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Biological tissues are complex hierarchical materials, difficult to characterise

due to the challenges associated to the separation of scale and heterogeneity of

the mechanical properties at different dimensional levels.

The Digital Volume Correlation approach is the only image-based experimental

approach that can accurately measure internal strain field within biological tissues

under complex loading scenarios. In thisminireviewexamplesofDVCapplications to

study the deformation of musculoskeletal tissues at different dimensional scales are

reported, highlighting the potential and challenges of this relatively new technique.

The manuscript aims at reporting the wide breath of DVC applications in the past

2 decades and discuss future perspective for this unique technique, including fast

analysis, applicationson soft tissues, highprecision approaches, andclinical applications.
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1 Introduction

Understanding the mechanical properties of musculoskeletal tissues and how they

deform under load is fundamental to assess the effect of diseases and to optimise

treatments. For example, the bone risk of fracture is associated with its local ability to

resist cracking, which is associated with its local deformation (i.e., if a bone is compressed

beyond 1% or stretched beyond 0.7% (Bayraktar et al., 2004) local permanent deformation

and damage will occur that will lead to fracture if not healed).

However, the mechanical properties of biological tissues are complex and driven by their

heterogeneous structures, which are built in spatial hierarchical arrangements. For most

engineeringmaterials, where themechanical properties can be usually characterised evaluating

only two dimensional levels (e.g., the macrostructure and the grain in metals), it is relatively

easy to estimate the deformation of the structure under complex loading using homogenisation
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techniques. In such cases, application of contact sensors such as

strain gauges are enough to measure the strain under load and

simple interpolation functions can be used to accurately estimate the

field of deformation. For biological tissues this is not possible. In fact,

heterogeneity of the structures requires a much more detailed

assessment of the local strains, hundreds or thousands of (micro)

sensors would be needed to characterise the deformation of the

tissue, which is not feasible nor practical. Therefore, Digital Image

Correlation (DIC) has been developed to perform superficial full-

field measurements of deformation (Palanca et al., 2016a). However,

the complex internal structural patterns of biological tissues do not

allow for simple extrapolation of the strains measured at the surface

to infer internal strains. Therefore, another technique has been

developed: Digital Volume Correlation (DVC, originally called

“texture correlation” in (Bay, 1995) for assessing the 3D

deformation of trabecular bone).

DVC requires the acquisition of 3D images of themusculoskeletal

tissue in its undeformed and deformed configurations, and the

application of image-processing correlation algorithms to track the

heterogeneous displacement and strain fields induced by the external

load. Time-lapsed three-dimensional (3D) micro-computed

tomography (microCT) imaging of specimens under loading (also

referred to as in situ mechanical testing) has enabled the study of

deformation and failure mechanisms in bone and biomaterials (Bay,

1995; Nazarian et al., 2005). With DVC the displacement and strain

fields can then be evaluated in 4Ds (across space and time/load level)

(Roberts et al., 2014; Grassi and Isaksson, 2015).

Several DVC approaches have been developed and used to

characterise the deformation in different musculoskeletal tissues,

at different dimensional scales. It is clear that DVC has huge

potential to unravel the mechanism of mechanical deformation

within biological tissues, as highlighted by the increasing number

of studies using this technique in the past 20 years: since the early

2000s more than 150 papers have been published (Search Pubmed:

“Digital Volume Correlation”), of which approximately 110 are

related to musculoskeletal tissues. Nevertheless, a number of

challenges and potential pitfalls associated with in situ mechanical

testing [e.g., see recent review (Dall’Ara et al., 2022)] and the

application of image correlation algorithms have to be addressed

in order to obtain, report and interpret DVC results in a robust way.

The goal of thismini-review is to briefly report examples ofDVC

applications formusculoskeletal tissues, to highlight open challenges,

and to report recent developments that have the potential of further

improving its applicability in musculoskeletal research.

2 Digital volume correlation
approaches and applications

2.1 Local vs. global approaches

Two main families of DVC approaches (local and global)

have been developed and are currently available as commercial

software, freeware or customised solutions/services. In both cases

probably the most important parameters for obtaining the best

displacement and strain measurements with DVC are the

microstructural heterogeneity of the studied tissue

(i.e., distribution of features within the image domain) and

the quality of the input images (i.e., signal to noise ratio).

Local approaches are based on the subdivision of the image

into smaller sub-volumes and the spatial correlation of metrics

computed in each of the sub-volumes of the undeformed and

deformed image independently. Interpolation (e.g., tri-linear) is

used to calculate displacements of voxels located between nodes.

The final displacement is therefore a 3D full-field average

displacement of the pattern within that sub-volume between

reference and deformed volume. From the field of resultant

displacement vectors for each sub-volume, the field of strain

components is computed (e.g., using a centered finite difference

scheme). Different parameters (i.e., correlation function,

subvolume size, overlap, interpolation, etc.,) affect the

precision and accuracy of the algorithm, as demonstrated for

bone applications (Dall׳Ara et al., 2017). Different correlation

metrics have been used, the most common being direct

correlation (DC) and fast-Fourier-transform (FFT), which was

found to be faster but less accurate than DC for bone applications

(Palanca et al., 2016b). This approach can be quite accurate in

predicting local deformations but there may be regions where the

correlation is low. Therefore, it is fundamental to examine the

correlation map (distribution of coefficients that provide the

confidence of the local correlation) and trust the results only in

the highly correlated sub-volumes. Different threshold values for

local correlation have been used in the literature for different

applications in musculoskeletal tissues and biomaterials. While a

threshold of 60% can be considered acceptable, correlation values

above 80% should be considered for optimal applications.

Moreover, while for local approaches the correlation and

accuracy in strain measurement is usually good within the

specimen’s domain and it is acceptable close to the border,

large errors are usually found outside the specimen, where

little information is available. Therefore, a masking approach

to remove the effect of potential noise outside the specimen is

recommended (Palanca et al., 2016b). In any case, local DVC

parameters should be optimised for the different applications, in

function of the quality of the input images, the heterogeneity of

the features visible in the images, and the level of deformation the

tissue is subjected to.

Global approaches are based on the minimisation of the

difference of the deformed image and the registered undeformed

image when a continuous displacement field is applied. The

registration equations are solved in a grid of points (e.g., regular

or heterogeneous, hexahedral or tetrahedral) called nodes.

Interpolation (e.g., tri-linear) within the cell of the grid is

used to calculate the displacements from the nodal values.

Usually a smoothing of the displacement field is applied to

avoid high gradients of displacement that would lead to
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localised unrealistically high strains. Finally, the displacement

field is differentiated into a strain field (e.g., using the finite

element or finite difference methods). The global approach is

usually associated to lower errors compared to the local

approaches, when using the same spatial resolution (Dall׳Ara

et al., 2017). This is mainly due to the choice of the regularization

process through the smoothing of the displacement field during

its calculation. As the object is considered a continuum, one of

the advantages of the global approach is the possibility of

integrating it with finite element models to account for local

differences in stiffness (see Section 3.5) (Madi et al., 2013).

Local and Global DVC approaches can be also used jointly on

the same given image dataset. A recent example was applied to

evaluate the hydro-mechanical behaviour in natural materials,

where the combined use of both approaches improved the

physical interpretation of displacement and strain fields for

such a complex mechanical environment (Stavropoulou et al.,

2020).

Independently from the employed DVC approach,

correlation parameters and in particular the sub-volume shape

and size should be optimised to obtain the best spatial resolution

of the approach while keeping the average (or local) error below

an acceptable threshold for that specific application (Madi et al.,

2013; Dall’Ara et al., 2014; Boulanaache et al., 2020). For

example, the accuracy and precision of the DVC has been

found to increase by increasing the size of the sub-volume,

and therefore decreasing the measurement resolution

following a power law (Dall׳Ara et al., 2017).

2.2 Applications on different
musculoskeletal tissues

DVC approaches applied to CT, MRI, microCT, or

Synchrotron microCT (SR-microCT; with standard absorption

or phase contrast modalities) have been used to analyse the

deformation patterns in different native musculoskeletal tissues

at different dimensional scales. These studies have reported

exhaustive measurements of the internal deformation in

tissues under physiological or failure loading scenarios,

enabling a much more detailed understanding of the loading

and failure mechanisms of the complex hierarchical

musculoskeletal tissues and their integration with biomaterials.

While reporting a comprehensive list of every study that

used DVC to study the deformation in musculoskeletal tissues

is not the goal of this mini-review, examples are reported in

Table 1. Several organs and tissues have been studied, including

for example: vertebral bodies (Hosseini et al., 2014; Hussein

et al., 2018; Palanca et al., 2021), proximal femur (Ridzwan

et al., 2018; Ryan et al., 2020; Martelli et al., 2021), implanted

scapula (Boulanaache et al., 2020), osteochondral plugs (Tozzi

et al., 2020), intervertebral disc (IVD) (Disney et al., 2019;

Tavana et al., 2020a), dentin (Lu et al., 2019), bone-biomaterial

(Tozzi et al., 2014; Danesi et al., 2016; Joffre et al., 2017; Pena

Fernandez et al., 2019; Rapagna et al., 2019), trabecular bone

(Zwahlen et al., 2015; Turunen et al., 2020; Yan et al., 2020),

cortical bone (Christen et al., 2012), subchondral bone (Madi

et al., 2020).

While these assessments are performed mainly in hard

tissues and biomaterials that do not need contrast enhancing

in CT images, for soft tissues (e.g., cartilage, IVD) staining

techniques have been applied to improve the visualisation of

microstructural features and, therefore, improve the assessment

of the local deformation using DVC (Section 3.2).

Depending on the size of the studied specimen (field of view,

FOV) and the resolution of the biomedical image used for the

DVC analyses, assessments of the deformation at different

dimensional scales can be performed, spanning from the

organ to the nano level (Figure 1). For example, bone analyses

on large portions of the organ can be performed using clinical CT

(Ridzwan et al., 2018), on biopsies with microCT (Pena

Fernandez et al., 2018a), and on the bulk tissue with SR-

microCT (Lu et al., 2019). Nevertheless, it should be noted

that we need to accept a compromise between the size of the

FOV and the spatial resolution of the DVC approach. This is due

to two typical inverse relationships between the size of the FOV

and the image resolution, and between the spatial resolution of

the DVC and its accuracy (Dall’Ara et al., 2014). However, a

recent study on the deformation of the human proximal femur

has shown the feasibility of acquiring a large FOV at high

resolution with SR-microCT and, therefore, to evaluate the

failure mechanism of a large portion of organ with a relatively

good DVC spatial resolution (Martelli et al., 2021). Nevertheless,

it should be noted that in that case longer scanning time is

needed, which is associated with potentially high ionising

radiation, which may affect the bone mechanical properties

and its deformation (Section 3.4). In that study the DVC

approach was applied at the organ level (whole proximal

femur) and at the tissue level (femoral head). First DVC

applied to the proximal femur using subsampled images

(120 μm) to reduce the DVC calculation time. Afterwards,

more detailed analyses on the region where the strains

localised (femoral head) was performed with the full

resolution images (30 μm). This multi-scale application of the

DVC approach could be expanded in the future. In fact, some of

the current imaging techniques (e.g., Zeiss Xradia Versa X-ray

microscopes with Scout-and-Zoom option) enable a multiscale

scan of the same specimens, starting from a low-resolution scan

of the whole object, and then zooming into interesting regions for

high-resolution scans. So far, this approach has been used to

highlight differences on the residual strain distribution in cortical

bone after cyclic loading at different dimensional scales. By

increasing the resolution from 5 µm to 2 µm for the multiscale

microCT imaging finer details of the cortical canal network and

osteocyte lacunae were revealed. This resulted in improved DVC

spatial resolution from 320 µm to 96 µm, which led to different
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TABLE 1 Examples of applications of DVC at different dimensional levels to evaluate the deformation of different musculoskeletal tissues. While the goal of this minireview is not to report every study
where DVC was used on musculoskeletal tissues, the reported examples provide an exhaustive overview of different applications.

References MSK tissue Source N
(sample
size)

Dimensional
scale

Imaging Voxel
size
[μm]

Load DVC
algorithm

DVC spatial
resolution
(sub-
volume
size)
[μm]

DVC
precision
strain
(method)
[με]

Application

Hussein et al.
(2018)

Vertebral body Human spine
segment

30 Organ MicroCT 37 Compression Local Hussein
et al. (2012)

~4,800 630 (zero-strain) Bone failure

Jackman et al.
(2016)

Vertebral body Human spine
segment

28 Organ MicroCT 37 Compression/
Flexion

Local Hussein
et al. (2012)

~1900 NA Bone failure and
validation models

Costa et al.
(2017)

Vertebral body Porcine
vertebra

4 Organ MicroCT ~39 Compression Global
(BoneDVC)

~1872 ~100 (zero-
strain)

Bone failure and
validation models

Palanca et al.
(2021)

Vertebral body with
lesions

Porcine spine
units

5 Organ MicroCT 39 Compression Global
(BoneDVC)

~1950 (several
reported)

~337 (zero-
strain)

Bone failure

Danesi et al.
(2016)

Vertebral body, bone
cement

Porcine
vertebra

8 Organ MicroCT 38.8 Compression Local (Davis) ~1862 NA Failure bone/cement
interface

Palanca et al.
(2016b)

Vertebral bodies w/o
bone cement

Porcine
vertebrae

10 Organ MicroCT 39 Zero-strain Global
(BoneDVC)
Local (Davis)

~1872 (several
reported)

Global:
~30–40 Local:
~60–70

Precision DVC

Tavana et al.
(2020a)

IVD Human spine
unit

8 Organ MRI (9.4 T) 90 Compression Local (Davis) 5,040 636 (zero-strain) Deformation IVD

Boulanaache
et al. (2020)

Human scapula Human
scapula

1 Organ MicroCT 36 Compression Global (Elastix-
Transformix)

2000 395–2040 (zero-
strain)

Bone failure

Kusins et al.
(2020a)

Scapula Human
scapula

3 Organ MicroCT 33.5 Compression Global
(BoneDVC)

~1,000 366 (zero-strain) Bone failure and
validation models

Kusins et al.
(2020b)

Humeral head Human
humerus

6 Organ MicroCT 33.5 Compression Global
(BoneDVC)

~1,000 518 (zero-strain) Bone failure and
validation models

Martelli et al.
(2021)

Proximal femur Human femur 4 Organ SR-MicroCT 30 Compression Global
(BoneDVC)

1,500 (several
reported)

~1,000 (zero-
strain)

Bone failure

Ryan et al.
(2020)

Femoral head Human femur 5 Organ MicroCT 39 Compression Global
(BoneDVC)

1950 (several
reported)

437–612 (zero-
strain)

Bone failure

Ridzwan et al.
(2018)

Proximal femur Human femur 14 Organ QCT 800–1,000 Compression
(fall)

Local (Davis) 38,400–48000 300–500 (zero-
strain)

Bone failure and
validation models

Giorgi and
Dall’Ara, (2018)

Tibia Mouse tibia 3 Organ MicroCT (in
vivo protocol)

10.4 Compression Global
(BoneDVC)

520 (several
reported)

~450 (zero-
strain)

Bone failure and
measurement
reproducibility

Madi et al.
(2020)

Proximal tibia Mouse tibia NA Organ/Tissue SR-NanoCT 0.8 Indentation Local (CPPi) 40 NA Displacements in
calcified cartilage

Liu and Morgan,
(2007)

Trabecular bone Different bone
structures

12 Tissue MicroCT 36 Zero-strain Local (different
parameters)

1,440 ~150–250 (zero-
strain)

Precision DVC

(Continued on following page)
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TABLE 1 (Continued) Examples of applications of DVC at different dimensional levels to evaluate the deformation of different musculoskeletal tissues. While the goal of this minireview is not to report every
study where DVC was used on musculoskeletal tissues, the reported examples provide an exhaustive overview of different applications.

References MSK tissue Source N
(sample
size)

Dimensional
scale

Imaging Voxel
size
[μm]

Load DVC
algorithm

DVC spatial
resolution
(sub-
volume
size)
[μm]

DVC
precision
strain
(method)
[με]

Application

Zwahlen et al.
(2015)

Trabecular bone Human
vertebra

3 Tissue SR-MicroCT 7.4 Compression Global (Demons) NA NA Bone failure

Turunen et al.
(2020)

Trabecular bone Human femur 13 Tissue SR-MicroCT 3.6 Compression Local
(TomoWarp2)

36 934 (zero-strain) Bone failure

Yan et al. (2020) Trabecular bone Human femur 2 Tissue SR-MicroCT 3.25 Bending Local (Davis) 208 NA Crack propagation in
bone

Pena Fernandez
et al. (2018a)

Trabecular bone Ovine femur 4 Tissue SR-MicroCT 2.6 Compression Local (Davis) 166.4 510 Effect of radiation on
bone properties

Pena Fernandez
et al. (2018b)

Trabecular bone Bovine femur 4 Tissue SR-NanoCT 0.81 Compression Local (Davis) 25.9 NA Effect of radiation and
temperature on bone
properties

Zauel et al.
(2006)

Trabecular bone Human femur
and vertebra

2 Tissue MicroCT 35 Compression Local (CCPi) 1,050 168 (zero-strain) Validation models

Chen et al.
(2017)

Trabecular bone Human and
bovine femur

3 Tissue MicroCT 19.34,
34.44

Compression Global
(BoneDVC)

413–496 NA Validation models

Knowles et al.
(2021)

Trabecular bone Human
humeral head

6 Tissue MicroCT 5 Compression Local (Davis) 160 ~550 Validation models

Palanca et al.
(2017)

Trabecular bone,
cortical bone

Bovine femur,
mouse tibia

11 Tissue SR-MicroCT 1.6 Zero-strain Global
(BoneDVC)

80 (several
reported)

~100–350 Precision DVC

Palanca et al.
(2015)

Trabecular and cortical
bone

Bovine femur 2 Tissue MicroCT 9.96 Zero-strain Global
(BoneDVC)
Local (Davis)

~478 (several
reported)

Global:
202–243 Local:
359–374

Precision DVC

Christen et al.
(2012)

Cortical bone Mouse femur 3 Tissue SR-NanoCT 0.74 Crack opening Global (Demons) 18.5 ~20,000 (virtually
moved)

Crack propagation in
bone

Karali et al.
(2021)

Femur Rat femur 7 Tissue MicroCT 12 Compression Local (Davis) 576 <300 Effect of fracture
healing on bone
mechanics

Karali et al.
(2020)

Cortical bone Bovine femur 12 Tissue MicroCT 4.2 Indentation Local (Davis) 201.6 ~220–450 Deformation in
indented bone

Jang et al. (2021) Alveolar socket Rat mandible 2 Tissue MicroCT NA Compression Local (Davis) NA NA Deformation of
periodontal ligament

Tozzi et al.
(2014)

Trabecular bone,
cortical bone, bone-
cement

Bovine Iliac
crest

3 Tissue MicroCT 20 Compression Local (Davis) 640 NA Failure bone/cement
interface

5 Tissue MicroCT 39 Zero-strain Precision DVC
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TABLE 1 (Continued) Examples of applications of DVC at different dimensional levels to evaluate the deformation of different musculoskeletal tissues. While the goal of this minireview is not to report every
study where DVC was used on musculoskeletal tissues, the reported examples provide an exhaustive overview of different applications.

References MSK tissue Source N
(sample
size)

Dimensional
scale

Imaging Voxel
size
[μm]

Load DVC
algorithm

DVC spatial
resolution
(sub-
volume
size)
[μm]

DVC
precision
strain
(method)
[με]

Application

Tozzi et al.
(2017)

Trabecular bone,
cortical bone,
trabecular bone with
bone cement

Porcine
vertebrae with
bone cement

Global
(BoneDVC)
Local (Davis)

~1875 (several
reported)

Global:
~35–51 Local:
~45–159

Wearne et al.
(2022)

Trabecular bone with
or without metal
implant

Human tibia 9 Tissue MicroCT 42 Zero-strain Local (Davis) 1,180 88–261 Precision DVC

Joffre et al.
(2017)

Trabecular bone, metal
screw

Lapine femur 4 Tissue MicroCT 6.5 Screw pull out Local Forsberg
et al. (2008)

208 184 (virtually
moved)*

Deformation bone
around screw

Pena Fernandez
et al. (2022)

Trabecular bone with
biomaterial

Ovine distal
femur

8 Tissue MicroCT 5 Compression Local (Davis) 200 ~200 Validation models

Le Cann et al.
(2020)

Implanted tibia Implanted rat
tibia

4 Tissue SR-MicroCT 25 Screw pull-out Local
(TomoWarp2)

100 NA Implant stability

Tozzi et al.
(2020)

Osteochondral plug Bovine tibia 4 Tissue MicroCT 2.02–2.56 Compression Local (Davis) ~96 ~200 (zero-
strain)

Deformation cartilage

Clark et al.
(2020a)

Osteochondral plug
(stained PTA)

Human
femoral
condyles

4 Tissue MicroCT 1.82–1.87 Compression Local (Davis) 75 1800 (zero-
strain)

Deformation cartilage

Disney et al.
(2019)

IVD Rat IVD Tissue SR-MicroCT 1.625 Compression Local (CCPi) 32.5 NA Deformation IVD

Lu et al. (2019) Dentin Elephant tusk 3 Nano NanoCT 0.15 Indentation Local (Davis) ~3 ~300 (unloaded
region)

Dentin fracture
mechanics
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internal strain distributions for the overall scan when compared

to the zoom-in region (Pena Fernandez et al., 2020a).

2.3 A unique approach to study complex
deformation and validate computational
models

While standard DVC requires time-lapsed imaging, and

therefore slow step-wise loading, it is the only experimental

technique that can measure the localization of complex

deformations within the heterogeneous tissues. This

fundamental feature of DVC enables the comprehensive

study of the relationship between the tissue’s

microstructure and its mechanical competence (Pena

Fernandez et al., 2021), highlighting the effect of local

defects or gradients in structure properties (e.g., density,

orientation). Nevertheless, it should be noted that the

assessment at low dimensional scales can also be done with

a combination of high-resolution imaging (e.g., SR-microCT)

and highly accurate DVC approaches that allow for a

reasonably low sub-volume size.

DVC can also be used to study the deformation associated

with the internal material interfaces [e.g., bone and calcified

cartilage (Madi et al., 2020), bone and cartilage (Tozzi et al.,

2020), bone and biomaterials (Joffre et al., 2017)]. The

assessment of the localization of the deformation around the

tissue-biomaterial interface can be used to optimise the design of

medical devices or to study the integration of biomaterials and

native tissue, especially when applied to material collected from

animal studies (Pena Fernandez et al., 2019).

While DVC measurements require complex in situ

mechanical testing and (usually) high resolution imaging,

which may not be applicable in most in vivo conditions, the

experimental assessment of local displacement and strain fields

can be used to validate computational models based on

laboratory or clinical images. In fact, DVC has been first used

to validate the predictions of micro-Finite Element (microFE)

FIGURE 1
Multi-scale approach based on data acquired from different systems from clinical CT to nanoCT. According to the image source and voxel size,
the spatial resolution of the measurement enables coarser or finer DVC evaluation. This is very important when planning an experiment to ensure
reliable measurements. References: (A) (Pena Fernandez et al., 2020b); (B) (Tozzi et al., 2016); (C) (Pena Fernandez et al., 2021); (D) (Lu et al., 2019).
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models of trabecular bone (biopsy level) generated from

microCT images (Zauel et al., 2006; Chen et al., 2017).

Further validation has been performed to validate microFE

models of more complex structures such as vertebral bodies

with (Palanca et al., 2022) or without (Costa et al., 2017) lesions,

and the mouse tibia (Oliviero et al., 2018). Recently, more

complex models of trabecular bone with heterogeneous

material properties (Knowles et al., 2021) or material

nonlinearities (Pena Fernandez et al., 2022) have also been

validated with DVC data. Finally, the DVC has also been used

to validate the outputs of homogenised FE models based on

clinical CT images including the human proximal femur

(Ridzwan et al., 2018), scapula (Kusins et al., 2020a), humeral

head (Kusins et al., 2020b), and vertebrae (Jackman et al., 2016).

3Open challenges and current/future
developments

Despite the steep growth of DVC applications in

musculoskeletal research and bioengineering over the past

10 years, there are still some aspects that require further

attention and research to fully exploit the technique for a

variety of tissues, imaging modalities and loading conditions.

This section will also suggest some potential avenues to

empower/enrich DVC analysis for future work in this area.

3.1 Faster measurements and analysis

Conventional in situ microCT mechanics is performed in a

stepwise manner (time-lapsed testing) where each loading is

followed by a “holding period” to perform a full tomographic

acquisition, which is less affected by moving artifacts due to stress

relaxation. This is particularly important for all biomaterials as

they exhibit a certain extent of viscoelasticity increasing from

hard to soft tissues. To such extent, DVC analysis based on time-

lapsed tests cannot be used to capture the physiological strain

mechanisms in biological materials, as their time-dependent

response may alter the local measured strains. In response to

this need, major efforts have been made to perform fast imaging

and time-resolved in situ SR-microCT experiments to capture

the complex deformation and local strain-damage relationship of

bone and biomaterials (Pena Fernandez et al., 2021), which can

be further extended to soft tissues and hard-soft interfaces

showing higher viscoelasticity and time-dependent mechanical

behaviour. A possible route to potentially improve speed and

efficiency of DVC is by implementing, for example, Projection-

based DVC measurements (P-DVC), which has the advantage of

high temporal resolution and a continuous loading (Jailin et al.,

2019). The method has been used so far to evaluate engineering

materials with fairly resolvable features and would be interesting

to see its applicability to complex biological structures. Another

way forward to improve efficiency in DVC performance is via its

integration with machine learning strategies. Deep learning has

already proven a powerful tool to classify bone tissue

deformation stages to fracture using high-resolution SR-

microCT data (Shen et al., 2021). Deep learning-based

measurements have been recently introduced as an evolution

of 2D DIC (Boukhtache et al., 2021) or for a DVC application

(Duan and Huang, 2022), which in both cases was shown to

greatly reduce computational complexity of the analysis and

therefore improving efficiency. This area has a huge potential

to improve measurement and generate more advanced models

for understanding and prediction of musculoskeletal tissue

mechanics.

3.2 Digital volume correlation of soft
tissues

The use of DVC to extract local mechanical properties of

musculoskeletal soft tissues and hard-soft interfaces is indeed

very important and attractive. To this remit a few considerations

are needed, particularly in terms of the imaging techniques/

modalities used to acquire tissues under loading and

consequently the ability of DVC to correlate those image

patterns and output displacement/strain. One of the main

aspects is in relation to how imaging setup and sample

preparation could resolve the texture needed to run DVC.

This can be done by employing imaging techniques that are

historically developed and refined for soft biomaterials (e.g.,

confocal microscopy, second/third harmonic generation)

where DVC has been used, for example, in strain

measurements of the extracellular matrix (Roeder et al., 2004),

tendons (Khodabakhshi et al., 2013), tendon cell-induced

extracellular matrix deformations (Fung et al., 2018), a variety

of other soft materials (Mac Donald and Ravichandran, 2019)

and even thin sections of bone (Wentzell et al., 2016). Optical

coherence tomography (OCT) combined with DVC is also a

promising technique to investigate soft tissues. OCT-based DVC

applications include measurement of displacement/strain fields

in porcine aortic tissues (Acosta Santamaría et al., 2018) and

biomechanical strains in human ocular tissue of patients affected

by glaucoma (Czerpak et al., 2022). Its further implementation in

musculoskeletal tissues such as articular cartilage and tendon/

ligament would surely contribute to advance understanding of

their biomechanics. Another image modality that was recently

explored in combination to DVC is magnetic resonance imaging

(MRI). MRI-based DVC application has been successfully used

to obtain the full-field strain in human intervertebral disc (IVD)

ex vivo (Tavana et al., 2020b). However, due to the limitations in

volume imaged with confocal or availability/cost/resolution of

MRI, the main input image for DVC is still from X-ray CT which

is inherently less suitable to resolve soft tissues. To overcome this

problem two main solutions are typically used to enhance
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structural features for DVC by either employing in-line phase-

contrast imaging (achievable in SR-microCT like setups) or

staining of the tissues. Interesting applications of DVC in soft

tissues from phase-contrast SR-microCT images include the

visualisation of microstructural deformation (Disney et al.,

2019) and localised measurement of fibre-level orientation,

curvature and strain of native intact intervertebral disc

(Disney et al., 2022). Phase-contrast has been also exploited in

laboratory microCT to improve contrast in native articular

cartilage and mineralized tissue to quantify residual strain

distribution at the cartilage-bone interface (Tozzi et al., 2020).

Unfortunately, phase-contrast in situ mechanics in laboratory

systems expose tissue to long periods of irradiation, which could

affect its integrity and consequent measurements as will be

further discussed in Section 3.5. Another route to enhance CT

contrast in soft tissues is via radiopaque staining (e.g., iodine

potassium iodide, phosphotungstic acid). A recent study relied

on previously developed staining protocols (Clark et al., 2020b)

to resolve chondrocyte distribution in human articular cartilage

and measure full-field displacement and strain using DVC (Clark

et al., 2021), but once again, most staining procedures can alter

both tissue morphology and mechanical properties (Buytaert

et al., 2014). New generation of staining agents with the potential

of better preserving tissue integrity (de Bournonville et al., 2020)

could address the degradation problem; however, even in such

case, issues related to heterogeneity of tissue contrast due to

staining penetration/power can notably reduce DVC ability to

measure reliable and reproducible local deformations.

3.3 Increase the digital volume correlation
accuracy/precision and validation

The accuracy and precision of DVC approaches have been

comprehensively assessed using repeated microCT scans

(Dall׳Ara et al., 2017; Liu and Morgan, 2007) or virtually

deformed repeated microCT scans (Comini et al., 2019; Ryan

et al., 2020), which consider the input image noise in contrast

with the virtually moved or deformed images. While these

assessments are required to provide a level of confidence of

the DVC measurements, which are extremely dependent from

the signal-to-noise ratio in the input images, the heterogeneity of

the tested material, and the DVC parameters, these approaches

are based on homogeneous (usually zero-strain fields) or simple

(usually affine deformations) strain fields, which are unrealistic

for most biological applications. Therefore, future tests of

accuracy based on realistic heterogeneous deformations (e.g.,

from finite element model simulations) would provide a better

assessment of local DVC errors.

From the standard assessment of DVC uncertainties it has

been demonstrated for different bone structures that the

precision increases by decreasing the spatial resolution of the

DVC and that the precision depends on the image quality of the

input images and in particular on how many features are clearly

identified in them. Combining these properties it becomes clear

that in order to increase the spatial resolution of the DVC input

images with higher resolution and signal-to-noise ratio are

required: for example the spatial resolution of the DVC

increases of 13 times when applied to SR-microCT images

(voxel size 1.6 μm) of the mouse tibia compared to in vivo

microCT images (resolution 10.4 μm) of the same object.

Nevertheless, while high-resolution images can be obtained

using high-resolution laboratory microCT scanners or SR-

microCT facilities, it should be noted that these imaging

modalities are likely to perturb the mechanical competence of

the scanned biological tissue (see Section 3.4).

3.4 Reducing invasiveness of X-ray
imaging

It is established that prolonged X-ray exposure may severely

alter the structural integrity and mechanical properties of

musculoskeletal tissues, particularly in high-flux setups such

as SR-microCT as extensively reported in a recent study

(Dall’Ara et al., 2022). Briefly, as for SR-irradiated bone the

degradation of the tissue and its mechanical properties is due to

the alteration of collagen cross-linking (Barth et al., 2010; Barth

et al., 2011), in soft tissues like articular cartilage degradation of

mechanical properties has been instead associated with the

decline in proteoglycan synthesis (Cicek, 2016). DVC has

played a vital contribution in this area by further evaluating

the effect of SR-microCT radiation on trabecular bone (Pena

Fernandez et al., 2018a) and proposing strategies to mitigate this

issue by reducing temperature in the in situ experiments (Pena

Fernandez et al., 2018b). Despite such great efforts, more

research is needed to clearly identify the mechanism of

radiation-induced tissue degeneration and achieve the best

compromise between image quality, number of in situ steps

during the experiment and potential damage. All this is

inevitably reflecting on the DVC analysis from such images

and it is important to properly plan future studies where this

potential issue is carefully evaluated, contextualising the DVC-

based measurements with at least proper estimations of the

radiation exposure on the specimens, to avoid reporting DVC

results which may be affected by the invasiveness of the imaging

modality.

3.5 Integrating mechanics in digital
volume correlation inputs

The DVC algorithm usually ignores the local mechanical

properties of the studied objects. In fact, the image correlation is

completely unaware of the local material properties of the imaged

object, but can only take into account for the features that affect
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the local porosity or anisotropy, if visible in the acquired input

images. Nevertheless, the deformation of the considered tissue is

also a function of those material properties that do not directly

affect the image taken at a certain dimensional scale. For

example, the material properties of the extracellular matrix of

bone may be different from specimen to specimen (e.g., healthy

tissue vs. tissue from osteogenesis imperfecta patients, which are

more fragile for a molecular mutation in the collagen), even in

specimens with similar bone mineral density and microstructure.

While some DVC algorithms have been integrated with finite

element solvers to consider the mechanical heterogeneity of the

studied structures and back calculate their constitutive behaviour

[i.e., the parameters of the chosen constitutive law), so far this

approach has been used only for engineered materials (e.g.,

metamaterials (Valmalle et al., 2022)]. Applications to

biological tissues with hierarchical organisation of the

structure and the local heterogeneity in material properties

due to local differences in mineralization (e.g., bone) or

organisation of fibres (e.g., tendons, intervertebral disc), would

require fitting complex constitutive laws and require further

development.

Moreover, standard DVC analysis can only provide

information about displacement and strain fields, with no

information about the internal loads and stresses in the

microstructure. DVC has been extensively used in the last

decade to validate the displacement and strain outputs of FE

models built from the undeformed images, both at the

microstructural (microFE) (Palanca et al., 2022) and

continuum (Kusins et al., 2020a) levels for bone. The

validated FE models have then the potential to evaluate

stresses in the musculoskeletal tissue, using the DVC data

only to assign the proper boundary conditions to the FE

models. Nevertheless, this approach has not been applied yet

to study the local stresses in musculoskeletal tissues.

3.6 Clinical applications of digital volume
correlation

A very important implementation of DVC is in the

mechanical interpretation of clinical imaging. The technique

was used to quantify the 3D full-field displacement and

measure the helical axis of the subtalar joint in vivo during

inversion-eversion in full weight-bearing clinical CT, providing a

better understanding of the relative motion at the subtalar joint

under physiological loading (Pena Fernandez et al., 2020b). MRI-

based DVC was also used to assess in vivo strain uncertainties in

the human talus, showing its potential to measure relevant levels

of in vivo bone strain and to be used for a range of clinical

applications (Tavana et al., 2020c). Another interesting

application is the digital tomosynthesis (DTS) based DVC,

which was employed to calculate full-field vertebral

displacement maps, and in turn stiffness, using in vivo images

acquired in both standing and standing-with-weight (8 kg)

configurations (Oravec et al., 2019). Altogether, such use of

DVC is very promising and can provide valuable insights in

clinical diagnostics and surgical planning.

4 Conclusion

The goal of this minireview was to highlight the strengths,

limitations and potential of the DVC approach to study the

deformation of musculoskeletal tissues. Considering the limited

space, the comprehensive review of every DVC study on

musculoskeletal tissues was not in the remit of this manuscript.

The authors hope that the reader will find this review useful and

stimulating to engage with the usage of DVC for musculoskeletal

research, to tackle current challenges and to further develop this

approach in the musculoskeletal field and beyond.
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