceleration, angular velocity and angles are displayed in the figure.

FIGURE 2 | Flowchart of the performance evaluation algorithm. IMU data preparation including IMU calibration and expressing data in the global frame (left), phase
detection by cameras (CAM) or IMU calibrated data and micro variable extraction from IMU data in global frame (middle) and variable selection frommicro variables and
the goal metrics estimation (right). The actual goal metrics are defined and extracted from the velocity and displacement data by tethered speedometer (SRT) during
swimming phases separated by the cameras (CAM).
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2017). Using the speedometer and camera data, several goal
metrics are extracted on the velocity and displacement of the
swimmer in different swimming phases. These goal metrics
are representatives of how well the swimmer performed in the
corresponding phase. Finally, we used the selected micro
variables to estimate the goal metrics. The principal
outputs of this analysis are the selected variables and the
error of using them for goal metrics estimation.

IMU Data Preparation
First, the data was calibrated for offset, scale and non-
orthogonality (Ferraris et al., 1995). As explained in
Measurement Setup and Protocol, a functional calibration is
also performed before each measurement trial. The goal of this
calibration is to transform the data from sensor frame (x, y, z)S to
anatomical frame (x, y, z)A (Figure 1-I). Following that, the data
is ready to be expressed in the global frame. The swimmers were
asked to hold an upright posture in water before lap start for
5 seconds to find the initial orientation of the sacrum with respect
to the pool. The changes from the initial orientation are estimated
by angular velocity integration from gyroscope data and corrected
with acceleration using a gradient-descend based optimization
algorithm (Madgwick et al., 2011). The algorithm provides the
orientation changes in quaternion q [represented by four
elements (q1, q2, q3, q4)] and use them to convert the
accelerometer and gyroscope data from anatomical frame
[(x, y, z)A] to global frame [(X,Y, Z)G] (Figure 1-II),
expressed in Eqs 1, 2.

AccG � q ⊗ [0AccA] ⊗ qT (1)

GyrG � q ⊗ [0GyrA] ⊗ qT (2)

Where AccA and AccG are the acceleration in anatomical and
global frame respectively, ⊗ represents quaternion multiplication
and qT is the transpose of the quaternion q. The same notation
holds true for gyroscope data in Eq. 2. Moreover, by changing
quaternions into Euler angles, roll (θ), pitch (φ) and yaw (ψ)
angles could be found (Eq. 3). The angles θ, φ and ψ are defined
respectively around the longitudinal, mediolateral, and anterior-
posterior axes of swimmer’s sacrum.

⎧⎪⎨
⎪⎩

ψ � Atan2(2q2q3 − 2q1q4, 2q
2
1 + 2q22 − 1)

θ � −sin−1(2q2q4 + 2q1q3)
φ � Atan2(2q3q4 − 2q1q2, 2q

2
1 + 2q24 − 1)

(3)

Phase-Based Micro Variables
For IMU-based detection of swimming phases, we used a
macro-micro approach in our previous study, started from
swimming bouts detection down to lap segmentation into
swimming phases (Hamidi Rad et al., 2021). Using the
acceleration, angular velocity and orientation data in global
frame, various kinematic variables based on motion
biomechanics in every swimming phase are defined. As
frequently discussed in the literature, fast swimming depends
on 1) the ability to generate high propulsive forces, 2) the ability
to keep the correct posture for reducing the drag, while 3)
swimming with the highest efficiency (Toussaint and Truijens,

2005). Therefore, knowledge of the propulsion, posture and
efficiency is relevant to optimize swimming performance. We
related the extracted micro variables to one of these three
categories (Table 2). We also added a fourth group for the
variables related to the durations and rates of motion, which did
not fit into the previous three categories. For example stroke rate
in Swim phase which is not necessarily a sign of high or low
propulsion, good or bad posture and high or low efficiency but it
is widely used for performance evaluation (Siirtola et al., 2011;
Beanland et al., 2014).

We extracted the micro variables by extremum detection,
integration or calculation of the average, range and standard
deviation of the signal. The variables defined per stroke in Swim
phase need a cycle separation algorithm. For front crawl and
backstroke, the duration between the two successive positive
peaks on the longitudinal angular velocity in anatomical frame
(Gyry) is one cycle (Dadashi et al., 2013). The same method is
used with mediolateral angular velocity in anatomical frame
(Gyrz) for cycle separation of breaststroke and butterfly
techniques.

Goal Metrics
We extracted eight goal metrics from the tethered speedometer
data i.e. the velocity and displacement of the swimmer, from wall
to wall within the swimming phases detected on the cameras
(Figure 3).

1. Push maximum velocity: the highest velocity during the lap is
generated at start, as the swimmer can reach a velocity much
greater than other swimming phases (Shimadzu et al., 2008).
During Push phase, the maximum velocity reached is used to
assess wall push-off (Stamm et al., 2013). We use this value as
the goal metric for Push phase.

2. Glid end velocity: the velocity decreases during Glid phase
because of water drag. The swimmer should keep the
streamlined horizontal posture and start StPr phase at the
right time before losing too much velocity (Vantorre et al.,
2014). So we considered the velocity of the swimmer at the end
of Glid phase as the goal metric for this phase.

3. StPr average velocity: the average velocity of the swimmer
during StPr lower limbs actions is shown to have a negative
correlation with 15-m time of the swimmer (Cossor and
Mason, 2001). We used it as the goal metric for StPr phase.

During Swim phase, the performance of the swimmer can be
studied per cycle or in the whole phase. Thus two goal metrics are
defined in this phase:

4. Swim—average velocity per cycle: the average velocity of the
swimmer per cycle provides valuable information of
swimmer’s performance in every cycle (Dadashi et al., 2015).

5. Swim—average velocity of Swim phase: for looking at all the
cycles together, the average velocity of the whole Swim phase is
used as the second goal metric for this phase.

We also used three more goal metrics based on the literature,
which include more than one phase.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org December 2021 | Volume 9 | Article 7933024

Hamidi Rad et al. Swimming Phase-Based Performance Evaluation

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


6. T5m: normally Glid phase finishes before reaching 5 m from
the wall when the swimmer starts by wall push-off in all
swimming techniques. The time it takes the swimmer to reach
5 m from the wall is a goal metric (Zatsiorsky et al., 1979),
which shows the combination of swimmer’s performance
during Push and Glid phases.

7. T15m: 15 m is the limit for the swimmer to re-surface (except
for breaststroke technique) according to FINA (Federation
International de Natation) rules. So the time it takes to reach
15 m from the wall is a goal metric referring to underwater
phases (Push, Glid and StPr) (Vantorre et al., 2010).

8. Lap average velocity: considering all the phases together,
average velocity of the lap (determined by lap time) is the
final goal metric, displaying the overall performance of the
swimmer in all phases (Davey et al., 2008;Mooney et al., 2016).

Among the defined goal metrics, Pushmaximum velocity is
calculated with a peak detection algorithm in Push phase. The
rest of the goal metrics only rely on the beginning or end of
swimming phases, which are already obtained by phase
detection.

Association Between Micro Variables and Goal
Metrics
After extracting the micro variables from IMU and goal metrics
from speedometer and camera data, we look for association
between every goal metric with the micro variables of its
corresponding phase or phases. For example, Push maximum
velocity is associated with Push phase micro variables. For goal
metrics involving more than one phase, such as T5m, T15m and lap
average velocity related to Push/Glid, Push/Glid/StPr and all
phases respectively, the micro variables from the relevant
phases were used.

To identify the variables with higher significance, we ran a
variable selection algorithm. In the first step, we normalized each
variable and removed the multicollinearity between them using
variance inflation factors (VIF) (Mansfield and Helms, 1982).
LASSO variable selection is then applied over the variables related
to each goal metric, to select the ones of higher importance.
LASSO is a forward-looking variable selectin method for
regression, which improves both the estimation accuracy and
the interpretability of the model (Muthukrishnan and Rohini,
2017). It ranks the variables and allocates a wight to each one
based on their significance in the regression model. Among the
selected variables, we neglected the ones with a relative weight less
than 5% because of their less important role. Moreover, to
quantify the contribution of each category to the regression
model, we summed the relative weights of variables from each
category (propulsion, posture, efficiency and duration/rate).

Once the significant variables were identified, we utilized them to
estimate the goal metrics by a LASSO regression model with leave-
one-out cross-validation to avoid overfitting (Berrar, 2018). The cross
validated determination coefficient (R2) is reported as a metric of
association between true values (reference values from speedometer)
and the estimated value (output of themodels). The error between the
true and estimated values of goal metrics is analyzed using the root
mean square of error (RMSE) and its relative value in percent.

RESULTS

A sample size analysis based on a previous study (Dadashi et al.,
2012) that used the same speedometer andmeasurement protocol
for velocity estimation is performed. Considering a power of 80%
(β � 0.2) and 95% (α � 0.05) confidence interval, we reached a
sample size of 64 for this study. Since the models are generated

TABLE 2 | Categories and description of the phase-based micro variable defined on IMU data in global frame. The name of the functions used for micro variables extraction
are abbreviated in parentheses.

Category Description Micro variables

Propulsion Variables related to the amount of propulsion generated by
the swimmer

Mean (Mean), range (Range) and standard deviation (SD) of AccX , AccY and AccZ . Maximum
(Max), integral (Int), and momentum change (Momentum) of AccY

Posture Variables related to the body posture and drag effects on
swimmer’ body

Mean, Range and SD of θ and φ

Efficiency Variables related to the efficiency of motion which can reflect
in acceleration

Ratio of positive AccY to |Acc| (Eff_dir) or to negative AccY (Eff), distance per stroke (DPS) in
Swim phase

Duration/
rate

Variables related to the duration of a phase or the rate of
movement

Mean,Range and SD ofGyrX ,GyrY andGyrZ . phases and cycles duration. Kick rate and count
in StPr phase. Stroke rate and count in Swim phase

FIGURE 3 | The defined goal metrics for different swimming phases from wall to wall.
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using the data from all swimmers pooled together, the number of
observations used to estimate all goal metrics, except for average
velocity of the cycle in Swim phase was 76 samples. The overall
number of cycles used for estimating the average velocity per
cycle in Swim phase was 1,166, 627, 695 and 1,052 for front crawl,
breaststroke, butterfly and backstroke respectively.

Goal Metrics Estimation
The cross-validated values (R2, RMSE and the relative RMSE in
percent) of LASSO regression model used for estimating the
corresponding goal metric are reported in Table 3 for each goal
metric. Table 3 shows that LASSO regression model fits the data
with an R2 value more than 0.75 for most goal metrics in all
swimming techniques. The RMSE of the regression are less than
0.15 m/s (11%) for all goal metrics defined over velocity and less
than 0.21 s (7%) and 0.52 s (5%) for T5m and T15m respectively.
The highest value of relative RMSE belongs to Glid end velocity
with 11.1%, while the relative error is less than 10% in all other
cases. The results are also calculated with swimming phases found
by cameras for comparison in supplementary materials
(Supplementary Table SA1).

Micro-Variables Selection
The selected variables for each goal metric estimation during
front crawl technique are listed in Table 4. Same tables for
other swimming techniques are brought in supplementary
materials (Supplementary Tables A2–A4). Among
acceleration axes, AccY and its related variables [e.g. Mean
(AccY),Max (AccY), Int (AccY)] are more selected for different
goal metrics. GyrZ and φ related variables seem to be more
associated with the defined goal metrics than other axes of
orientation in front crawl technique. For T5m , T15m and lap
average velocity, a mixture of variables from corresponding
phases are selected, some of which were already selected for the
specific goal metric of these phases.

The overall contribution of each category in estimating the
goal metrics is illustrated in Figure 4 for all four swimming
techniques. It is observable that propulsion category plays an
important role in Push phase, while posture-related variables are
more selected in Glid phase. StPr phase is less affected by
efficiency compared to other categories. Efficiency and
propulsion categories are both significant in determining the
average velocity per cycle in Swim phase. Duration/rate category

TABLE 3 | The results of evaluating LASSO regression for goal metrics estimation. The determination coefficient (R2) and root mean square of error (RMSE) and the relative
RMSE (in %) of regression are reported for each swimming technique.

Goal metric Front crawl Breaststroke

R2 RMSE (%) R2 RMSE (%)

Push maximum velocity (m/s) 0.74 0.140 (5.7) 0.75 0.131 (5.3)
Glid end velocity (m/s) 0.76 0.123 (10.1) 0.64 0.139 (11.1)
StPr average velocity (m/s) 0.72 0.075 (4.4) 0.58 0.058 (5.9)
Swim—average velocity per cycle (m/s) 0.89 0.050 (8.3) 0.84 0.044 (5.7)
Average velocity of Swim phase (m/s) 0.90 0.044 (2.7) 0.71 0.061 (5.3)
T5m (s) 0.64 0.158 (7.6) 0.74 0.209 (6.9)
T15m (s) 0.75 0.369 (4.3) 0.81 0.430 (6.7)
Lap average velocity (m/s) 0.95 0.032 (2.4) 0.85 0.038 (3.4)

Butterfly Backstroke

Push maximum velocity (m/s) 0.71 0.149 (5.9) 0.72 0.107 (4.9)
Glid end velocity (m/s) 0.80 0.111 (9.1) 0.84 0.104 (6.4)
StPr average velocity (m/s) 0.75 0.152 (6.7) 0.75 0.079 (5.3)
Swim—average velocity per cycle (m/s) 0.88 0.067 (4.9) 0.89 0.076 (5.7)
Average velocity of Swim phase (m/s) 0.79 0.049 (3.3) 0.73 0.056 (4.3)
T5m (s) 0.63 0.209 (7.0) 0.71 0.202 (6.4)
T15m (s) 0.79 0.344 (4.6) 0.77 0.521 (5.0)
Lap average velocity (m/s) 0.86 0.049 (3.3) 0.80 0.063 (4.6)

TABLE 4 | The selected variables for estimating each goal metric for front crawl technique, written in the order of relative weights. The variables are written in the order of their
relative weights. For the abbreviated name of functions, see Table 2.

Goal metric Selected variables

Push maximum velocity Range (φ), SD (φ), Int (AccY ), Momentum (AccY ), Range (AccY ), Max (AccY ), Mean (GyrZ ), Eff (AccY )
Glid end velocity Glid duration, Momentum (AccY ), Int (AccY ), Range (AccY ), Range (φ), Mean (φ)
StPr average velocity Mean (AccY ), Eff (AccY ), Eff_dir (AccY ), SD (AccY ) , number of kicks, StPr duration
Swim—average velocity per cycle Cycle duration, DPS, Mean (φ) per cycle
Average velocity of Swim phase Stroke rate, Mean (φ), number of strokes, SD (AccY ), Range (θ)
T5m Momentum (AccY ) in Glid, Max (GyrZ ) in Push, SD (φ) in Glid, Range (φ) in Push, Max (GyrZ ) in Glid
T15m Glid duration, Range (φ) in StPr, SD (GyrZ ) in StPr, SD (AccY ) in Push, StPr kick rate, Momentum (AccY ) in Push
Lap average velocity Stroke rate, number of strokes, Max (AccY ) in Push, Mean (AccY ) in Glid, Mean (φ) in Swim, number of kicks in StPr
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is dominant in estimating average velocity of Swim phase and lap
average velocity.T5m and T15m are affected mainly by a mixture of
propulsion, posture and duration/rate categories depending on
the swimming technique.

DISCUSSION

In this research, we studied the association between IMU micro
variables and the performance evaluation goal metrics found by
camera and speedometer during the swimming phases from wall
to wall in four main swimming techniques. The obtained results
confirmed our hypothesis that micro variables extracted from a
single IMU placed at sacrum within each phase are associated
with the corresponding goal metrics used generally for
performance evaluation. As a result, using a single IMU would
be enough for performance evaluation in main swimming
techniques. Micro variables, showing strong association with
the goal metrics, were identified thanks to LASSO variable
selection and used for predicting the goal metrics.

Goal Metrics Estimation
The selected kinematic variables within each swimming phase
were used for estimating the corresponding goal metrics
(Table 3). Estimating the Push maximum velocity and Glid
end velocity showed similar results in different swimming
techniques, as the two initial phases are the same for them
(only for backstroke, the swimmer has a supine posture). The
relative RMSE is the highest for Glid end velocity estimation

(11%) because this goal metric has the lowest value in the whole
lap. In the StPr phase, the average velocity shows a high amount
of variability among the swimmers, and determination coefficient
(i.e. the proportion of the variance of the true goal metric value
explained by the regression model) is relatively lower for it (less
than 0.8 in all techniques) compared to other goal metrics in all
techniques, because a linear model is not efficient enough in
reflecting the variation of this goal metric, and a non-linear model
might estimate it better.

Average velocity per cycle is estimated in all techniques with a
determination coefficient more than 0.84 and an RMSE less than
0.076 m/s and relative error less than 6%. However, estimating
the average velocity of the whole Swim phase achieved poorer
results (R2 of 0.71–0.90 in different techniques). As estimating
each cycle average velocity is more accurate in all techniques, the
average value of all cycles in Swim phase can also be used for
estimating Swim phase average velocity. The regression models
for estimating T5m show less accuracy (R2 less than 0.80 in
different techniques), making it difficult to trust the estimation
results. Depending on swimming technique and swimmers’ pace,
they might start StPr phase earlier than 5 m from the wall. So T5m

is partly affected by StPr phase and using only Push and Glid
phases might not be enough for estimation. On the contrary, the
first three phases (Push, Glid and StPr) finish before 15 m from
the wall and using them for estimating the T15m results in more
accurate regression models (R2 more than 0.75 in different
techniques). Finally, the lap average velocity is estimated using
a selection of the kinematic variables from all phases with a
relatively small error (RMSE less than 0.063 m/s for all

FIGURE 4 | Variable categories contribution to goal metrics estimation for front crawl (A), breaststroke (B), butterfly (C) and backstroke (D). The contribution of
each category (propulsion: blue, posture: orange, efficiency: green, duration/rate: yellow) is represented in percent for estimating the corresponding goal metric. The
results are based on the variables with higher than 5% relative weight in LASSO variable selection.
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techniques). The results have been only slightly improved when
using cameras for phase detection (section 1 of Supplementary
Materials).

Micro Variables Selection
As shown in Table 4 and Figure 4 during the Push phase, the
kinematic variables related to φ and AccY are ranked as more
important, which shows the significance of keeping the right
posture and generating high propulsion in Push phase. The
Mean (GyrZ) and Eff (AccY) are selected at last. The weight
contribution of Push kinematic variables can be categorized
more in propulsion and posture groups, which is the same for
all techniques (Figures 4A–D), as the Pushmovement is the same.
During Glid phase, phase duration is chosen the first, since the
longer the Glid phase is, the more velocity will be lost.Momentum
(AccY) and Int (AccY) are also considered important since they
represent the effect of water drag on swimmer’s body. High Range
(φ) and Mean (φ) during Glid are a sign of bad posture, which
causes more drag. In terms of categories, none of the micro
variables can be categorized in propulsion because Glid phase
does not include any propulsive motion. As a result, the categories
of posture and duration/rate are the dominant groups in this phase,
regardless of the technique.

StPr phase has the highest amount of velocity variation on
speedometer data and the average velocity during this phase is
related to a combination of forward acceleration, accelerating
efficiency, number of kicks and phase duration. Two types of
efficiency-related variables are selected for this phase. Eff (AccY)
represents the ratio of positive to all forward acceleration and
Eff_dir (AccY) is the ratio of forward acceleration to the
acceleration norm. Since this phase includes strong kicking,
generating the highest amount of acceleration in forward
direction (AccY) with respect to other axes is selected as an
important variable. StPr phase is the same for front crawl,
butterfly and backstroke as it includes butterfly kicks in all of
them. Figures 4A,C,D also shows similar categories of
propulsion, efficiency and duration/rate for the variables
selected in this phase. For breaststroke technique, StPr phase
includes one upper limbs cycle followed by a lower limb action
and the posture related variables are also important compared to
other categories (Figure 4B).

For Swim phase goal metrics, the average velocity per stroke
is mainly associated with the duration of each cycle and the
DPS. The Mean (φ) is also selected which relates to the
swimmer’s posture. This selection is the same in all
swimming techniques (Figures 4B–D) as the average velocity
per stroke can be estimated by dividing the DPS by the cycle
duration. The second goal metric of Swim phase is the average
velocity of the whole phase. The variables related to the rate and
number of strokes are more dominant as the swimmers increase
the stroke rate for fast swimming. The SD (AccY),Mean (φ) and
Range (θ) are other kinematic variables selected for estimating
this goal metric, highlighting the significance of consistent
propulsion and body posture in Swim phase. As a result, the
three categories of duration/rate, posture and propulsion are
more pronounced for estimating Swim phase average velocity in
all techniques.

T5m, T15m and lap average velocity are dependent onmore than
one phase, and the variable selection algorithm picks a number of
variables from each phase. Most of the selected variables for these
goal metrics were already selected for relevant phases such as
selecting Momentum (AccY) of Glid for T5m, Glid duration for
T15m or stroke rate for lap average velocity, proving the significance
of such variables even in a larger scale. Moreover, this shows the
dependence of overall swimmer’s performance on their local
performance in each phase. Among the techniques, T5m and
T15m are estimated with a mixture of propulsion, posture and
duration/rate categories in front crawl, breaststroke and butterfly,
whereas during backstroke, the propulsion is dominant for both
goal metrics. This emphasises on the tendency of the swimmers to
longer underwater phases in backstroke (De Jesus et al., 2011), that
asks for highly propulsive butterfly kicks.

With an overall observation on Figure 4, it is noted that the
dominant categories in swimming phases are in line with the
swimming phase biomechanics. Push phase asks for high
propulsion, and Glid phase is more about keeping the right
posture to avoid the drag. StPr phase is a combination of
propulsion, posture and efficiency. Since the variable selection
algorithm chooses the best variables for goal metric estimation,
the variables which have the strongest relationship with the goal
metrics are selected. As a result, we cannot assert that the rest of
the variables are of no importance in swimming. For example, the
DPS and cycle duration were dominant in estimating the average
velocity per cycle in Swim phase, while no one can ignore the
importance of orientation-related variables (e.g. θ angle)
(Psycharakis and Sanders, 2010) or propulsion (Toussaint,
2002) in this phase. However, having a longer DPS in a
shorter cycle duration is the result of correct orientation and
high propulsion so the selected variables include other variable
categories implicitly.

This study shows that a single sacrum IMU can provide
kinematic variables relevant to the performance of the
swimmer, in different techniques and phases for performance
evaluation without using complex instrumentation such as
speedometers or cameras. This offers new tools for training,
where for example output of the IMU can be transferred to a
mobile application for coaches and swimmers to easily follow the
progress of the swimmers. Although using wearables induces
more drag on swimmer body (Magalhaes et al., 2015), it needs
extremely less effort than cameras for preparation and use, and it
overcomes many of the limits of video-based systems (Callaway
et al., 2010). The kinematic variables that were found dominant in
our study were already analyzed using IMU of video-based
methods but their relationship with the goal metrics were not
studied. Swimmer’s posture during Push and Glid (Pereira et al.,
2015), Glid duration (Guimaraes and Hay, 1985), StPr kicking
rate (Shimojo et al., 2014), Swim stroke rate (Beanland et al.,
2014) or DPS (Bächlin et al., 2008) are examples of the micro
variables that were found relevant to performance, and we also
found them significant in this study.

Both male and female swimmers were included for generating
the results of this study to have a larger, more variant dataset.
Comparing the swimmers due to their individual differences is
out of the scope of our study. The estimations are done over all
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swimming velocities so the results are valid for 70–100 percent of
swimmers’ paces. The synchronization error between the three
systems of IMU, cameras and speedometer is a source of error in
this study. Since tethered speedometer was used as reference in
this study, the measurements were done over one-way trials
without turn and turn motion is not evaluated. In this study,
we used linear regression to have interpretable models
highlighting the main variables correlated to the goal metrics.
More complex non-linear models could be used if the goal is more
accurate prediction of goal metrics.

CONCLUSION

Using the IMU data, we extracted numerous kinematic variables
related to propulsion, posture, efficiency and duration/rate of
motion in four main swimming phases, associated with the goal
metrics defined over velocity and time of swimming in each
swimming phase. These kinematic variables were
biomechanically interpretable and were able to predict the goal
metrics using LASSO linear regression. The generated models fit
the data with an R2 valuemore than 0.75 for most goal metrics. The
RMSE of the regression were less than 0.15m/s and 11% for goal
metrics defined over velocity and 0.52 s and 7.6% for goal metrics
defined over time. Our study shows that a single sacrum-worn
IMU has the potential to evaluate the swimmer performance in
different swimming phases in line with standard goal metrics.
Practically, our proposed method can be useful for coaches to
identify the weakness and strength of their swimmers and track
their progress during training sessions with a single IMU. This
study can be continued with implementation of the regression
models on new dataset for validation, using more complex models
(e.g. non-linear regression) for better goal metric estimation,
completing the analysis for diving start and turn and using
other sensor locations for estimation accuracy comparison.
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