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Cordyceps militaris, a traditional medicinal ingredient with a long history of application
in China, is regarded as a high-value fungus due to its production of various bioactive
ingredients with a wide range of pharmacological effects in clinical treatment. Several
typical bioactive ingredients, such as cordycepin, D-mannitol, cordyceps
polysaccharides, and N6-(2-hydroxyethyl)-adenosine (HEA), have received
increasing attention due to their antitumor, antioxidant, antidiabetic, radioprotective,
antiviral and immunomodulatory activities. Here, we systematically sorted out the latest
research progress on the chemical characteristics, biosynthetic gene clusters and
pathways of these four typical bioactive ingredients. This summary will lay a foundation
for obtaining low-cost and high-quality bioactive ingredients in large amounts using
microbial cell factories in the future.
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INTRODUCTION

Cordyceps militaris is an entomopathogenic filamentous fungus, belonging to division Ascomycota,
class Sordariomycetes, order Hypocreales, family Clavicipitaceae. C. militaris has been demonstrated
to be beneficial in the treatment of male reproductive problems (Chen et al., 2017), chronic kidney
(Zhang et al., 2014; Hong et al., 2015), respiratory (Bai et al., 2020), heart, liver (Cheng et al., 2014; Liu
et al., 2014; Fan et al., 2018) and lung diseases (Wang et al., 2016), hyperglycemia, hyperlipidemia,
and cancer. Wild C. militaris is generally called Yong Chong Cao in China for its parasitizing within
the insect host’s body in winter and forming grass-like fruiting bodies by absorbing nutrients from
host’s body in summer. C. militaris, which is considered a model species of the genus, is
acknowledged to produce many bioactive secondary metabolites, including cordycepin,
D-mannitol, cordyceps polysaccharides, and HEA.

The most direct way to obtain these four bioactive secondary metabolites is to separate and extract
them from the wild and artificial cultivated C. militaris in the laboratory (Figure 1) (Tang et al., 2018;
Li X. et al., 2019). However, the long growth cycle, harsh environmental requirements and other
reasons, resulting in the technical cost of this kind of extraction industry may be relatively high, and it
will also increase the burden on the industrial environment.

In recent years, the rise of synthetic biology has enabled many industrial microorganisms to
produce various secondary metabolites to satisfy the demand of market (Teh et al., 2019). However,
there are no systematical illustration about the synthesis pathways of these biologically active
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substances in Cordyceps spp. Therefore, we summarized the
biosynthetic pathways of cordycepin, D-mannitol, cordyceps
polysaccharides, and N6-(2-hydroxyethyl)-adenosine (HEA).

Cordycepin
Cordycepin was first isolated in 1950 from liquid cultures of C.
militaris (Cunningham et al., 1951). In terms of chemical
structure, cordycepin is 3′-deoxyadenosine, consisting of two
fused heterocycles and an imidazole as shown in Figure 1C.
As a structural analog of adenosine and imidazole, cordycepin has
been found to have a wide range of pharmacological activities,
such as anti-tumor, immunomodulatory, anti-bacterial and anti-
inflammatory effects (Nakamura et al., 2015; Li et al., 2017; Jin
et al., 2018; Wang H. B. et al., 2019; Jang et al., 2019; Graeff et al.,
2020; Liu et al., 2021).

Based on its industrial application potential in medicine,
increasing studies in recent years have focused on the
improvement of C. militaris strain for adequate and stable
production of cordycepin, including genetic manipulations,
genome shuffling, and mutagenesis and hybridization.
However, the production of cordycepin remains challenging
due to low product yields, high cost and complex extraction
processes, limiting its industrial application. Given above,
developing more efficient strategies for cordycepin production
has been the focus of recent studies, among which the use of low-
cost substrates and genetically engineered microbial strains might
be the most promising approach. Therefore, an overview on
cordycepin biosynthesis and related genetic engineering
strategies with major points on the latest trends on study

methods for the evolution of cordycepin biosynthesis and
production is summarized in detail.

C. militaris Strain Improvement
In general, genetic manipulations have been used to screen the
cordycepin-producing strains. To our knowledge, strain
improvement of C. militaris mainly includes three stages.
Firstly, genome shuffling is used via a combination of
traditional mutagenesis technology and cell fusion technology.
It has been successfully applied to improve the production of
cordycepin in C. kyushuensis, whereby the highest production of
cordycepin reached 978.25 μg/g, representing a 9.63-fold increase
over the parent strain (Wang et al., 2017). By contrast, the
manipulation of individual genes mostly has only a limited
effect which might be due to the lack of systematic regulation
for cordycepin biosynthesis. For example, Lou et al. knocked out
the Cmfhp gene of C. militaris, which was speculated to play a role
in fruiting body development, nitric oxide (NO) metabolism,
conidia formation, and also in cordycepin production. However,
their results showed that the cordycepin yield of the strain did not
increase significantly in the Cmfhp knockout strain (Lou et al.,
2020). In addition, in a study of ribonucleotide reductase RNR
(RNRL and RNRM) gene overexpression strains the content of
cordycepin isolated from C. militaris transformants carrying
RNRM was remarkably higher than that of the wild-type
strain (Zhang et al., 2020b). Secondly, hybridization was
performed for genetic recombination in single spores of C.
militaris, the obtained strains after mutagenesis and
hybridization could produce 6.63 mg/g cordycepin, which was

FIGURE 1 | Cordyceps militaris cultured on a wheat medium (A) and on pupae (B) (Guo et al., 2016), and three typical bioactive components (C–E) of Cordyceps
militaris.
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increased by 35% than parent strain (Kang et al., 2017). Thirdly, a
multifunctional plasma mutation system (MPMS) was applied to
the improvement of strains, the results showed that the yield of

cordycepin obtained from a MPMS treated strain named GYS60
reached to 7.88 mg/ml, which was more than 20 times higher
than the yield of the wild-type strain (Zhang et al., 2020a).

FIGURE 2 | Cordycepin biosynthesis pathway. Abbreviations: 5′-RP, ribose-5-phosphate; PRPP, phosphoribosyl pyrophosphate; IMP, inosine monophosphate;
ASUC, N6-(1,2-dicarboxyethyl)-AMP; AMP, adenosine-5′-monophosphate; ADP, adenosine diphosphate; 2′-dADP, 2′-deoxyadenosine diphosphate; 2′,3′-cAMP,
2′3′-cyclic monophosphate; 3′-dAMP, adenosine-3′-monophosphate; 2′-C-3′-dA, 2′-carbonyl-3′-deoxyadenosine; PTN, pentostatin; 3′-dI, 3′-deoxyinosine; PRPPK,
phosphoribose pyrophosphate kinase; ADS, adenylosuccinate synthase; ADL, adenylosuccinate lyase; ADEK, adenylate kinase; NT5E, 5′-nucleotidase; ADK,
adenosine kinase; ADN, adenosine nucleosidase; RNR, ribonucleotide reductases; RNRM, RNR small subunit, NK/CNS3, an N-terminal nucleoside kinase of Cns3;
HisG/CNS3, a C-terminal HisG family of ATP phosphoribosyl transferases in Cns3; CNS2, HDc family of metal-dependent phosphohydrolase domain in Cns2; CNS1,
the oxidoreductase/dehydrogenase domain in Cns1; ADA, adenosine deaminase. The bold arrow indicates the main synthesis direction of cordycepin, the dashed
arrow represents the pathway that needs further verification, the full line represents the established pathway.
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At present, increased growth and cordycepin overproduction
have been achieved using different C. militaris strains, but there
are also many problems, such as the long growth cycle of the C.
militaris and the instability of breeding strain, which hinder its
application on an industrial scale. Thus, the construction of cell
factories with a short growth cycle capable overproducing
cordycepin has become a research hotspot.

Biosynthesis of Cordycepin
In order to obtain industrial cell factories that overproduce
cordycepin, we need to explore the gene cluster needed for
cordycepin synthesis and its synthesis pathway in vivo.
Although cordycepin was discovered in C. militaris in 1950,
the elucidation of its biosynthetic pathway has not been
resolved for a long time due to the lack of powerful genome
analyzing tools. Untill 2011, the adenosine metabolic pathways in
C. militaris and the cordycepin biosynthesis genes were primarily
disclosed based on genomics and transcriptomics analysis. The
recent development of cordycepin biosynthesis pathways was
summarized in Figure 2, which includes three pathways.

The first pathway of cordycepin biosynthesis in C. militaris is
shown in yellow. The synthesis starts from PRPP (phosphoribosyl
pyrophosphate) pathway, after which inosine monophosphate
(IMP) and L-Asp are converted by adenylosuccinate synthase
(ADS) to form N6-(1, 2-dicarboxyethyl)-AMP (ASUC). Then,
AMP and adenosine are successively formed under the catalysis
of adenylosuccinate synthase (ADL) and 5′-nucleotidase (NT5E).
With the development of bioinformatics and omics technologies,
four highly conserved protein coding genes named cns1-cns4
were found to be related to the metabolism of adenosine in 2017
by comparing large amounts of orthologous proteins between C.
militaris and A. nidulans with the efforts of Xia’s team (Xia et al.,
2017). They proved that CNS1-CNS3 were responsible for
cordycepin synthesis. The nucleoside/nucleotide kinase domain
of CNS3 catalyzed the hydroxyl phosphorylation at the 3′-OH
position of adenosine to form adenosine-3′-monophosphate (3′-
AMP). At the same time, the C-terminal HisG domain of CNS3
was found to convert adenosine to pentostatin, which can inhibit
the deamination reaction of cordycepin. The resulting 3′-AMP is
then dephosphorylated to 2′-carbonyl-3′-deoxyadenosine (2′-C-

FIGURE 3 | D-mannitol biosynthetic pathway in lactic-acid bacteria, H. sinensis and E. coli. (A) a. Proposed mannitol metabolism in non-lactic-acid bacteria and
homofermentative lactic-acid bacteria and b. heterofermentative lactic-acid bacteria PTS: phosphoenolpyruvate-dependent mannitol phosphotransferase system. The
size of the arrow indicates the trend of reaction. (B) A recombinant oxidation/reduction cycle in Escherichia coli for D-mannitol formation. (C) The predicted biosynthetic
pathway of D-mannitol in H. sinensis. AGP: glucose pyrophosphorylase; GALM: galactose mutarotase; HK: hexokinase; PGM: phosphoglucomutase; GPI:
glucose phosphate isomerase; MTLD:mannitol-1-phosphate dehydrogenas; manA: hexokinase-like mRNA coding protein (manA1-manA5). (D) Synthetic pathway
constructed in Escherichia coli leading to mannitol production from glucose. Bold arrows indicate overexpression.
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3′-dA) by CNS2. Cordycepin is finally produced from 2′-C-3′-dA
by oxidoreductase reactions mediated by CNS1 (Xia et al., 2017).
In 2020, Zhao et al. (2019) identified a single gene cluster
containing four genes encoding enzymes capable of
synthesizing cordycepin and pentostatin simultaneously in C.
kyushuensis, and named them ck1-ck4. This was consistent with
the research of Xia et al. (2017).

The second pathway is shown in grey in Figure 2 in O.
sinensis, the reduction of adenosine diphosphate (ADP) to 2′-
deoxyadenosinediphosphate (3′-dADP) is catalyzed by highly
conserved ribonucleotide reductases (RNR), and then
adenylate kinase (ADEK) and 5′-nucleotidase (NT5E) are
involved in phosphorylation and dephosphorylation in the
adenosine metabolic pathway. RNR, ADEK, and NT5E were
also revealed in the C. militaris genome in 2011 (Zheng et al.,
2011), and both of C. militaris and O. sinensis have the capability
of producing cordycepin. Thus, according to the similarity to 2′-
deoxyadenosine biosynthesis, Xiang et al. predicted that the
biosynthesis of cordycepin may proceed through a reductive
mechanism after transcriptome analysis of the O. sinensis
fruiting body (Xiang et al., 2014), but they didn’t verify the
cordycepin biosynthesis pathway. Untill 2017, the recombinant
E. coli which expressed CmRNR showed RNR activity on ADP
but did not produce 3’ -deoxy ADP (Kato et al., 2017), which
seemed to deny the participation of RNR in cordycepin
biosynthesis in C. militaris. But in 2020, Zhang et al. indicated
that the RNR consisted of two subunits: a large one (RNRL) and a
small one (RNRM), RNRM could regulate the biosynthesis of
cordycepin directly via the reduction of adenosine, as
demonstrated by overexpressing RNRM in C. militaris (Zhang
et al., 2020b).

The third pathway are branched from the precursor and the
direct metabolite of 3′-dAMP. The 3′-AMP of cordycepin

precursor can also be synthesized from 2′, 3′-cyclic AMP
except from 3′-dADP and adenosine, which is degraded from
mRNA degradation in C. militaris (Wongsa et al., 2020).

To validate whether some of these gene clusters mentioned
above can enable other microbials to produce cordycepin, the
cns1–cns3 gene cluster were firstly expressed in M. robertsii
(Metarhizium robertsii) (a closely related insect pathogenic
fungus), and finally the recombinant M. robertsii produced
cordycepin (Xia et al., 2017). Besides that, the budding yeast,
Saccharomyces cerevisiae heterologous expressed either cns1–cns3
or cns1–cns2 could produce cordycepin (Xia et al., 2017; Huo
et al., 2021). Therefore, the function of CNS3 in the synthesis of
heterologous cordycepin has not yet been confirmed. At present,
the specific functions of other related genes in the biosynthetic
pathway of cordycepin have yet to be verified, and there are few
studies on cordycepin cell factories, and a lot of related
explorations are needed.

D-Mannitol
In 1957, an active substance was first isolated from C. sinensis
(Berkeley) Saccardo strain and initially named cordycepic acid (Cao
et al.), and in 1963 its structure was revised to D-mannitol
(Figure 1D). D-mannitol is a linear six-carbon polyol that can be
considered an isomer of D-sorbitol, differing only in the orientation
of the C2-OHgroup. On account of its unique physical and chemical
characters, D-mannitol has valuable applications in medicine, fine
chemicals, textiles, and food (Duan et al., 2018). It has been shown
that D-mannitol can activate mitochondrial ATP-sensitive
potassium (mKATP) channels to protect heart (Feige et al., 2021).
In addition, D-mannitol can also be a adjunctive therapy for acute
promyelocytic leukaemia (Guo et al., 2021). Due to its wide range of
applications, D-mannitol had a total market value of USD 209.4
million in 2015, and its demand seems to increase in the future (Wei

FIGURE 4 | Flow chart of the purification of polysaccharides from C. militaris.
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et al., 2021). Therefore, many scientists have studied strategies to
increase the biotechnological production of D-mannitol.

There are currently three main methods to produce
D-mannitol, including chemical synthesis and biosynthesis.
The chemical synthesis of D-mannitol starts from D-fructose,
D-glucose, and D-mannose. And then after catalytic
hydrogenation, the final product is obtained through stepwise
crystallization (Jin and Li, 2006). However, the process of
chemical synthesis requires large amounts of energy and

produces problematic by-products, which severely limit its
wide application (Cao et al., 2018). Besides that, there have
many organisms in nature that can synthesize D-mannitol,
such as higher plants, algae, lichens, bacteria and fungi.
However, in photosynthetic organisms, D-mannitol is the
main primary photosynthetic product and energy storage
compound, its level is difficult to reach a large amount
without affecting the growth of organisms. Therefore, more
promising strategies have been exploited on lactic acid

TABLE 1 | Comparison of extraction methods for polysaccharides.

Extraction methods Advantages Disadvantages

Hot or boiling water Simple operation, wide range of applications, cheap solvent Short storage time and many product impurities
Backflow method Controllable temperature, less solvent consumption, simple operation Low efficiency, long time
Enzyme-assisted
extraction

Specificity, high efficiency and mild reaction conditions Strict reaction conditions, the enzyme is easy to be inactivate, and
the conditions need to be optimized

Ultrasonic extraction Low extraction temperature, simple operation Restricted by ultrasonic attenuation factors, the extraction rate is
limited

Microwave extraction High selectivity, simple and fast, can assist other extraction techniques to
work together, save solvent, high extraction rate, low cost

Less samples processed at one time

Ultra-high pressure
extraction

Preserve the activity of the extract High equipment investment

Subcritical water
extraction

Simple equipment, short extraction time, large selection of solvents, less
pollution, wide application prospects

Use more solvents, longer extraction time, and relatively high cost

TABLE 2 | Polysaccharides from C. militaris: extraction methods, characteristics, chemical structures and bioactivities.

Living strains Extraction Category Components Linkages Bioactivities References

Cordyceps
militaris NG3

size exclusion
chromatography (SEC)

Fr-I — — — Kim, (2003)
Fr-II
Fr-III
Fr-IV

Cordyceps militaris ethanol precipitation,
deproteination and gel-
filtration chromatography

CPS-2 Rha:Glc:Gla � 1: 4.46: 2.43 1→4, 1→6 linkages — Yu et al. (2004a);
Yu et al. (2004b)CPS-3 D-glucose,ɑ-D-glucose 1→4, 1→6 linkages —

Cordyceps militaris
Grown on
Germinatd
Soybeans

boiling water APS D-galactose,L-
arabinose,D-xylose,
L-rhamnose, and
D-galacturonic acid

Araf-(1f, f5)-Araf-(1f,
f4)-Galp-(1f and f4)-
GalAp-(1f residues

modulation of the immune
function of macrophages

Ohta et al. (2007)

Cordyceps militaris hot water extraction and
ethanol precipitation

CMP Fr I — — — Lee et al. (2010)
CMP Fr II Glu:Gal:Man � 3.28:1.53:1 1→2, 1→4, 1→6

linkages
Upregulate the phenotypic
functions of macrophages

CMP Fr III — — —

Cordyceps militaris hot water and precipitated
by 50% ethanol

W-CBP50-II ɑ-glucose,ɑ-mannose ɑ-type glycosidic
linkages

antioxidant activities Chen et al. (2013)
ɑ-galactose and ɑ-
arabinose uronic acid and
protein

Cordyceps militaris Soxhlet extraction using
temperature gradient

β-(1→3)-D-
glucan

D-glucan 1→3 linkages anti-inflammatory Smiderle et al.
(2014)

Cordyceps militaris DEAE-52 cellulose anion
exchange column and a
Sepharose

CMN1 L-rhamnose, L-arabinose,
D-mannose, D-galactose

1→2, 1→3, 1→4,
1→6 linkages

anti-hypoxic Dong et al. (2015)

G-100 column
Cordyceps militaris Subcritical water

extraction (SWE)
CMP-W1 Glu:Gal:Man � 1:1.29:2.84 — immunostimulatory activity Luo et al. (2017)
CMP-S1 Glu:Gal:Man � 1:1.09:2.05 —

Cordyceps militaris Column chromatography CM3-SⅡ Glu:Gal:Man � 1:3.7:10.6 1→2, 1→4, 1→6
linkages

Hypolipidemic Wang et al.
(2021)

Cordyceps militaris
cultivated on hull-
less barley

hot water extraction and
ethanol precipitation

SDQCP-1 Glu:Gal:Man � 1:9.7:13.3 1→2, 1→4, 1→6
linkages

antioxidant and
immunomodulatory

Zhang et al.
(2020c)
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bacteria, filamentous fungi and Escherichia coli to produce
D-mannitol via environmentally friendly biosynthetic
pathways in recent decades.

Synthesis of D-Mannitol in Lactic Acid
Bacteria
Lactic acid bacteria (LAB) are known to be a type of bacteria that
own the capability of efficiently converting sugars into
D-mannitol. Based on the latest report, fermentation of apple
juice with the well-known D-mannitol-producing LAB strain
Leuconostoc citreum TR116, the bioreactor reduction of sugar
was scaled up to 98.6 g/L (83%) and the production of
D-mannitol was achieved to 61.6 g/L (Rice et al., 2020). The
high D-mannitol production of LAB made them into the first
organism to be studied for D-mannitol biosynthesis. Thus, the
biosynthesis of D-mannitol in LAB is the most clearly studied
pathway at present (as shown in Figure 3A). In
homofermentative lactic-acid bacteria, the synthetic

D-mannitol is from fructose-6-P, under the catalysis of
mannitol-1-phosphate dehydrogenase (M1PDH) and
mannitol-1-phosphatase (M1Pase), and fructose-6-P is
transformed into mannitol-1-P and then eventually form
D-mannitol as shown Figure 3A a. However, the reaction that
D-mannitol as a carbon source and converted into mannitol-1-P
by a phosphoenolpyruvate-dependent specific
phosphortransferase system (PTS) is the main reaction
between mannitol-1-P and D-mannitol, and this pathway is
usually used to degrade instead of form D-mannitol.
Therefore, in order to establish efficient D-mannitol
production, Xiao, H., et al. characterized how the D-mannitol
genes (including M1PDH encoding gene mtlD, PTS encoding
genesmtlA andmtlF, and the regulatorMtlR encoding genemtlR)
in L. lactis were organized. Finally, by overexpressing the mtlD
gene and using stationary-phase cells as biocatalysts, they
attained 10.1 g/L D-mannitol with a 55% yield. To the best of
our knowledge, this remains the highest titer ever reported for L.
lactis (Xiao et al., 2021). By contrast, the D-mannitol from

FIGURE 5 | Analysis of the putative metabolic pathway of N6 -(2-hydroxyethyl) adenosine (HEA); Abbreviations: PTDSS, phosphatidylserine synthase; PSD,
phosphatidylserine decarboxylase; EPT, ethanolamine-phosphotransferase; PLC, phospholipase C; ETNK: ethanolamine kinase; ADHOS, adenylohydroxyethyl
synthetase; NT5E, 5′-nucleotidase.
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heterofermentative lactic-acid bacteria is the result of uptaking
and utilizing fructose and D-mannitol is synthesized directly
from fructose by mannitol-2-dehydrogenase (M2DH) without
the synthesis of mannitol-1-P (Figure 3A,B) (Wei et al., 2021).

Synthesis of D-Mannitol in Filamentous
Fungi
Among filamentous fungi, H. sinensis is known to produce
D-mannitol. In 2016, hexokinase and glucose phosphate
isomerase were found to be involved in biosynthetic pathway
of D-mannitol, due to their significant upregulation by 5.27-, and
3.94-fold according to real-time PCR. Moreover, judging from
the glycolytic pathway and fructose-mannose pathway, Shan Lin
et al. proposed a possible biosynthetic pathway of D-mannitol
(shown in Figure 3C).

In this pathway, α-D-glucose-1, 6-bisphosphate and α-D-
glucose are converted by glucose pyrophosphorylase (AGP)
into α-D-glucose-1P, which can be interconverted with α-D-
glucose-6P by phosphoglucomutase (PGM). α-D-glucose is
converted into α-D-glucose-6P under the catalysis of
hexokinase (HK), and glucose phosphate isomerase (GPI)
converts α-D-glucose-6P into β-D-fruccose-6P and the
mannitol-1-phosphate dehydrogenase (MTLD) converts β-D-
fruccose-6P into D-mannitol-1P (Lin et al., 2016b). However,
the phosphatase that converts D-mannitol-1P into D-mannitol
was not proposed, which might indicate that this enzyme in H.

sinensis be un-annotated in the protein databases. There are two
conceivable reasons to explain this finding. One is that the
homology of mannitol-1-phosphatase in H. sinensis compared
with the known mannitol-1-phosphatases from other species is
low, and the other one is that certain unknown phosphatases may
replace D-mannitol-1P for generating D-mannitol in H. sinensis.
Additionally, there might be two branching reactions in this
pathway that are not conducive to the synthesis of D-mannitol
shown in Figure 3C. Firstly, the α-D-glucose at the beginning of
the reaction can be converted into β-D-glucose under the catalysis
of galactose mutarotase (GALM). Secondly, before D-mannitol-
1P is produced, a part of the substrate β-D-fruccose-6P can be
converted into D-mannose-6P under the action of a hexokinase-
like mRNA coding protein (manA).

Synthesis of D-Mannitol in Recombinant
Escherichia Coli
D-mannitol can also be produced by constructing engineered
Escherichia coli, which can be divided into the following three
stages according to different substrate sources. Firstly, in 2004, a
recombinant E. coli strain was constructed as biocatalyst for the
whole-cell biotransformation of D-fructose into D-mannitol, and
the introduction of a gene encoding a D-fructose transporter
protein (GLF) from Zymomonas mobilis enabled the cells to
import D-fructose (Figure 3B). Finally, the recombinant
E. coli BL21 (DE3) expressing glf, fdh and mdh was able to

TABLE 3 | Comparison of four bioactives existing methods of acquisition.

Bioactives Existing methods of
acquisition

Productivity Advantages Disadvantages

Cordycepin C. militaris
fermentation

6,200 mg/L (fermentation broth) Sari et al.
(2016)

Relatively high yield Strains degeneracy, long
fermentation cycle

6.63 mg/g (sclerotium) Kang et al. (2017)
Chemical synthesis 36% (starting from adenosine) Huang

et al. (2017)
Convenient, quick effect, controllable
conditions

High cost for the treatment of the
pollution

Microbial cell factory 137.27 mg/L (Recombinant
Saccharomyces cerevisiae fermentation
broth) Huo et al. (2021)

Low cost and less pollution, short
fermentation cycle, conducive to industrial
production

Lower yield than C. militaris
fermentation system

D-mannitol Bioreactor
fermentation

61.6 g/L (fermentation broth with fructose
as substrate) Rice et al. (2020)

Relatively high yield High fermentation cost, difficult to
remove undesirable metabolites

Chemical hydrgenation
of high-fructose

65% (starting from D-sorbitol, D-glucose,
D-fructose) Jin and Li (2006)

Relatively high yield Requires high pressures, high
temperatures, hydrogen gas,
and raney nickel catalyst

Biotransformation 87% (starting from glucose) Reshamwala
et al. (2014)

High total sugar utilization, without the use
of complex media components and
elaborate process control mechanisms

Unstable over a long term

Microbial cell factory 218 mg/L (fermentation broth) Madsen
et al. (2018)

Short fermentation cycle, low cost and
less pollution

Relatively low yield

Polysaccharides Cordyceps
fermentation

Varies due to different extraction and
purification methods

— Lack of standard method of
polysaccharide collection

Yield can be increased by homologous
co-overexpression of genes involved in
precursor nucleotide sugars biosynthesis
Zhou et al. (2018)

Conducive to genetic manipulation and
metabolic engineering to super-produce
polysaccharides in other fungi

Need further research

N6-(2-hydroxyethyl)
-adenosine

Cordyceps
fermentation

94 mg/L (fermentation broth) Chunyu
et al. (2019)

Relatively high yield Strains degeneracy, long
fermentation cycle

Chemical synthesis 74% (acrylic acid and chloroethanol) Dong
and Gao (1996)

High yield High material cost and polluted
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form 362 mM D-mannitol from an initial 500 mM D-fructose of
within 8 h, and the molar yield YD-mannitol/D-fructose reached 84%
and a specific productivity was more than 4 g D-mannitol g−1

(cell dry weight) h−1 (Kaup et al., 2004). In order to overcome the
instability of the recombinant strain, which possibly caused by
factors such as the internal pH change of the cells, loss of cofactor
NAD, high formate concentrations and export of D-mannitol, the
fupL gene was additionally expressed in biotransformation
experiments, and the final D-mannitol productivity of the
strain was enhanced by 20% (Heuser et al., 2009).

Secondly, in order to convert D-glucose to D-mannitol, an
intracellular glucose isomerase, formate dehydrogenase,
D-mannitol dehydrogenase, glucose isomerase, and glucose
facilitator were co-expressed in the E. coli strain I, resulting in
the production of up to 821 mMD-mannitol at the optimized pH
and temperature (Kaup et al., 2005). To construct a recombinant
E. coli strain which can convert glucose into D-mannitol
efficiently without the assistance of extracellular enzymes,
Reshamwala et al. (2014) assembled a synthetic pathway
(shown in Figure 3D) in E. coli to change carbon flow
towards D-mannitol production by expressing two native
enzymes from the protozoan parasite Eimeria tenella.
Mannitol-1-phosphate dehydrogenase (MTLD) reduced
fructose-6-phosphate to mannitol-1-phosphate, and mannitol-
1-phosphatase (M1Pase) dephosphorylated mannitol-1-
phosphate to yield D-mannitol. The reduction of fructose-6-
phosphate is accompanied with the oxidation of NADH, and
for the sake of regenerating NADH, the phosphite dehydrogenase
(PTXD) of Pseudomonas stutzeri was expressed to make it the
ability to catalyze the almost nonreversible oxidation of phosphite
into phosphate, and at the same time NAD+ was reduced into
NADH. D-mannitol was then transported across the membrane
and released into the culture supernatant, whereby a molar yield
of 87% was achieved without using complex media components
and elaborate process control mechanisms (Reshamwala et al.,
2014).

In recent years, new insights have emerged on the D-mannitol
biosynthetic pathway, especially after the first algal genes involved
in D-mannitol production were identified in the model brown
alga Ectocarpus (Rathor et al., 2020). However, to accomplish
simplifying the engineering process and generate ready-made
protein modules, their functionality in heterologous systems
remains to be tested. Madsen et al. (2018) expressed a
mannitol-1-phosphate dehydrogenase (M1PDH) and a
mannitol-1-phosphatase (M1Pase) by fusing an enzyme from
the marine alga Micromonas pusilla in E. coli and successfully
constructed simpler way to assemble and optimize recombinant
metabolic pathways to produce the building blocks of
D-mannitol.

To sum up, these three synthesis methods are currently
different in the degree of industrial application. For LAB, it is
an important group of microorganisms for fermentation of a
large range of products, such as yogurt, soy sauce, antiseptic
substance and so on. Its fermentation technology is relatively
mature and controllable, so it is usually used in industry to
produce D-mannitol by fermentation with fructose as a
substrate. However, lactic acid bacteria fermentation

requires a large amount of fructose, which is costly, and
undesirable metabolites are difficult to remove. For
filamentous fungi, D-mannitol is one of important active
ingredients formed by direct reduction of fructose-6-
phosphate, but the pathway between D-mannitol-1P and
D-mannitol needs to be further verified. Once this
approach is verified, we can try to apply it to the
construction of mannitol cell factories. For recombinant
E. coli, ⅰ) by introducing exogenous genes, substrates and
product transporters, E. coli can be used as a biocatalyst to
produce D-mannitol with fructose or glucose. ⅱ) by
transferring exogenous fusion proteins into E. coli to
produce D-mannitol.

CORDYCEPS POLYSACCHARIDES

C. militaris polysaccharides represent a class of biological
macromolecules with diverse structures and extensive
physicochemical properties. Many studies have shown that
polysaccharides isolated from artificial cultured C. militaris
have diverse pharmacological activities, including antitumor
(Ukai et al., 1983; Kim et al., 2001), anti-inflammatory and
immunoregulatory activities (Yu et al., 2004a). On account of
the diversities in raw materials, extraction and purification
methods, different cordyceps polysaccharides with diverse
structures and bioactivities have been extracted and identified
from C. militaris. To the aspect of its clinical application, the
main hindrance was the repeatability, reliability and
consistency of cordyceps polysaccharides preparation
(Zhang et al., 2019). Recently, scientists mainly put the
focus on establishing a standard method for the extraction
and preparation of cordyceps polysaccharides, the
pharmaceutical activity of the obtained cordyceps
polysaccharides and the study of the cordyceps
polysaccharides biosynthesis pathway.

Extraction, Purification and Identification of
Cordyceps Polysaccharides
To our knowledge, many methods were used to extract
polysaccharides from C. militaris, such as pure water, acidic/
alkaline solutions, or heated buffer solutions as shown in
Figure 4. Although hot or boiling water is the most
convenient solvent for the extraction of cordyceps
polysaccharides, the extraction time is too long and the
extraction rate is too low, so some new extraction methods
have recently been exploited to improve the extraction
efficiency, such as microwave extraction, ultra-high pressure
extraction, subcritical water extraction, ultrasonic extraction,
and enzyme-assisted extraction (Zhang et al., 2019; Park and
Lee, 2021), and the differences between these extraction methods
are shown in Table 1.

Due to the complex chemical structure of fungal
polysaccharides, its extraction from the same raw material
can also have different structures and exhibit different
biological activities. In order to study the structures of
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these cordyceps polysaccharides in detail, many studies were
done on the structure and function of cordyceps
polysaccharides. At the beginning, most of the reports
mainly focused on the extraction of cordyceps
polysaccharides but didn’t further disclose the
components, linkages and bioactivities of the extracted
cordyceps polysaccharides due to the lack of valid
methods. For example, as shown in Table 2, Kim S W
et al. firstly obtained four groups of polysaccharides
(named as Fr-I, Fr-II, Fr-III, and Fr-IV) from the culture
filtrates of C. militaris, however, those components, linkages
and bioactivities were not analyzed in detail (Kim, 2003).

In 2004, ethanol precipitation, deproteination and gel-
filtration chromatography were sequently applied to purify
polysaccharides from the hot-water extracted C. militaris, and
obtained four fractions as shown in Table 2. Their formula
weights were detected using gel-filtration chromatography, and
the structures of CPS-2 and CPS-3 were linked by 1→4 or 1→6
linkage, which were elucidated by sugar analysis, Smith
degradation, IR and 13C–NMR spectroscopy (Yu et al.,
2004b). In 2010, Lee J S et al. used DEAE-cellulose and
Sepharose CL-6B column chromatography to obtain the crude
water-soluble polysaccharide CMP (C. militaris polysaccharide)
from the fruiting bodies of C. militaris after hot water extraction
and ethanol precipitation, termed CMP Fr I, CMP Fr II, and CMP
Fr III (Lee et al., 2010). Adequate evidences showed that these C.
militaris polysaccharides own the activities of antioxidant (Chen
et al., 2013), antiangiogenetic (Zeng et al., 2014), anti-
inflammatory (Smiderle et al., 2014), anti-hypoxic (Dong
et al., 2015), and immunostimulatory activities (Luo et al., 2017).

The Biosynthesis of Cordyceps
Polysaccharides
Researches on polysaccharides biosynthesis of other organisms,
including overexpression of key polysaccharide biosynthetic
genes (Zhou et al., 2018), joint expression of multiple genes
(Qu et al., 2022), blocking polysaccharide synthesis bypass (Lei
et al., 2020), etc. are all feasible ways to increase yield. However,
because of the structural determination of cordyceps
polysaccharides is still limited, the disclosure of synthesis
pathway is not clear until now, the research level of
polysaccharide biosynthesis is lower than that of other active
substances in Cordyceps. This complicated situation has also led
to the current lack of researches on the biosynthesis of cordyceps
polysaccharides.

In 2016, a study by Shan Lin et al. (Lin et al., 2016a) opened
a significant avenue for finding key enzymes involved in the
cordyceps polysaccharide biosynthesis pathways. To enhance
the cordyceps polysaccharide (CP) production from
submerged cultivation of H. sinensis, 2 mM of manganese
sulfate on day 0 was the optimal amount and timing of
addition, and the CP production reached to the optimum
with 5.33%, which was increased by 93.3% compared with
the control. Notably, they found that the intracellular mannose
content decreased by 43.1% during cultivation under
manganese stimulation, and the consumption of mannose

just corresponded with the accumulation of CP. This
mannose biosynthesis pathway was the first verified
pathway which constituted a vital section of CP
biosynthesis, and the transcriptional levels of the
biosynthetic genes indicated that the transcription of
cordyceps polysaccharides synthesis related genes (cpsA)
upregulated 5.35-fold significantly, implicating a crucial
gene involved in both mannose and CP biosynthesis.
However, the exact relationship between mannose and CP
biosynthesis is still unknown.

N6-(2-Hydroxyethyl)-Adenosine
N6-(2-hydroxyethyl)-adenosine (HEA) is a derivative of adenosine
that was the first identified calcium ion channel antagonist from
biological sources. As early as 1983, Furuya et al. isolated HEA from
the hyphae of Cordyceps grown in liquid culture, and this pioneering
finding was published in phytochemistry.

The molecular weight of HEA is 311.29, its molecular formula is
C12H17N5O5, and its structural formula is shown in Figure 1E. It
possesses many activities, such as protection against ultraviolet
radiation, blood-thinning, anti-inflammatory (Li I.-C. et al., 2019;
Wang X. et al., 2019; Chyau et al., 2021), analgesic, and
antihypertensive activities (Li I.-C. et al., 2019), protective effects
against diabetic kidney disease (Wang X. et al., 2019), as well as
inhibiting the proliferation of tumor cells, protecting the brain
(Zhang et al., 2016), and inducing apoptosis of gastric carcinoma
cells (Xie et al., 2020). HEA is generally regarded as being at the
intersection of medical care, cosmetics and biological defense.
Consequently, it is considered the most important biologically
active ingredient to measure the quality of Cordyceps products.
Compared with other compounds obtained from Cordyceps, such
as the well-known cordycepin, there are few patents related to HEA.
The research on HEA is still in the early stage of exploration. At
present, there are fewer studies on the screening and hybridization of
HEA-producing strains, and more studies focused on the
physiological effects of HEA.

Recently, an enzyme from C. militaris with 74% amino acid
sequence similarity to adenylosuccinate synthetase (a key enzyme for
adenosine synthesis) was identified by bioinformatic analyses, which
suggested that the biosynthesis of HEA was probably similar to that
of the conversion of inosine monophosphate (IMP) to adenosine
(shown in Figure 2 in grey above). Accordingly, a hypothetic
biosynthesis pathway for N6-(2-hydroxyethyl) adenosine in C.
militaris was proposed as shown in Figure 5 (Chen et al., 2021).
Similar to the conversion of IMP and L-aspartate into N6-(1, 2-
dicarboxyethyl)-AMP by adenylosuccinate synthetase, IMP and
ethanolamine can be converted into N6-(2-hydroxyethyl)-AMP
by adenylyl hydroxyethyl synthetase, and N6-(2-hydroxyethyl)-
AMP is subsequently dephosphorylated to yield HEA.

At present, there are no other report on the biosynthetic
pathway of HEA, and in-depth study of its biosynthetic
mechanism will open up new ways for the wide application of
HEA. Therefore, elucidating the synthesis pathway of HEA at the
protein level, identifying the HEA biosynthesis gene clusters,
cloning the enzyme-coding genes related to HEA synthesis, and
increasing the output of HEA throughmetabolic engineering, will
be a breakthrough in the research of HEA.
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CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

C. militaris is closely related to the highly prized O. sinensis, both of
them have been reported without toxicity based on the results of
chromosomal aberration of CHL cells, Ames test, acute toxicity test
and MN test of bone marrow cells. In addition, compared with O.
sinensis, C. militaris has lower cost of cultivation (Gong et al., 2003;
Gong et al., 2004; Long et al., 2021), which makes it a promising
substitute for O. sinensis. In nature, the formation of C. militaris
fruiting bodies requires a specific ecological environment and host
insects, which leads to its scarcity as a natural resource. In view of the
severe situation of the limited natural resources of C. militaris and
the long artificial cultivation cycle, researches have attempted to
increase the output of various bioactive components using strategies
including chemical synthesis, microbial fermentation, and
biosynthesis. And we compared these existing methods of
obtaining the four active substances mentioned above in
Cordyceps in Table 3. Among them, biosynthesis is undoubtedly
the most popular and promising approach due to its low impact on
the health and the environment.

In future research, synthetic biology techniques can be used to
verify the inferred cordycepin biosynthetic pathway. Metabolic
engineering transformation, process engineering optimization
and other strategies can be applied to optimize cell factories.
For D-mannitol, optimize the cell factory in E. coli probably
become the major trend of industrial application. Since the yield
of D-mannitol obtained through these referred methods is
relatively low, the specific control strategies need to be further
studied. For instance, deleting pathways for carbon dissimilation
that compete with D-mannitol biosynthesis, using optimized high
cell density biotransformation and engineered strains to increase
yield. Besides, we can also try to construct D-mannitol-producing
strains with other strains with clear genetic background and
simple operation. For cordyceps polysaccharides (CP), they
have a variety of complex structures and compositions, and
genes related to the production of CP are a large and diverse
group, therefore, more in-depth researches are needed to explore

CP synthesis and its regulatory mechanism. For HEA, its
biosynthetic pathway has not been clearly reported so far, the
speculated pathway mentioned in our review can be used as an
entrance for studying HEA synthesis. In conclusion, this review
provides evidence to further improve and study the biosynthesis
of the bioactive components of Cordyceps, including cordycepin,
D-mannitol, cordyceps polysaccharides and HEA.
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