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Cellulose nanocrystals (CNCs) have unparalleled advantages in the preparation of
nanocomposites for various applications. However, a major challenge associated with
CNCs in nanocomposite preparation is the lack of compatibility with hydrophobic
polymers. The hydrophobic modification of CNCs has attracted increasing interest in
the modern era standing with long challenges and being environmentally friendly. Here, we
synthesized CNCs by using cotton as raw material and then modified them with 2-
carboxyethyl acrylate to improve their corresponding mechanical, adhesive, contact angle,
and thermal properties. Different concentrations (1–5 wt%) of CNCs were used as
modifiers to improve the interfacial adhesion between the reinforced CNCs and E-51
(Bisphenol A diglycidyl ether) epoxy resin system. CNCs offered a better modulus of
elasticity, a lower coefficient of energy, and thermal expansion. Compared with the
standard sample, the modified CNCs (MCNCs) showed high shear stress, high
toughness, efficient degradation, thermal stability, and recycling due to the combined
effect of the hyperbranched topological structure of epoxy with good compatibility. The
native CNCs lost their hydrophilicity after modification with epoxy, and MCNCs showed
good hydrophobic behavior (CA � 105 ± 2°). The findings of this study indicate that
modification of CNCs with 2-carboxyethyl acrylate in the presence of epoxy resin and the
enhancement of the features would further expand their applications to different sectors.
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INTRODUCTION

Cellulose nanocrystals (CNCs) or nanoparticles have drawn a lot of
attention due to their abundance, biocompatibility, renewability, and
excellent mechanical properties, paving the way to innovative and
sustainable applications. CNCs are crystalline and rod-shaped,
depending on their source. These have been used as reinforcing
agents due to their excellentmechanical properties (Dhar et al., 2012;
Aziz et al., 2020a; Cao et al., 2020; Satam et al., 2020). These have a
large surface area, and their intermolecular structure enables them to
interact with other materials (Aziz et al., 2019a; Aziz et al., 2020b;
Aziz et al., 2020c). CNCs can form new resin bonds in compounds
and improve themechanical strength of the final product (Guo et al.,
2017; Auclair et al., 2020; Aziz et al., 2020d; Rasool et al., 2021). These
also form a cluster of relatively small networks and increase the
flexibility modulus (Limousin et al., 2020; Popescu et al., 2020; Haq
et al., 2021). The cellulose-based aerogels are novel third-generation
aerogels that have recently attractedmuch attention due to their high
adsorption efficiency, eco-friendly nature, and cost-effectiveness.
Such aerogels acquire several properties, especially with their low
cost and chemical stability (Aziz et al., 2021a; Aziz et al., 2021b; Aziz
et al., 2021c), and are used as modifiers to enhance the interfacial
adhesion between the matrix of nanocrystals (Aziz et al., 2019b; Li
et al., 2020; Rincón-Iglesias et al., 2020). Cellulose has a natural

nanostructure that allows the impregnation of CNCs. The CNCs
have a width of 5–75 nm and a length ofmore than 100 μm(Pietrzak
et al., 2016; Alharthi and El Rassi, 2018;Wijaya et al., 2020). Recently,
the uses of CNCs as a modifier have been studied in combination
with a wide range of natural or synthetic polymers, especially in an
epoxy emulsion (Dastjerdi et al., 2018; Kamtsikakis et al., 2021).

There are several limitations associated with the use of CNCs,
mainly caused by their relatively low thermal stability. Therefore,
using their hydroxyl surface chemistry to give these nanoparticles
a new functionality is very interesting. There are many examples
of modifying the CNCs’ synthesis routes (Girouard et al., 2016;
Shi et al., 2019; Aziz et al., 2021d). Presently, researchers focused
on environmental issues and on providing an affordable and
scalable approach for sustainable development have faced one of
themost fundamental challenges (Poaty et al., 2014; Li et al., 2018;
Alanis et al., 2019; Ullah et al., 2021a). CNCs are a growing area
for nanomaterials research candidates because of their attraction
for reinforcing agents and due to their reproducibility, high shear
stress, and elastic modulus (Yang et al., 2013; Wu et al., 2020;
Fang et al., 2021; Niinivaara et al., 2021). CNCs have a high
specific surface energy that tends to aggregate during the
manufacturing process, forming larger particles. These are also
found in powder or an aqueous suspension after purification
from amorphous cellulose or other impurities and are used in
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melt processing applications (Khoshkava and Kamal, 2014; Ali
et al., 2020; Seok and Kim, 2020; Akram et al., 2021). Over the
past decade, CNCs have been considered a potentially natural
nanomaterial and attracted researchers’ attention for their wide
applications. These are used as a nanomaterial for various
applications due to their excellent physiochemical properties.
The scattering and accumulation in polar solvents in a series
of hashes attracted optical and structural properties. These
characteristics have a long-term effect on the overall
performance and relationship.

The 2-Carboxyethyl acrylate is a new auspicious substitute
monomer due to its molecular composition and high
mechanical properties that can potentially replace the toxic
water-soluble monomers. The carboxyl group in 2-
carboxyethyl acrylate is expected to positively affect the
adhesive behavior of CNCs suspension (Salama et al., 2015;
Pietrzak et al., 2016; Alharthi and El Rassi, 2018). The 2-
Carboxyethyl acrylate is more hydrophilic than inert
monomer and allows its chemical modification (Yang et al.,
2020; Rasool et al., 2021; Jamil et al., 2021; Muhammad et al.,
2021). It has better physical bonding with metal surfaces or
other functional materials and may give better strength to the

substrate. Furthermore, as an organic monomer, 2-carboxyethyl
acrylate is used with CNCs for enhancing their mechanical
strength (Kim et al., 2007; Tripathi et al., 2015; Naseer et al.,
2021; Awais et al., 2022).

Herein, we synthesized CNCs using cotton as raw material,
and these were further modified with 2-carboxyethyl acrylate to
improve their adhesion and thermal properties. CNCs were
selected as modifiers to improve the interfacial adhesion in E-
51 epoxy resin. The novel strategy used in this study will help
prepare regenerated cellulose nano-materials with excellent
mechanical properties and biodegradability as alternatives to
petrochemical plastics for the development of sustainable
materials and could be applied in food packaging.

METHODS AND CHEMICAL REAGENTS

Materials
Cotton was supplied by the Guangzhou Liqi textile industry
(China). 2-Carboxyethyl acrylate was purchased from
ChemSrc China (98% purity). Analytical grade ethanol (purity
99.7%), methanol (purity 99.5%), and acetone (purity 99.5%)

FIGURE 1 | Schematic illustration of the preparation of CNCs from cotton. The alkaline treatment of cotton fibers at elevated temperature, centrifugation,
ultrasonication, and vacuum oven drying resulted in the preparation of CNCs.
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were obtained from Aladdin (Shanghai, China). Tianjin
Hengxing Chemical industry (China) supplied sulfuric acid
(purity 98%). Bisphenol-A epoxy resin E-51 for the adhesive
property was supplied by Helin Resin Co., Ltd. The commercially
available epoxy was used for comparison and purchased from the
local market (Jiangsu province, China). Shanghai Macklin
Biochemical Co. Ltd. China supplied potassium persulfate
(KPS). Triethylenetetramine (TETA) (purity 97%) was
obtained from Sigma-Aldrich. Lab-made distilled water was used.

Preparation of CNCs From Cotton
First, wax and pectin were removed from cotton. A 20-g cotton
was cut into small pieces and washed with hot water at 50–60°C.
The washed cotton was heated in a hot air oven at 40°C for 6–8 h.
Then, the cotton was mixed with 500 ml of 20%NaOH at 45°C for
4–5 h. The alkali-treated cotton slurry was allowed to cool down
to room temperature, and the solution was transferred to 2.5 L of
distilled water until the pH was neutralized. The neutral
suspension was filtered using a Buckner filter. The sample was
then heated and stirred in 500 ml of 60% sulfuric acid for 12 h at
35°C. The resulting particles formed a white suspension that was
transferred to the 2 L of water to deactivate the white suspension.
The suspension was kept statically for 12 h to allow the settling of
cellulose particles. After decantation, the white slurry was again
treated with distilled water to remove sodium and sulfate ions.
The suspension was centrifuged at 8,000 rpm three times for
10 min. The nanocrystals were vigorously shaken at 40°C with
45–60 wt% to remove H2SO4. The final white product (CNC
powder) was dried in a vacuum oven at 90°C for 12 h. A schematic
of the preparation of CNCs from cotton is illustrated in Figure 1.

Modification of CNCs With 2-Carboxyethyl
Acrylate
First, CNCs were dispersed in 40ml of lab-made distilled water at
60°C with stirring for 30 min at room temperature in a nitrogen
environment. Then 66.6 mg of potassium persulfate (KPS) was
dissolved in 20 ml of distilled water and injected into the solution
with the help of a syringe. After 30 min, 2.1 ml of 2-carboxyethyl
acrylatemonomer was also injected, and the reaction was allowed to
stir at 60°C for 3 h. The synthesis of CNCs-g-poly (2-carboxyethyl
acrylate) is shown in Figure 2. The product was cooled down to
room temperature and washed three times with a mixture of 30 ml
methanol and 70 ml, and then centrifuged at 5,000 rpm for 10min.
The mixture was washed again with acetone to remove the un-
grafted polymers. The process was repeated three times. Then, the
product was then placed in the vacuum oven for 24 h at 40°C to
completely dry. After that, the sample was put into the bottle and
named modified cellulose nanocrystals (MCNCs) and stored in a
desiccator for further investigation and characterizations.

Characterization
FTIR spectroscopy was used to examine the chemical structure of
modified CNCs with 2-carboxyethyl acrylate (Nicolet. 5700). The
surface morphology of native and modified CNCs was observed
through a scanning electron microscope (SEM, Model SU-3500)
operated at 20 kV. A transmission electron microscope (TEM,
Model Hitachi, Japan) was used for structural analysis of CNCs.
Thermogravimetric andDTG properties of 2-carboxyethyl acrylate
were investigated under constant N2 flow using a TGA analyzing
system (TA-Q500, Mettler-Toledo). The crystalline properties of
CNCs and MCNCs were investigated via an x-ray diffractometer

FIGURE 2 | Chemical synthesis of CNCs-g-poly (2-carboxyethyl acrylate).
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(X’Pert-APD Philips, Netherlands). An ultrasonic cleaner
ultrasound Instrument Co., Ltd. was used for sonication of
CNCs. The high-speed desktop centrifuge (Cence TG16-WS)
was used for the isolation of modified CNCs. For contact angle
(Contact angle meter DSA 25) with interfacial and surface tension
0.01–2000mN/m having resolution 0.01°/0.01 mN/m with
illumination high power monochromatic LED. The mechanical
and adhesive properties of native and modified CNCs were also
determined (Model Zwick/Roel Z020, Germany).

Adhesive Strength Test
E-51 epoxy resin was placed on the sample glass bottle, and then
the CNCs were added. The resultant mixture was sonicated at 45°C
for more than 30min, and then its suspension was prepared by
mechanical mixing. The suspension was then circulated through
the agitator until all samples of CNCs were thoroughly dispersed in
1 g of E-51 epoxy resin at room temperature with a magnetic bar

for adhesive performance. After 1 h of stirring on a hot plate at
room temperature, 0.2 g of TETA was added and stirred slowly for
the next 20–25min until a completely homogeneous solution was
obtained. The homogeneous solution was stored in a vacuum oven
at 45°C for 10–15min to remove bubbles from the solution. The
CNCs and E-51 epoxy resin mixture was poured onto steel plates,
as shown in Figure 3, using a 1.5-cm-long and 2.3-cm-wide glass
rod. Three different samples with standard one were run for testing
in a hot air oven at 150°C for 60min. The samples were then cooled
to room temperature for 3–4 days before testing.

RESULTS AND DISCUSSION

Morphology of CNCs
A TEM view of the native CNCs produced from cotton through
acid hydrolysis is shown in Figure 4A, which shows the typical

FIGURE 3 | Pictorial representation of (A) Polish steel plates of 1.3 cm length and 1.5 cm width and (B) steel plates with epoxy and CNCs.

FIGURE 4 | (A) The rod-shaped morphology of CNCs observed through TEM, (B) length, and (C) diameter distribution of CNCs.
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rod-like morphology. The TEM image shows the presence of a
compact, crystal-like, uniform nano-sized rod, which depends on
its concentration in the epoxy system (Abraham et al., 2016; Jiang
et al., 2020; Qin et al., 2020; Haq et al., 2021). The dimensions of
CNCs were also determined. The results show that the mean
length of CNCs is 103.47 nm (Figure 4B), and the mean width is
12.31 nm (Figure 4C). Typically, 88.86% of the CNCs with a
mean diameter of 8.4 nm were obtained. The remaining crystals
exhibited aggregation behavior due to a large number of hydroxyl
groups on the surface of the CNCs (Yang et al., 2015; Roeder et al.,
2016; Rincón-Iglesias et al., 2020). The lower dose of CNCs

showed a cluster-like behavior, which may be higher and
improve the interface, which is reflected in the rough surface
layer. However, a good dispersion was achieved at a low
concentration of CNCs with epoxy resins. A higher
concentration of CNCs produced more surface inertia. The
obtained CNCs’ shape is rod-like.

FTIR Analysis of CNCs-g-Poly
(2-Carboxyethyl Acrylate)
The typical FTIR spectra of native CNCs and MCNCs are shown
in Figure 5. A strong peak shown at 755 cm−1 was due to the C-H
bending (Wulandari et al., 2016; Abdul Rahman et al., 2017). The
peak for C-O asymmetric in contrast to the spectrum of MCNCs
appeared at 1,030 cm−1. A new vibration peak that appeared at
1,750 cm−1 was ascribed to the C�O group stretching vibration of
the ester and carboxylic group present in MCNCs (Lu et al., 2015;
Khan et al., 2018; Aziz et al., 2019c). The appearance of such a
peak in MCNCs confirms the successful modification of CNCs.
Due to the limitation of size quantification of the CNC particles
and its sensitivity towards large particles, the size estimation was
used to identify aggregates within different CNCs dispersions.
The analysis presented a significant reduction of aggregation in
the CNCs-COOH and the modified CNCs with respect to the
native one’s dispersion.

Thermogravimetric Analysis of CNCs
Thermogravimetric analysis (TGA) of native CNCs and MCNCs
is a dynamic phenomenological approach to investigate the
response to change in temperature. The thermal behavior of
native CNCs is different from that of MCNCs, as shown in
Figure 6A, which is in accordance with previous reports (Li et al.,
2011;Ma et al., 2017). In the case ofMCNCs, thermal degradation

FIGURE 5 | FTIR spectra of native and modified CNCs.

FIGURE 6 | (A) TGA and (B) DTG curves of native and modified CNCs.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org January 2022 | Volume 9 | Article 7976726

Ali et al. Chemical Modification of Cellulose Nanocrystals

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


occurred at a higher temperature due to its nano-size and high
thermal stability; more free ends in theMCNCs show a significant
decrease in molecular weight degradation in the high amorphous
regions. The MCNCs showed a typical decomposition, starting at
a temperature above 220–370°C, by introducing silicone groups,
leaving a small amount of ash at 600°C, as reported previously (Lu
and Hsieh, 2010; Kumar et al., 2014).

The thermal behavior of CNCs showed two stages of thermal
degradation, as shown in Figure 6B. The first stage began at
about 340°C and is characterized by a direct attachment of the
C-C bond structure. The following two measures against
deterioration are related to the terminal chain of CH. These
degradations occurred at a temperature below the main
structure of saturated MCNCs with an E-51 resin system.
This behavior is due to the poor stability of the CH and CH2

groups, which allow the splitting into β-carbons. Evaluation of
the thermal stability of the initial mass loss temperature was
determined by the intersection of the initial plated additional
mass at the maximum TG curve. The different peaks were first
obtained at the maximum temperature. It is only once
happening in the process of changing the temperature. The
second phase is defined as the temperature that begins and
represents the same value for both samples. TGA is an
important parameter because of information about the
dynamics of mass loss. Unstable emissions during the
decomposition process are of great value (Akgün et al., 2016;
Souza Neto et al., 2019; Liu et al., 2020). The MCNCs reinforced
liquid compound transformation into the poly-condensation
with excellent growth after dispersion in the epoxy resin system.

Morphology of MCNCs
The SEM images were obtained via SEM observation after sputter
coating of gold on the surface of the sample. The SEM images of
the fracture surface gave a clear indication of CNCs’ handedness.
The results also demonstrate that high-resolution SEM of CNCs
can appraise the detailed structure system. The apparent porosity
in the fracture surfaces reported here may result from the pull-out
of nanocrystals to the fracture surface. This information provides
a basis for these materials’ exploitation and templating properties.

The morphologies of the surface images of dried and modified
CNCs were obtained and clearly showed the surface
morphologies reacting with the E-51 epoxy system, as shown
in Figure 7. The diameters of dried CNCs are decreased after
modifying to varying degrees. The surface is much rougher. In
general, their combination has a favorable effect on the
performance of the composites, which results in increases in
the adhesive properties. In the modified CNCs, agglomeration
also occurs due to the aggregation of E-51 epoxy, affecting the
adhesive properties. The more modified CNCs, the more
agglomeration occurs in the epoxy system. The epoxy also
affects the adhesive properties when the diamine curing agent
(DDS) is used, compared with the TETA. The TETA gives a good
result mainly in the dispersion process of CNCs in the epoxy. At
this stage, the solution is much thinner, and nanoparticles are
easily dispersed in the solution (Du et al., 2017; Ahmed et al.,
2021). The presence of pores and cavities in the fractured surfaces
decreased significantly compared to the neat ones. The fracture
surface does not show much more aggregations of the

FIGURE 7 | Scanning electron micrographs of freeze-dried (A) native and (B) modified CNCs.

FIGURE 8 | XRD spectra of native and modified CNCs of different
concentrations (1%, 3%, and 5%).
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nanocrystals covered by the epoxy system. The epoxy reinforces
the fractured surface of the modified CNCs composite. The
coverage of both native CNCs and modified matrix was
expected and favored by attractive interactions between polar
groups and non-polar domains from both the CNCs and the
epoxy, which cause the reinforcement.

XRD Analysis of Dried and Modified CNCs
In the nanocomposite system, XRD spectra of the composite
system are obtained at room temperature and investigate the
chemical groups contributing during the curing process. Several
bands of XRD spectra conforming to epoxide vibration are at the
range 2θ degree � 10 to 20, but here, the epoxide vibration band is
at 2θ degree � 25 (existing epoxide ring). This peak intensity
directly depends on the absorption of epoxide groups in the
mixture of E-51 epoxy resin. The peaks near 2θ degree � 48 and
58 show that the epoxide ring deformation is weaker, which is in
accordance with previous reports (Jamil et al., 2018; Jamil et al.,
2019). The other peaks of XRD spectra show epoxy resin backing
vibrations that do not change the intensity throughout the curing
process. In comparison, the starching peak of C-H in the oxirane
ring was hardener in spectra, as shown in Figure 8.

Eugenol-Based Silane Coupling Agent
Eugenol-based silane coupling agent (EBSCA) was synthesized via
hydrosilylation. This silane coupling agent enhanced the
connection between CNCs and epoxy matrix to achieve
sustainable and environment-friendly products. A eugenol-based
epoxy silane coupling agent with high purity was prepared and
used for the surface modification of nano-cellulose crystals. The
eugenol epoxy silane-coupling agent, bearing a long-chain
structure of benzene ring in the molecular structure, could
improve the compatibility of CNCs with the E-51 epoxy system,
contributing to the dispersion state in the matrix, enhancing the
overall performance of epoxy-cured products.

Adhesive Properties of Modified CNCs
We studied the adhesive properties ofMCNCswith an epoxy system
by measuring the average shear strength (Figure 9A) and shear
modulus (Figure 9B) using the E-51 epoxy resin with different
content. TETA was used as a curing agent. The E-51 epoxy system
containingMCNCs in an amount of 1%, 3%, and 5 wt% was used to
evaluate the effect of adhesive properties. The shear strength showed
enhancement at 5 wt% of MCNCs. It could be due to the crystal
agglomeration in the epoxy resin medium, making them harder, as
reported previously (Al-Turaif, 2013; Ferreira et al., 2014). The
maximum value was observed at 15.1MPa for nanocomposites
reinforced with 5 wt% MCNCs compared with the pure epoxy
resin, which is in harmony with previous studies (Pinheiro et al.,
2017; Ullah et al., 2021b). Compared with the standard sample, all
the MCNC samples had a higher shear modulus. The maximum
value (2,460 MPa) was observed for 1 wt% modified nanocrystal to
compete with the standard value of 1,990MPa. We believe that the
result ofMCNCswith E-51 epoxy resin, -OHbond, is responsible for
binding themselves. They are creating a high strength linkage and
increasing the properties of the adhesive additives. MCNC shear
modulus loading (5 wt%) agglomeration and aggression occur
between particles in an epoxy system, which cause weakness, as
reported previously (Dastjerdi et al., 2018; Irvin et al., 2019). The
tensile data show that all the MCNC samples had higher tensile
strength than the standard. The results of the MCNC binding
themselves through -OH create a high strength linkage, with
potential interaction among them, thus increasing the adhesive
properties of the composite. The increasing MCNCs loading
resulted in agglomeration between particles, which weakens the
material, explaining the relative decrease in the adhesive properties
with individual loading.

Mechanical Properties
The main challenges for using epoxy resins and their composites
include the design of high processability (low-viscosity and

FIGURE 9 | (A) Shear strength and (B) shear modulus of pure epoxy resins and different concentrations (1%, 3%, and 5%) of MCNCs.
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cured) epoxy with high strength and toughness that can be
recycled and reused. Here, we also studied the epoxy system
for mechanical properties. The results showed good mechanical
properties of MCNCs with the E-51 epoxy system (Ertl, 2021;
Zheng et al., 2021). The MCNCs with silane coupling agent
showed much improvement, as shown in Figure 10. TETA
was used as a curing and toughening agent for thermoset
materials for epoxy resins. In recent years, scientists have
made significant progress in low synthetic viscosity, such as
hyperbranched esterification, etherification, hydrosilylation,
polymerization, and oxidation of double bonds. The low
viscosity of the curing agent can improve the mechanical
properties by separating the entangled molecular chains of the
epoxy system. Among the broad applications of TETA, one of the

essential uses in the industrial field is their simultaneous
reinforcing and toughening function on epoxy. The existing
methods of simultaneous reinforcing and toughening of epoxy
include the use of nanomaterials, block polymers, and
hyperbranched epoxy resins. The homogeneous dispersion and
size of nanoparticles and good adhesion between these epoxy and
CNCs are critical factors influencing the degree of improvement of
strength and toughness (Ahmed et al., 2019; Ahmed et al., 2021).

We faced challenges like highly efficient recycling,
understanding the homogeneous reinforcing and toughening
mechanism, and sustainable development of thermoset epoxy
resins. We prepared degradable hyperbranched epoxy resins by
esterification and a thiol-ene reaction based on high-performance
inexhaustible based epoxy. The cured epoxy composites showed

FIGURE 10 | Stress–strain curves of (A) standard and different concentrations (1%, 3%, and 5%) of native CNCs and (B) standard epoxy and epoxy-modified
CNCs (i.e., MCNCs).

FIGURE 11 | Contact angle measurement of (A) native and (B) epoxy-modified CNCs (MCNCs).
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good mechanical properties and degradability, including high
shear stress, high toughness, highly efficient degradation, and
recycling, resulting from the combined effects of the
hyperbranched topological structure of epoxy and good
compatibility.

TheContact Angle of CNCsWith E-51 Epoxy
System
The inherent properties of hydrophilicity and environmental
preferability of CNCs make them great candidates for application
in water-treatment membranes. Here, investigations on anisotropic
wetting induced by roughness texture after traditional surface
generation methodologies such as CNCs milling may be helpful
to optimize the selection of machining condition tools. The
proposed model can evaluate the wettability of hydrophilic target
materials with a non-composite wetting state, incorporating the
liquid spreading dynamics, geometrical aspects, and roughness
parameters of the solid surface. Considering the practical
applications, a verification of the model is presented through
systematic experiments. An investigation on the wettability of
CNCs with high illumination power monochromatic LED
surfaces establishes a hydrophilic, non-composite wetting state
during its interaction with water drops. The contact angle is
conventionally measured through the liquid, where a
liquid–vapor interface meets a solid surface. The contact angle of
water on native and modified CNCs with E-51 epoxy were carried
out to demonstrate the wettability of native and modified CNCs, as
shown in Figure 11. The abundant OH groups of native CNCs are
responsible for hydrogen bonding with the water (CA � 60 ± 2°).
The native CNCs lost their hydrophilicity after modification with
epoxy. The modified CNCs showed hydrophobic behavior (CA �
105 ± 2°) (Ali et al., 2021; Zhang et al., 2021).

CONCLUSION

This study synthesized CNCs and then observed their different
properties. The matrix of CNCs was successfully modified by 2-
carboxyethyl acrylate using a modified approach. CNC matrix
modification has been verified through different spectroscopic
techniques. MCNCs studied as a reinforcing material for different
polymers have been found to have good adhesive performance,
achieving high shear strength (15.1 MPa) at 5 wt% and modulus

(2,460 MPa) at 1 wt%. 2-carboxyethyl acrylate introduction to
CNCs has significant effects on the physicochemical properties of
CNCs. MCNCs of adhesive properties are improved due to the
dispersion and better interaction between grafted CNCs and the
E-51 epoxy system. The mechanical properties were also
enhanced and improved. The effects of EBSCA on the
adhesive and mechanical properties with epoxy systems
indicated that silane-coupling agents could effectively improve
the toughness of the epoxy system. CNCs consist of linear
polymers without water units, connected to four carbon atoms
via the β-glycoside bond. Therefore, CNCs play an important role
in different industrial applications in this preliminary work.
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