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Schistosomiasis is one of the neglected tropical diseases that affect millions

of people worldwide. Globally, it affects economically poor countries,

typically due to a lack of proper sanitation systems, and poor hygiene

conditions. Currently, no vaccine is available against schistosomiasis, and

the preferred treatment is chemotherapy with the use of praziquantel. It is a

common anti-schistosomal drug used against all known species of

Schistosoma. To date, current treatment primarily the drug praziquantel

has not been effective in treating Schistosoma species in their early stages.

The drug of choice offers low bioavailability, water solubility, and fast

metabolism. Globally drug resistance has been documented due to

overuse of praziquantel, Parasite mutations, poor treatment compliance,

co-infection with other strains of parasites, and overall parasitic load. The

existing diagnostic methods have very little acceptability and are not readily

applied for quick diagnosis. This review aims to summarize the use of

nanotechnology in the treatment, diagnosis, and prevention. It also

explored safe and effective substitute approaches against parasitosis. At

this stage, various nanomaterials are being used in drug delivery systems,

diagnostic kits, and vaccine production. Nanotechnology is one of the

modern and innovative methods to treat and diagnose several human

diseases, particularly those caused by parasite infections. Herein we

highlight the current advancement and application of nanotechnological

approaches regarding the treatment, diagnosis, and prevention of

schistosomiasis.
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Introduction

Schistosomiasis is a serious tropical disease caused by

parasitic flatworms of the genus Schistosoma, often recognized

as blood flukes (Ullah et al., 2020a). Schistosomiasis is the second

most prevalent parasitic disease after malaria, owing to its

catastrophic impact on public health, which in turn impacts

the global economy. Infection with different Schistosoma species

may cause more intricate situations such as urinary bladder,

colorectal, and liver malignancies (Li et al., 2019). S.

haematobium infection may develop infertility in males.

Testicular infarction can develop from ova occluding the

spermatic venous plexus and subsequent granuloma formation

(Adisa et al., 2012). As per the world health organization (WHO)

data, 236.6 million individuals (WHO, 2022) in 78 countries

(Ullah et al., 2022a; Ullah et al., 2022b), required schistosomiasis

preventive therapy (Qadeer et al., 2021), including forty million

females in the procreative phase (Cioli et al., 2014). The yearly

death toll from schistosomiasis in developing nations is estimated

to be over 0.3 million (Colley et al., 2014).

S. mansoni, S. haematobium, S. Japonicum, S. intercalatum,

and S. mekongi are the five clinically important schistosomal

species (Siqueira et al., 2017). The intermediate host freshwater

snail infected with miracidia is needed for infection with these

worms. The miracidia develop into cercaria and the cercaria

penetrates the host skin after water exposure (Adekiya et al.,

2020). The intermediate form produces in the aquatic gastropod

snail. Generally, the intermediate host for S. japonicum is

Oncomelania, Biomphalaria for S. mansoni, and Bulinus for S.

haematobium. The life cycle of schistosomiasis is initiated by the

exit of cercariae from the snail into the water and the penetration

of the skin of humans and animals when they swim or interact

with contaminated water (Gryseels et al., 2006). The adult

parasites inhabit many sites of the mesenteric veins of the

vertebrate host, and it is seen to be definite for every species.

They are found in the venous plexus of the bladder and, on rare

occasions, in the rectal venules in S. haematobium infection.

While, adults of S. japonicum and S. mansoni are found in the

superior mesenteric vein draining to the small intestine and

superior mesenteric vein draining to the large intestine,

respectively (Tomiotto-Pellissier et al., 2017).

Disease spread is facilitated by poor sanitary conditions as

well as low economic development (Rollinson et al., 2013). The

World Health Assembly passed a resolution in 2012, in Geneva,

Switzerland, urging increased investment in schistosomiasis

control and supporting the launch of elimination programs in

endemic countries (Americas, Asia, and Africa). Schistosomiasis

control and treatment are restricted to less accessible

chemotherapeutic agents that show effectiveness, care, and

thrmissibility (Tomiotto-Pellissier et al., 2017). Schistosomiasis

is currently controlled through snail host elimination, health

education, hygiene preference, clean water availability, and

improved sanitation (Ferrari et al., 2003). Precise diagnosis

and extensive drug administration are critical for disease

management (Ullah et al., 2020b).

Praziquantel (PZQ) is the preferred treatment for

schistosomiasis; it was developed in the late 1970s and is

known to be an active anti-schistosomal medicine. Though,

PZQ cannot treat immature worms nor avert reinfection

(Dkhil et al., 2015a). Drug resistance has been observed

across the world as a result of parasite mutation,

inadequate tretreatment ofseases, overuse of PZQ, and

mixed infection (Adekiya et al., 2020). PZQ usage is

generally restricted due to its poor bioavailability and water

solubility (Lindenberg et al., 2004). The metabolism leads to

the formation of a less effective molecule, which must thus be

given at larger doses (Mourao et al., 2005). Such factors

motivate scientists, and thysician to look for technological

alternatives for a safe and efficient oral absorption of PZQ,

which may be utilized in disease prevention and treatment

(Yang M. et al., 2009b; Ribeiro de Souza et al., 2012).

In the twenty-first century, nanotechnology emerged as

one of the progressive and developing technologies. Norio

Taniguchi coined the term “nanotechnology” in 1974.

Nanotechnology (from the Latin nanus, which means the

“dwarf”). is defined as the design, manufacture, and

application of materials and technologies with he least

functional content on a nanoscale (1–100 nm), or one

billionth of a meter (10−9) (Moniruzzaman and Min, 2020).

The progress of a broad variety of nanoscale technologies is

the start of changing the basis of diagnosis, healthcare, and

disease prevention. These technological advances are known

as nanomedicines (Moghimi et al., 2005).

Nanomedicine is the application of nanotechnology to

treat, monitor, and prevent diseases. For the effective use of

nanomedicine, identification of the exact targets (cell and/or

receptors) and precised delivery system are necessary (Abaza,

2016). Nanomedicines can play a significant role in drug

delivery and disease by ensuring that a sufficient amount of

the drug enters the body, that the drug does enter the body

should stay for an appropriate amount of time, and that it is

target-specific to the areas that require treatment (Agrawal,

2016). Nanotechnology has been used worldwide in various

fields, and certain metals or metal oxides nanoparticles (NPs)

are now broadly applied as drugs to cure several diseases

(Elechiguerra et al., 2005; Jebali and Kazemi, 2013).

Nanotechnology has the ability to restore the use of

hazardous medications by the use of multifaceted structures
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that permit drugs to be carried to the pathogen, protecting

host cells and using its impact with less toxicity (Forrest and

Kwon, 2008). Previously, nanotechnology was employed as a

drug delivery system (DDS) in several parasitic diseases such

as malaria, toxoplasmosis, trypanosomiasis, and leishmaniasis

(Date et al., 2007).

Nanotechnology and the use of nano-enabled drug delivery

systems are believed to be effective in schistosomiasis treatment if

combined with PZQ (Veerasamy et al., 2011). By offering more

intensive drug delivery, nano-enabled drug delivery systems can

improve the bioavailability, therapeutic effectiveness, and

adverse effect profile of PZQ (or other medicines), (Adekiya

et al., 2020). The objective of this appraisal is to emphasize and

address the present state of research employing various

nanoparticles as drug delivery systems that permit for drug

vectorization, treatment, diagnosis, and control of

schistosomiasis.

Overview of praziquantel use as anti-
schistosomal drug

In 1984, chemotherapy was suggested as the best way of

treating and removing schistosomiasis by the WHO experts

committee. Schistosomiasis control and treatment depend

upon the single-choice treatment using PZQ. PZQ is widely

used among other antischistosomal products. It is effective

against all Schistosoma species responsible for schistosomiasis.

It reduces parasitic load and can lower the intensity of symptom.

Because of its easy administration, efficiency, and affordability, it

is also the most preferred medication. The mechanism of action

for the treatment of schistosomiasis with PZQ is not well

understood, however, variations in the musculature of the

worm is a suggested mechanism (Adekiya et al., 2020).

Younger forms are exposed to lower levels of unchanged PZQ

in the bloodstream than older forms found in the liver. PZQ is

broadly changed into an inactive or significantly less effective

compound after oral administration (Xiao et al., 1985; Mourao

et al., 2005). In the absence of alternative schistosomicides, it is

critical to implant strategies to prevent, or at least delay, the

evolution of drug resistance, as well as to seek remidies to

overcome some of PZQ shortcomings, such as its lack of

activity on immature worms (Doenhoff et al., 2008). Due to

these circumstances, scientist and clinicians were compelled to

seek a safer and more effective method of treating oral absorption

(Yang et al., 2009a; de Almeida et al., 2012).

Due to the shortcomings of the drugs scientists have

developed drug delivery technologies (nanotechnology) to

offer further focused therapies to all stages of the schistosome

parasite, and the medicines may be more effective by targeting

the juvenile parasites. This novel approach can also decrease drug

resistance by clearing the host’s schistosome and preventing

reinfection.

Molecular targets in Schistosome
tegument

The adult schistosome tegument is a type of outer surface

structure composed of a cytoplasmic syncytium linked to the

basal cell bodies by a thin cytoplasmic linkage. Their bodies

house the nuclei, ribosomes, endoplasmic reticulum,

mitochondria, and Golgi apparatus, and their vesicular

products, known as discoid bodies and multilaminate vesicles,

are carried to the tegument syncytium via the cytoplasmic

connections (Pérez-Sánchez et al., 2008). The apical surface of

the tegument, like the glycocalyx of eukaryotic cells, is made of a

normal plasma membrane underlain by a membrane-like

secretion, which has been dubbed membranocalyx (Skelly and

Alan Wilson, 2006; Pérez-Sánchez et al., 2008).

This tegument, which encompasses the entire exterior of

the worm, acts as an important connection between both the

parasite and its host and has been vitally elucidated in the

multifaceted host - pathogen interactions, which encompasses

nutrient supply, excretion, osmoregulation, sensory reception,

signal transduction, and interaction with the host’s immature

and hemostatic systems (Van Hellemond et al., 2006; Ramajo-

Hernández et al., 2007). Proteins expressed at the surface

membranes of newly formed schistosomula are thus believed

to be excellent candidates for the growth of novel

schistosomiasis vaccines and medicines (Sotillo et al.,

2015). As a result, identifying and characterizing

schistosome tegumental compounds is critical for

comprehending the host-parasite interaction and creating

novel immunologic, therapeutic, and diagnostic methods

(Skelly and Alan Wilson, 2006).

On the surface of the tegument, several targets have been

identified. These are required to target schistosome glucose

transporter 1 (SGTP1), schistosome glucose transporter 4

(SGTP4), acetylcholinesterase (AChE), and a nicotinic type

of acetylcholine receptor (nAChR) for designed drug-loaded

nanoparticles, which are mostly found on the surface of male

schistosomes. Dynein, aquaporins, and tetraspanins are some

of the other surface proteins present on the targeted tegument.

Such compounds discovered on the surface of the tegument

can be used to generate novel medicinal drugs and

Schistosoma parasite vaccines (Adekiya et al., 2020).

An overview of nano delivery system

Several studies have found that nano-delivery systems can

improve the therapeutic effects of various substances in

disease treatment (Zadeh Mehrizi et al., 2018). A nano-

enabled drug delivery system can improve or modify the

pharmacokinetics of active pharmaceutical ingredients

(API), as well as protect API from chemical, physical, and

biological degradation. However, the nano sizes of such
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TABLE 1 List of different Nano-delivery systems used to improve the treatment efficacy of drug against schistosomal infections.

S.
No

Nanoparticles used and dose
rate

Schistosomes
species studied

Model
animal used
in study

Efficacy References

1 Praziquantal-solid lipid nanoparticles
(PZQ-SLN) 25 and 50 µg ml−1

S. mansoni Mice The SLN provides a controlled release of PZQ
as a higher schistosomicidal activity against S.
mansoni culture than PZQ suspension. PZQ-
SLN was found to be more successful than
PZQ alone in control group, resulting in
parasite death in less time, PZQ-SLN decrease
the cytotoxicity in HepG2 cells

de Souza et al.
(2014)

2 Liposomal-Praziquantel (Lip-PZQ
300 mg/kg

S. mansoni Mice Liposome-encapsulated PZQ at 300 mg/kg, is
more effective than an equal dose of free PZQ
with respect for schistosomicidal potential,
the inhibition of worm oviposition and the
formation of hepatic granulomata. Lip. PZQ
decreases worm count up to 68.8%, the
amount in the intestinal and 79% in the liver
by and 98.4% in hepatic granulomas as
compared to control group free PZQ.

Frezza et al. (2013)

3 MFS-LNC-CTAB+ MFS-LNC-OA
(20 mg/kg)

S. mansoni Mice MFS-LNCs offer potential as an alternative
single oral dose nanomedicine with a wide
therapeutic profile for mass chemotherapy of
S. mansoni. The number of worms retrieved
from the liver and Porto mesenteric vesicles is
considerably reduced by both MFS-LNP
formulations. The combination of MSF-
LNC-CTAB+ was more effective against the
young form of worm (91.6 vs. 82.7% drop in
worm load respectively). Although the oleic
acid (MSF-LNC-OA) formulation was
demonstrated to be much more efficient
against the immunological early stage than
the invading form (96.7% vs. 76.8% drop in
worm burden, respectively). This could
promote MFS-LNCs as a wider therapeutic
profile alternative to PZQ.

El-Moslemany
et al. (2016)

4 Miltefosine-Lipid nanocapsules (MFS-
LNCs) 20 mg/kg

S. mansoni Mice MFS-LNC formulation reduces mean worm
load to varying degrees (42.31–88.46%).
MFS-LNC-CTAB+ and MSF-LNC-OA both
led to a larger decrease (MSF-LNC lowers
granuloma size by 17.1–31.4%). MFS-LNC-
CTAB+ (31.36%) and MFS-LNC-OA
(32.99%) showed the greatest reduction.
Clinical data suggest that MFS-LNCs could
be used as a single-dose oral nanomedicine
for S. mansoni enhanced therapy instead of
praziquantel chemotherapy

Eissa et al. (2015)

5 Praziquantel-Lipid nanocapsules (PZQ-
LNCs) (250 mg/kg)

S. mansoni Mice Encapsulation of PZQ in LNCs resulted in a
significant increase in antischistosomal
activity upon administration of a single
250 mg/kg oral dose of LNCs, compared to
only PZQ suspension to S. mansoni-infected
mice. Efficacy assessment was based on
changes in worm burden count, the size and
number of granuloma, and the
histopathology of liver Sections. This shows
that LNCs as nanocarriers for improving the
efficacy of orally administered drugs

Amara et al. (2018)

6 PZQ-Liposomes (8.6 mmol/L) S. mansoni Mice In In-vivo test PZQ-Liposomes caused a
decrease in amounts of eggs and parasites as
compared to free PZQ. Liposomes increase
the antischistosomal property of
praziquantel. While in in-vitro study the

Mourao et al.
(2005)

(Continued on following page)

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Qadeer et al. 10.3389/fbioe.2022.1013354

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1013354


TABLE 1 (Continued) List of different Nano-delivery systems used to improve the treatment efficacy of drug against schistosomal infections.

S.
No

Nanoparticles used and dose
rate

Schistosomes
species studied

Model
animal used
in study

Efficacy References

effect of Liposome_PZQ and free free PZQ
were found similar against S. mansoni culture

7 PZQ-Liposome + HBO (100 mg/kg) S. mansoni Mice When compared to other treatment groups
like PZQ, 100 mg/kg of the lip.PZQ + HBO
was considered to be more efficient (48%
drop of worms, 83.3% drop of egg/Gram of
feces) and 100% of mice displayed altered
programs (indicating halt of oviposition)
compared to other treatments and to the
Control group (infected and untreated). The
drug were found more available in the body
when incorporated into liposomes and used
with HBO, the HBO work as an adjuvant

Frezza et al. (2015)

8 PZQ-Liposome 2 mg/mouse S. mansoni Mice The encapsulation of PZQ in a liposome can
take it to site specific delivery of the drug
towards the liver as well as ensuring sustained
release properties. The percentage of mice
surviving 8 weeks after praziquantel liposome
administration exceeds 90% compared to free
drug (50%). On the other hand, the number
of mice surviving after 14 weeks of
administration of praziquantel liposomes is
4-fold greater than the corresponding
number of mice surviving after
administration of free drug or drug-free
liposomes. Along with survival rate
Liposome-PZQ has markedly decrease
hepatic worm count as compared to
free PZQ.

Ammar et al.
(1994)

9 Tartar- emetic Liposome 25 mg/kg S. mansoni Mice In this study 100% life expectancy was found
compared to 28% for the mice injected with
drug free liposomes. The liposome-
encapsulated drug decrease worm count and
shows schistosomal activity significantly

El-Ridy et al.
(1989)

10 sulfated polysaccharide α-D-glucan-
liposomes (Glu.SO4-LIPO) 10 mg/kg

S. mansoni Mice In this study parasitological analysis revealed
that Glu.SO4-LIPO was as efficientbas
Glu.SO4 in reducing egg elimination and
worm burden. The use of Glu.SO4-LIPO
resulted in a statistically significant decrease
in the number of granulomas as free Glu.So4

Araújo et al.
(2011)

11 Solid lipid nanoparticle-praziquantel
(SLN-PZQ) 500 mg/kg

S. mansoni Mice SLN-PZQ had better bioavailability,
absorption rate, and antischistosomal action
in all treatment groups, with a larger degree of
worm reduction in all dosages studied. The
ED95 of SLN-PZQ was 5.29 times less than
that of M-PZQ, with significantly higher
intestinal tissue egg loads and nearly
complete removal of immature implanted
eggs in all groups tested

Radwan et al.
(2019)

12 Liposome-Praziquantel (Lip.PZQ)
500 mg/kg

S. mansoni Mice Liposome-encapsulated PZQ resulted in the
greatest significant reduction in overall worm
amount, egg/Gram in hepatic tissue, and
intestine (97.2%, 99.3%, and 99.5%
respectively). Lip.PZQ more effective than
free PZQ in all aspects, particularly when
delivered at 45 days Post-infection.
Liposomes can increase bioavailability of
drugs in hosts and better absorption by the
tegument of S. mansoni

Labib El Gendy
et al. (2019)

(Continued on following page)
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TABLE 1 (Continued) List of different Nano-delivery systems used to improve the treatment efficacy of drug against schistosomal infections.

S.
No

Nanoparticles used and dose
rate

Schistosomes
species studied

Model
animal used
in study

Efficacy References

13 Silica-Praziquantel (PZQ-Si) 250 mg/kg S. mansoni Mice Mesoporous silica NP is a non-toxic nano-
carrier for PZQ, demonstrating anti-
schistosomal, antioxidant,
immunomodulatory, and anti-inflammatory
acts in S. mansoni-infested mice. PZQ-Si at a
lower PZQ dosage may be recommended for
successful PZQ antischistosomal mass
chemotherapy. Hepatic DNA fragmentation,
measured by comet assay, was significantly
improved in infected mice treated with
maximium dose of PZQ-Si as compared to
positive or PZQ control groups

Tawfeek et al.
(2019)

14 Epiisopoturine loaded liposome
300 µg/ml

S. mansoni Hamster Epiisopiloturine loaded liposome shows
100%mortality of mature parasites in In-vitro
study after incubation of 96h and 120 h
respectively. The worms observed through a
confocal microscope give alteration in the
morphology and tegument of an adult worm
of S. mansoni

Guimaraes et al.
(2014)

15 Praziquantel-nanostructured lipid
nanocarrier 2 and Nanostructured lipid
carrier 4 (PZQ-NLC2 and NLC4)
25 µg/ml

S. mansoni Rat PZQ encapsulated in NLC2 and
NLC4 enhances the drug’s safety, efficacy,
and therapeutic efficacy against the BH strain
of S. mansoni. PZQ-NLC2 and PZQ-NLC4
had higher efficacy than free PZQ. The
absorption capacity of PZQ NLC4 was
discovered to be higher than that of PZQ
alone. The intestinal transport of free PZQ
and PZQ-NLC2 was similar. However, it is
observed that the concentration of PZQ
absorbed was smaller when PZQ was loaded
in NLC4. The difference between the
amounts of absorbed PZQ could indicate that
the presence of T60 in the nanoparticles
(NLC4) increased the rigid lipid matrix,
prolonging release of the drug

Kolenyak-Santos
et al. (2015)

16 PZQ-niosomes 250 mg/kg S. mansoni Mice The in-vitro investigation found that
Niosomes combined with PZQ at a
concentration of 0.001 g/ml better the death
ratio from 30 to 50%, whereas noisome alone
exhibited 30% mortality and PZQ showed
10% fatalities. In an in-vivo investigation,
noisome-PZQ significantly decreased adult
worm count, intestinal and hepatic egg
deposition, liver granuloma size, and vascular
endothelial growth factor expression as
compared to free PZQ. This study shows that
niosomes as promising carriers for enhanced
activity of PZQ.

Zoghroban et al.
(2019)

17 PZQ-MFS Lipid nanocapsules (250 mg
PZQ + 20 mg miltefosine/kg)

S. mansoni Mice PZQ-MFS lipid nanocapsule at a dose rate of
250 mg PZQ-20 mg miltefosine/kg
demonstrates a substantial increase in
antischistosomal efficacy in terms of
statistical augmentation in mean worm load,
particularly against invasive and early-stage
worms, as well as improvement in hepatic
granulomas

Eissa et al. (2020b)

18 Liposome Encapsulated oxamniquine S. mansoni Mice The liposome encapsulation has prolong the
chemoprophylatic effect of oxamniquine.
Liposome encapsulated oxamniquine show
higer percentage of worm count reduction
than free oxamniquine. T-cell and B-cell

El Ridy et al.
(1997)

(Continued on following page)
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systems improve the efficiency of biological barrier bridging,

tissue tolerance, and cellular absorption and transportation,

enabling for adequate delivery of therapeutic drugs to target

regions such as the liver, brain, and solid tumors (Date et al.,

2007; Adekiya et al., 2020). The use of solid lipid nanoparticles

in the treatment of schistosomiasis would also be valuable in

terms of cost-effectiveness, as they are cost-effective,

comparatively less toxic, stable, and easy to decompose

(Cheng et al., 2017). Lipid-based preparations can increase

drug availability by changing the solubility and pace at which

drugs can be freed to promote and enhance drug absorption

across biological barriers. This method will be useful and

successful for treating all forms of schistosomes (Adekiya

et al., 2020). It has been shown that NPs can activate

higher cell defense, which can prevent disease recurrence

and reinfection, by specifically targeting overexpressed

schistosome antigens in the human host (Tousif et al., 2017).

In S. mansoni infected mice, SLN-PZQ at a dose rate of

500 mg/kg showed better bioavailability, absorption rate, and

antischistosomal action in all treatment groups, with a higher

degree of worm reduction in all tested doses. The effective dose

95 (ED95) of solid lipid nanoparticles-PZQ was 5.29 times lower

than that of market praziquantel (M-PZQ), with considerably

larger intestinal tissue egg burdens and virtually total elimination

of immature deposited eggs in all studied groups (Radwan et al.,

2019). Another research found the greatest substantial reductions

in total worm count, egg/Gram liver tissue, and intestine were

seen using liposome-encapsulated PZQ at a dose rate of

500 mg/kg (97.2%, 99.3%, and 99.5% respectively). Liposomal-

PZQ (Lip.-PZQ) showed greater efficacy than that of free PZQ in

every aspect, particularly when administered at 45 days Post

infection (Labib El Gendy et al., 2019). Table 1 lists the various

nano-delivery systems utilized to improve PZQ therapeutic

effectiveness in the treatment of schistosomal infections.

Nanoparticles (NPs)

Drugs can be administered via enteral or parental routes

using NPs delivery systems (Tawfeek et al., 2019). NPs have

potent antiparasitic effects by acting as a drug carrier for

commonly used drugs, such as praziquantel in the treatment

of schistosomiasis (Kolenyak-Santos et al., 2015). SLNs-

loaded PZQ were found to enhance PZQ’s pharmacological

and safety characteristics in vitro on S. mansoni cultures

(Kolenyak-Santos et al., 2015). To treat schistosomiasis,

malaria, viserial leishmaniasis (VL), and visceral larva

migrans, metal NPs, chitosan (CS), and liposomes are

conjugated with a range of medications, including

praziquantel, chloroquine, amphotericin B, rifampicin, and

TABLE 1 (Continued) List of different Nano-delivery systems used to improve the treatment efficacy of drug against schistosomal infections.

S.
No

Nanoparticles used and dose
rate

Schistosomes
species studied

Model
animal used
in study

Efficacy References

responsiveness to soluble adolescent Soluble
proteins demonstrate that oxamniquine in
liposomes activates the immune system of
mice against the S. mansoni worm

19 Liposomes Entrapped Oxamniquine
(LOXA) 10 mg/kg

S. mansoni Mice LOXA produced a prominent decrease in the
worm load in comparison to other
preparations. LOXA shows a maximum
reduction (97%) in parasite numbers when
LOXA was given s/c 1 day before infection.
The results indicate that LOXA is more
potent than free OXA when administered
through the s/c route at a time close to the
infection

Frézard and de
Melo, (1997)

20 Praziquantel-miltefosine-nanocapsules
PZQ-MFS-LNCs PZQ 250 mg/kg-MFS
20 mg/kg

S. mansoni Mice When compared to an infected non-treated
control, administration of the nano
combination one or 7 days before infection
resulted in a significantly substantial drop in
mean worm burden and granuloma size, as
well as improvement in hepatic pathology. It
could be an excellent alternative to PZQ in
MDA programs by offering the potentials of
radical cure due to multistage therapeutic
profile, prevention of re-infection because of
prophylactic activity, delaying development
of resistance to the component drugs in
addition to improving patient compliance

Eissa et al. (2020a)
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albendazole. NPs have the ability to be employed as a vaccine

candidate for toxoplasmosis and malaria, as an additive to

boost immune response against schistosomiasis, VL, and

Chagas disease, and as an additive to increase

immunological response against schistosomiasis, Visceral

leishmaniasis (VL), and Chagas disease (Abaza, 2016). Gold

nanorods were combined with a recombinant S. mansoni

tegument protein Sm29 to immunise mice against

schistosomiasis (Assis et al., 2018). AuNPs are being used

to alleviate oxidative stress in mice spleen tissue produced by

FIGURE 1
Schematic diagram of applications of Nanoparticles in various fields.

FIGURE 2
Schematic diagram of various commonly used nanoparticles in schistosomiasis treatment, diagnosis, and prevention.
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S. mansoni infection (Dkhil et al., 2017). Other nanoparticles,

such as liposome nanoparticles, were also used in vitro to

transport epiisopiloturine, with promising results (Tawfeek

et al., 2019), as well as poly (lactic-co-glycolic acid) (PLGA)

nanoparticles loaded with lignan (-)-6,6′-dinitrohinokinin
(DNHK) for schistosomiasis treatment (Tawfeek et al., 2019).

Nanoparticles are used in various types of products for

different type’s activities. Nanoparticles uses in various fields

in given in (Figure 1). Based on shape, size, and chemical

characteristics, NPs are commonly classified into different

categories. Some of the well-known NPs used in drug delivery,

diagnosis, and vaccine are shown in (Figure 2) and each one is

discussed below in detail.

Gold nanoparticles (AuNPs)

AuNPs have recently been actively used in several fields of

nanomedicine for diagnostic and therapeutic purposes. Due to

the promising properties of AuNPs, they can be used in near

future for medical purposes in almost all fields (Dykman and

Khlebtsov, 2011). The gold complexes have also shown

possible antileishmanial and antimalarial action (Vieites

et al., 2009). AuNPs also show anthelminthic efficacy as

investigated in the invivo study (Kar et al., 2014). AuNPs

were discovered to cause cestode paralysis and death, which

the scientists ascribe to alterations in the parasite’s enzymatic

activity (Tikariha et al., 2012). Consequently, the use of Au is

significant for the treatment of tropical human diseases (de

Almeida and Carabineiro, 2013). For example, when AuNPs

are used in a polymerase chain reaction (PCR), it increases

and improves the specificity of this diagnostic technique (Li

and Ji, 2015). In schistosomiasis AuNPs inoculated

intraperitoneally can reduce the total worm load, eggs in

the liver, and granuloma size in S. mansoni infected mice.

In addition, the treatment can decrease liver damage due to its

anti-inflammatory and antioxidant properties (Dkhil et al.,

2015a). Another study discovered that AuNps have a unique

therapeutic potential against renal diseases caused by S.

mansoni infection. AuNPs decreased oxidative stress and

histological damage in the kidney. They also restored the

expression of the damaged kidney genes (Dkhil M. A. et al.,

2016b). Meanwhile, other researchers are employing AuNPs

as a means of delivering nuclear-oriented drugs into biological

cells (Gu et al., 2009).

Silver nanoparticles (AgNPs)

AgNPs are amongst several metallic NPs which are

commonly used in a range of biomedical applications owing

to their fascinating antimicrobial and anticancer properties. In

the field of nanoscience and nanotechnology, especially in

nanomedicine AgNPs plays a pivotal part in the treatment of

various disease (Zhang et al., 2016). The biological activity of

AgNPs is determined by factors such as surface chemistry, mass,

shape, atom morphology, coating/capping, agglomeration,

dissolving rate, and atom reactivity in solution. The efficacy of

ion discharge capacity, cell types, and the kind of reducing agent

employed in the production of AgNPs are all important factors in

determining cytotoxicity (Carlson et al., 2008). AgNPs’

exploitation has attracted considerable courtesy and effort in

numerous fields. Though, the antibacterial actions of the new

silver type are still largely at the center of the healthcare arena.

AgNPs have been widely used in commercialized products and

entered into clinical practice, taking benefit of the sterilizer and

antibacterial properties of AgNPs (Lansdown, 2006; Cohen et al.,

2007). Few studies have provided detail on AgNP’s (silver ions

Ag+), showing anti-schistosomal activity (King and Highashi,

1992; Cheng et al., 2013). It was discovered that Ag+ was toxic to

S. mansoni cercariae at concentrations more than 0.09 mM, but

that Ag+ was non-toxic at lower levels yet hindered their

penetration into linolenic acid-impregnated agar (King and

Highashi, 1992). Another study evaluated the impact of

AgNPs on schistosome cercariae and its potential use in

schistosomiasis prevention, specifically in terms of pathogen

transmission. Ag + may contribute largely to the effects of

AgNPs on schistosome cercariae. Yet, the possible

contribution of nano dimensions of AgNPs could not be ruled

out, as remarkably unusual physicochemical properties and

biological activities of various nano-sized materials including

AgNPs have been demonstrated (Cheng et al., 2013). Owing to

the traditional adverse properties of chemotherapy and radiation

therapy, scientists and the industry have investigated the idea of

utilizing AgNPs as a therapeutic and anti-cancer agent (Zhang

et al., 2016).

Solid lipid nanoparticles (SLNs)

SLNs are solid colloidal elements that are available in many

sizes ranging from 30–1,000 nm (Ayan et al., 2017; Ganesan et al.,

2018). SLN is made up of solid lipids (lipids at room and body

temperatures) that have been stabilized by surfactants. The lipids

could be purified triglycerides, complicated glyceride

combinations, or even waxes (Wissing et al., 2004). SLNs are

encapsulated or embedded in lipid nuclei to form a stable

colloidal DDS, and the carriers are usually natural or synthetic

solid lipid materials such as saturated fatty acid glycerides, stearic

acid, beeswax, cholesterol, cetyl palmitate, monostearate

mononitrate, and solid paraffin (Tapeinos et al., 2017; Mishra

et al., 2018). High compression homogenization, a

microemulsion method, film-ultrasonic diffusion, an

emulsification-solvent evaporation method, and hot melt

ultrasound technology may all be used to produce SLN

(Sohail et al., 2020).
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SLNs have extensive application in the delivery of Phyto-

bioactive compounds for the treatment of various chronic

infections. Because of their outstanding biocompatibility and

biodegradability, SLNs have been demonstrated to be a viable

alternative to drug delivery methods (Qi et al., 2012; Lasoń et al.,

2013). The several benefits of SLNs delivery contain bypassing

120–200 nm particle size in the spleen or liver filtration,

improved stability, leakage stoppage, and increase lymphatic

endorsement of the bioactive compound through oral delivery

(Ayan et al., 2017; Ganesan et al., 2018). SLNs, on the other hand,

have drawbacks such as restricted drug-loading capacity and

drug ejection due to crystallization during loading circumstances

(Rajabi and Mousa, 2016). SLNs can be made from triglycerides,

complex glycerides, and waxes (Mader, 2006). Because of their

tiny size, SLNs may be used in several modes, including

parenteral, pulmonary, and cutaneous applications, as well as

an intravenous injection (Üner and Yener, 2007). SLNs have been

widely studied for drug administration of dynamic anti-cancer

complexes, improving medication oral bioavailability, protecting

labile anti-cancer medicines, and reducing adverse effects by

selectively targeting the active site (Pindiprolu et al., 2019).

SLN enhanced PZQ’s antischistosomal action, resulting in

significantly prolonged drug release due to the encapsulated

drug’s protection from enzymatic destruction. Despite the

prolonged residency in the systemic circulation, oral

administration of this SLN-PZQ demonstrated a substantial

improvement in bioavailability and effectiveness with a safer

profile when compared to traditional medication (Radwan et al.,

2019). Another study found that PZQ-loaded SLN might be a

new drug delivery method for schistosomiasis therapy,

particularly in marginalized communities, improving

therapeutic effectiveness while reducing PZQ side effects (de

Souza et al., 2014). The use of hydrogenated castor oil in SLN

increased PZQ bioavailability as well as drug residence duration

after oral delivery (Xie et al., 2010). PZQ-loaded SLN was used to

investigate the biological uses of this technology for PZQ

intestinal penetration (de Souza et al., 2014).

Lipid nanocapsules (LNCs)

LNCs feature a hybrid shape between polymeric

nanocapsules and liposomes due to their oily core enclosed by

a rigid capsule (Huynh et al., 2009). Miltefosine, a medication

used to treat cutaneous breast cancer metastases and Visceral

leishmaniasis, was shown to have improved availability and

activity due to improved gastrointestinal transit and

schistosomicidal activity when encapsulated in LNCs and

taken orally, according to one study (Eissa et al., 2015). Due

to the schistosomes’ better-absorbed tegument, which has an

attraction for the phospholipid bilayer, the usage of LNCs has

recently received significant attention, notably in the treatment of

schistosomiasis. Because of their amphipathic character, LNCs

can play a prominent part in modifying the solubility and rate at

which drugs such as PZQ can be targeted, therefore increasing

penetration across biological barriers (Cheng et al., 2017).

Moreover, a single dose of PZQ-LNCs substantially improve

efficacy and decreased worm burden, hepatic pathology

improvement, and substantial damage to the fluke suckers and

tegument (Amara et al., 2018). Whereas PZQ-lipid Nano-capsule

at a dose rate of 250 mg PZQ-20 mg miltefosine/kg demonstrates

a substantial increase in antischistosomal efficacy in terms of

statistical augmentation in mean worm load, particularly against

invasive and early-stage worms, as well as improvement in

hepatic granulomas (Eissa et al., 2020b), The prophylactic role

of a single oral dose of PZQ-MFS LNCs was evaluated and

demonstrate that when compared to an infected non-treated

control, administration of the nano combination one or 7 days

before infection resulted in a significantly substantial drop in

mean worm burden and granuloma size, as well as improvement

in hepatic pathology (Eissa et al., 2020a).

Likewise in one more investigation, the miltefosine

encapsulation method was employed in LNCs remodeled with

cetyltrimethylammonium bromide (CTAB), a +ve charge

conveyance substance, or oleic acid with dose directed orally

in S. mansoni infected mice. According to the findings of this

investigation, a single oral dose of both encapsulated miltefosine

resulted in a drop in parasite load as well as a reduction in liver

granulomas in infected mice. Following the previous study

findings, the investigators found that the role of encapsulated

miltefosine is a feasible nanomedicine for mass schistosomiasis

chemotherapy, particularly its application as an oral single

dosage (El-Moslemany et al., 2016).

Zinc oxide nanoparticles (ZnO-NPs)

ZnO-NPs are employed in a variety of industrial products

such as rubber, dye, coating, and cosmetics. ZnO-NPs is one of

the most extensively utilized metal oxide NPs in biological

applications due to their excellent biocompatibility, low

toxicity, and low cost. ZnO-NPs have emerged as

potentially useful in biomedicine, particularly in the

anticancer and antibacterial domains, due to their ability to

trigger the creation of extra reactive oxygen species (ROS), the

release of zinc ions, and the induction of apoptosis (Jiang et al.,

2018). Dietary ZnO-NPs improved oxidative status and

improved the efficiency of several blood enzymes. As a

result, ZnO-NPs were employed as a novel leishmania

therapy (Ahmadi et al., 2014; Nadhman et al., 2014), and

schistosomiasis (Bauomy, 2020). The photo-activated

disinfectant effectiveness of the Ag@Sm-doped ZnO/CB

nanocomposite for Staphylococcus aureus (80%),

Pseudomonas. Aeruginosa (60%), and S. mansoni cercariae

(100%) was associated with gradual degradation in the

cercarial body. This nanocomposite is also effective for
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adult S. mansoni worms, leading to near-complete worm

mortality and substantial worm body destruction. These

findings validated Ag@Sm-doped ZnO/CB as a powerful

biocide weapon capable of destroying harmful bacteria and

parasites in both dark and light settings (Darwish et al., 2018).

Another study revealed that administering ZnO NPs and/or

L-carnitine to schistosome-infested mice decreased brain

oxidative stress measures, with glutathione levels and

catalase activity much greater than in the schistosome-

infested group. On the contrary, the therapy dramatically

reduced the levels of nitrite/nitrate, malondialdehyde, and

reactive oxygen species. Furthermore, the treatment with ZnO

nanoparticles and/or L-carnitine cured the neuro-

schistosomiasis-related brain histological abnormalities

(Bauomy, 2020).

Liposomes

Liposomes are small structures used as a drug delivery

system to reach tissues, delivering only a portion of the drug to

the target site (Tomiotto-Pellissier et al., 2017). Liposomes are

amphiphilic, meaning they can transport both hydrophobic

and hydrophilic medicines. It can protect the encapsulated

medications by isolating them from the outer environment,

increasing the solubility of the lipophilic drug, and extending

the action period of the drugs (Muthu et al., 2011). Liposomes’

physiochemical characteristics may be changed, permitting

the encapsulated drug to be delivered to the exact targets,

resulting in greater therapeutic efficiency than traditional dose

forms (Ammar et al., 1994). Because of their great

biocompatibility and low toxicity, liposomes have sparked a

lot of interest as a drug delivery system (Mufamadi et al.,

2011).

In the treatment of S. mansoni, praziquantel (300 mg/kg)

encapsulated in liposomes significantly reduced worm load, stool

and intestinal egg count, and the number of hepatic granulomas

(Frezza et al., 2013). In S. mansoni infected mice sulfated

polysaccharide -D-glucan extracted from Ramalina celastri

encapsulated in liposomes significantly reduced hepatic

granuloma (Frezza et al., 2015). Thus, liposomes have the

benefit of not restricting the drug’s physicochemical

characteristics that are not enclosed, such as hydrophilicity or

membrane, improving the therapeutic efficacy, regulating intake

and tissue distribution, and producing less toxicological effects

that encourage schistosomiasis treatment (Tomiotto-Pellissier

et al., 2017).

Mesoporous silica nanoparticles (MSNs)

MSNs are utilized as a nano-drug carrier because of their

unique organization and remarkable features such as higher

specific surface area (>900 m2/g−1) and lower volume

(>1 cm3/g-1), ordered apertures, variable pore diameter

(2–50 nm), excellent biocompatibility, and thermal

stability (Li et al., 2017). These consistent surface

characteristics and structures are ideal for encapsulating

proteins, microbes, and other sorts of drugs. Furthermore,

MSNs’mesoporous characteristics allow them to carry a high

amount of anticancer drugs and enable drug assortment via

nano-sized components via passive targeting to the tumor

location. As a result, MSNs are employed as an effective drug

delivery system for a variety of diseases (Sohail et al., 2020).

Furthermore, suitable surface functionalization on the

external surface of MSNs can be performed to get a

dynamic targeting mechanism. Such as chemicals sensitive

to exterior stimuli like as pH, magnetic field, temperature,

redox, and enzymes are utilized to manufacture

environmentally friendly and controllable DDS to improve

anticancer medication targeting and diminish side effects

(Pan et al., 2012). Considering MSNPs’ potential to increase

PZQ bioavailability and shorten half-life in the exchange

(Amara et al., 2018). PZQ-Si has superior physiochemical

properties such as tiny constant size (105 nm), spherical

shape, and PZQ trapping efficacy (83%). In terms of

overall worm load, tissue egg count, oogram pattern, and

liver granuloma count and diameter, the PZQ-Si therapy

produces the best antischistosomal results when taken orally.

According to the findings, mesoporous silica NP is a likely

safe nanocarrier for PZQ, enhancing its antischistome,

antioxidant, immunomodulatory, and anti-inflammatory

action in S. mansoni-infected mice (Tawfeek et al., 2019).

Silica nanoparticles were effectively produced and analyzed,

showing acceptable features for in vivo uses. Soluble worm

antigenic preparation (SWAP) has been included in the

MSNs. SWAP-loaded MSNs outperformed a conventional

vaccination system in terms of immunization performance

(SWAP-associated aluminum salt). These findings imply

that SWAP-loaded MSNs is a potential approach for

improving the immune response to S. mansoni (de Pádua

Oliveira et al., 2016). MSNs have revolutionized

nanobiotechnology due to their ability to contain a high

number of drug molecules. In comparison to crude drug

material, they were extremely successful in the delivery of

hydrophobic drugs, considerably improving their solubility

and bioavailability after oral administration (Zhang et al.,

2012). Increasing the performance of already existing

medicines is thought to be a more beneficial strategy from

an economic standpoint (Tomiotto-Pellissier et al., 2017).

Nanoemulsions

Nanoemulsions are tiny biphasic particles where it is one

component is firmly dispersed into the next in the shape of
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microscopic droplets ranging in diameter from 10–600 nm

and are used to transport oil-soluble substances (de Araújo

et al., 2007). It can be an oil-in-water nanoemulsion or a bi-

continuous nanoemulsion with oil and water interspersed

throughout the system (Tomiotto-Pellissier et al., 2017).

Although aminoalkanethiosulfuric acids are a class of

chemicals with schistosomicidal action, their use as a

pharmaceutical preparation is restricted due to their low

water solubility (de Oliveira Penido et al., 2008). The

efficacy of 2-(butyl amino)-1-phenyl-1-ethane

thiosulphuric acid (BphEA) utilizing nanoemulsions

incorporating BphEA is enhanced. This nanoemulsion

was capable of inducing worm motor activity loss,

tegument disruption, female worm death, and male worm

sluggish movement. When the parasites were treated with a

free compound, these outcomes were not observed (de

Araújo et al., 2007).

Nanotechnology applications in the field
of nanomedicine

In the field of nanomedicine, the use of nanotechnology

aims to improve public health and quality of life (Jia, 2005).

Currently, nanotechnologies are used in various fields such as

nano-medicine, nano-biotechnology, and nano-diagnosis as

shown in (Figure 3).

Nanomaterial as therapeutic agents

Nanomaterials have been industrialized for their usage in

medicine and several types of gadgets. Because of their

antimicrobial properties, NPs of certain metals or metal

oxides are now broadly used to treat various disorders and

improve human health. NPs with particular physicochemical

properties have demonstrated antimicrobial, antiviral, and

antiparasitic properties (Jebali and Kazemi, 2013). Because

of their small particle size and charged surface, nanoparticles

can easily enter pathogenic cells and interfere with cellular

contents such as protein and DNA, inducing programmed cell

death (Sharmin et al., 2021). Antileishmanial capabilities are

exhibited by gold and silver nanoparticles, as well as zinc,

titanium, and magnesium oxide nanoparticles (Jebali and

Kazemi, 2013). Furthermore, gold nanoparticles (GNPs)

exhibited antischistosomal activity in the liver and brain of

mice (Dkhil et al., 2015a). Treatment is a substantial

therapeutic action. While it is favored that prevention of

diseases is better than treatment, therapy for an already

present disorder is necessary (Emerich, 2005). The main

objective of treatment is to make the patient as comfortable

as possible. For millennia, therapy has been evolving at a rapid

pace. The introduction of Nano therapy healthcare has given

rise to a new promise in medicine (Moghimi et al., 2005;

Murthy, 2007). The application of nanomaterial as a new

addition to enhance the conventional therapeutic procedure

FIGURE 3
Schematic diagram of nanotechnology application in various fields.
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can be very useful (Nakayama and Okano, 2005; Gulati and

Gupta, 2012). Nanomaterials and the use of a nano-enabled

drug delivery system (Figure 4) have been a key emphasis with

the hope of enhancing treatment results for schistosomiasis

using PZQ. Table 2 lists the various nano-therapeutic

compounds utilized as anti-schistosomal therapy for the

treatment of diseases.

Nanotechnology use in schistosomiasis
diagnosis

Schistosomiasis diagnosis is essential for the recognition

and treatment of the diseases in prevalent and non-prevalent

areas, as case finding, morbidity valuation, and control plans

are all based on the result from diagnosis (Ajibola et al., 2018;

Odundo et al., 2018). Current diagnostic methods for

schistosomiasis include traditional parasitological methods,

immunological diagnosis, as well as molecular methods (Katz

et al., 1972). Common traditional parasitological methods

include the use of a microscope for parasitic egg

determination in urine and stool, or by immunological

method (antibody or antigen detection) (van Etten et al.,

1994; Odundo et al., 2018). Kato-Katz method is cheap and

convenient and offers a high degree of specificity (Caldeira

et al., 2012). The sensitivity of the test is contingent on the

degree of the disease, the technique, and the judgment of the

post-infection host. The understanding of existing antibody

analyses is not ideal (ranges from 65 to 86 percent), (Odundo

et al., 2018). Screen printing electrode biosensors have

recently attracted significant attention in clinical sciences,

food, and drug analysis process control. These sensors can

determine very minute amounts of analytes by detecting the

changes in potential, current, and conductance caused by an

immune response (Taleat et al., 2014). Nanotechnology has

been used to enhance the correctness and improve existing

methods, but also provide new techniques unexpectedly (Lin

et al., 2008; Yang M. et al., 2009b). The use of NPs in

immunosensing has demonstrated great potential in the

development of highly sensitive, versatile diagnostic care

devices (Dequaire et al., 2000; Baptista et al., 2008; Wan

et al., 2013). The list of various nanosensors used to boost

the diagnostic effectiveness against schistosomal infections is

provided in Table 3.

Nanotechnology and vaccine production

Vaccination has a significant influence on infectious

disease control. There are a lot of serious diseases, yet no

effective vaccine is available for them (Gregory et al., 2013).

Nanotechnology is playing an increasingly important role in

vaccine development. Measures that improve antigen

efficiency are becoming increasingly essential as vaccination

FIGURE 4
Schematic illustration of nanotechnology and nano-enable drug delivery system use in schistosomiasis treatment. (1) The liver and digestive
system containing schistosomes that enter the body by skin penetration and reach the specified organ through the bloodstream (2) The oral and
intravenous administration of a nanotechnologically based medication causes the worms’membrane (tegument) to rupture, permitting the drug to
be distributed and kill the worms.
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TABLE 2 List of various nanoparticles used therapeutically in the treatment of schistosomal infections.

S.
No

Nanoparticles used Schistosomes
species studied

Model animal
used in the
study

Efficacy References

1 Gold nanoparticles (AuNPs) 0.25, 0.5,
and 1 mg/kg

S. mansoni Mice In comparison to the control group, AuNPs
dramatically reduce overall worm load, egg load
in liver granuloma size, malondialdehyde
activate and nitric oxide levels, and enhance
glutathione levels. This also decreases mRNA
expression of interleukin-1, interleukin-6, tumor
necrosis factor, interferon, and inducible nitric
oxide syntheses. This result indicates that Au-
NPs are being effective anti-schistosomal and
antioxidant agents. AuNPs used at a higher dose
1 mg/kg were found more effective than free
PZQ in worm burden and egg count

Dkhil et al.
(2015a)

2 Gold Nanoparticle (AuNPs)
1 mg/kg b.wt

S. mansoni Mice Au-NPs therapy considerably lowers splenic
levels of nitrite/nitrate and MDA in splenic tissue
as a consequence of Au-NPs and PZQ treatment;
NPs also enhance the level of GSH in infected
mice gut and spleen. Au-NPs significantly
improve histological images of the spleen with
specific histological impairments than the non-
infected control group

Dkhil et al.
(2017)

3 Gold Nanoparticles (AuNPs)
250,500 and 1,000 µg/kg

S. mansoni Mice AuNPs significantly reduce the level of nitrite/
nitrate and MDA, AuNPs at a dose rate of
250 µg/kg showed non-significant changes in
KIM-1 and significant up-regulation of NGAL
mRNA expression, whereas MCP-1 and TGF-β
was an expression of mRNA which significantly
reduced. AuNPs treatment in mice reduced the
extent of histological impairment and renal
oxidative damage. AuNPs were able to regulate
gene expression impaired by S. mansoni infection

Dkhil et al.
(2016b)

4 Selenium nanoparticles (Se-NPs)
(0.5 mg/kg)

S. mansoni Mice Injection of selenium nanoparticles into
Schistosoma infected mice enhanced hepatic
histopathology and reduced the diameter of
granulomas. The treatment increased the level of
glutathione. While the nitrite/nitrate and
malondialdehyde levels decrease significantly.
The result suggested that the Se-NPs in infected
mice with S. mansoni work as an Anti-
schistosomal drug

Dkhil et al.
(2016a)

5 Zinc oxide Nanoparticles (ZnO-NPs)
5.6 mg/kg

S. mansoni Mice In schistosome-infected mice, treatment with
ZnO-NPs declined brain oxidative stress
parameters, with glutathione and catalase activity
considerably enhanced. The therapy, also
significantly decreased the levels of nitrite/
nitrate, malondialdehyde, and reactive oxygen.
ZnO-NPs treatment also improved the neuro-
schistosomiasis-related brain histopathological
impairment and restored the DNA laddering
profile

Bauomy,
(2020)

6 Gold nanoparticles (Au-NPs)
1 mg/kg Selenium nanoparticles (Se-
NPs) 0.5 mg/kg

S. mansoni Mice To test the effect of the nanoparticles, infected
mice were fed them individually. The parasites
caused a substantial reduction in glutathione
levels after injection; nevertheless, the levels of
nitric oxide and malondialdehyde were greatly
augmented. The treatment of mice with metal
nanoparticles dramatically reduced the levels
body weight changes, oxidative stress, and
histological alterations in the jejunal tissue
significantly. Thus they have proved their
potential anti-schistosomal activities in mice
successfully

Dkhil et al.
(2019)

(Continued on following page)
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development focuses on less immunogenic “minimalist”

formulations. The use of NPs in vaccine manufacturing

increases not only antigen storage and immunogenicity but

also permits targeted administration and slow release (Zhao

et al., 2014). Nanotechnology usage has grown exponentially

in recent decades, giving rise to the term “nanovaccinology”

TABLE 2 (Continued) List of various nanoparticles used therapeutically in the treatment of schistosomal infections.

S.
No

Nanoparticles used Schistosomes
species studied

Model animal
used in the
study

Efficacy References

7 Silver Nanoparticles (Ag NPs)
125 µg ml−1

S. japonicum Mice In a dose-dependent fashion, AgNPs produced
cercarial tail-shedding, disturbed behavior, and a
reduction in cercarial secretion. It was discovered
that extended treatment was cercariocidal, which
might be attributed to AgNP-induced cercarial
tail loss rather than toxicity. Ag + may be
important in the effects of AgNPs on
schistosome cercariae. Non-etheless, given the
remarkably unusual physicochemical properties
and biological activities of various nano-sized
materials, including AgNPs, the possible
contribution of AgNPs’ nano dimensions could
not be ruled out

Cheng et al.
(2013)

8 Au-NPS (0.25, 0.5, and 1.0 mg/kg) S. mansoni Mice Au-NPS could reduce the neurooxidative stress
and control the gene expression in the brain of
diseased mice. The results show that GNPs have
an antischistosomal effect against S. mansoni.
The neuro-schistosomiasis treatment with GNPs
improved the histopathological changes. A
significant decrease (p ≤ 0.05) was noticed in DA
content in schistosome-infected mice treated
with 0.25 and 0.5 mg/kg GNPs and+PZQ as
compared to the non-infected control group. On
contrary, the administration of the higher dose of
GNPs (1.0 mg/kg) resulted in a significant
elevation in DA content versus the control
group. The content of brain DA showed a
significant increase in all treated groups as
compared to the schistosome-infected group

Dkhil et al.
(2015b)

9 Cur-GNPs S. mansoni Mice Curcumin-loaded gold nanoparticles (Cur-
GNPs) combined with PZQ reduce worm load in
the third week, with the largest drop in the
intestine and liver egg content and a
70.1 decrease in granuloma size. This study
showed that curcumin when combined with
PZQ, has substantial antischistosomal properties
against S. mansoni through altering biochemical,
histological, and immunological alterations as
compared to the untreated control group

Mokbel et al.
(2020)

10 Ag-NPs (50 μg/ml) + Au NPs
(100 μg/ml)

S. mansoni Mice In in-vitro research, Ag-NPs and Au-NPs were
used at dosage rates of 50 g/ml and 100 g/ml,
respectively, S. mansoni cercariae morality was
enhanced in a dosage and time-dependent
manner, reaching 100% mortality after 1 h of
incubation. In an in-vivo trial, it reduced worm
load, and egg count/g in the gut, and liver as
compared to the control group

Moustafa et al.
(2018)

11 TA-Long-circulating pegylated
liposomes (LCL) 11 mg Sb/kg

S. mansoni Mice When related to the control group (untreated or
treated with empty LCL), the LCL-treated cluster
has a considerable drop in worm load (55%).
According to the findings of this investigation,
LCLs decrease toxicity and efficiently transport
TA into S. mansoni in the last stage of parasite
infection. The present work demonstrates that
LCL reduces the acute toxicity of TA and
effectively deliver this drug to S. mansoni during
the late stages of parasite infection

de Melo et al.
(2003)
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TABLE 3 List of Nano-sensor/Nano-material used in improving the diagnostic ability against schistosomal infections.

S.
No

Nano-sensor
nano-materials
used

Schistosomes
species studied

Num. of schistosoma
positive sample in
study

Efficacy References

1 AuNPs-Mab/Elisa S. mansoni 71 ELISA’s sensitivity and specificity for detecting
Circulating Schistosomal antigen (CSA) using
AuNPs-Mab was 100% and 97.8%. A more
significant positive correlation was detected on the
use of AuNPs-Mab/ELISA (r = 0.882). Loading
AuNPs with Mab (6D/6F) improved the precision
of sandwich ELISA for the determination of CSA,
allowing active and mild infections to be identified
easily

Kame et al.
(2016)

2 AuNP-IgG Nano-
sensor

S. mansoni . . .. . .. . .. . .. . . Immobilized AuNPs combined with bilharzia
antibodies proved their diagnostic potential. The
detection range of bilharzia antigen in stool
samples was 1.13 × 10−1 ng ml−1 to 2.3 ×
103 ng ml−1, with a detection limit of 8.3887 ×
10−2 ng ml-1, showing the ability of the nano-
biosensor for detection of bilharzia antigen in stool
samples

Odundo et al.
(2018)

3 NCE-AGs S. mansoni . . .. . .. . .. . .. . .. . . The proposed NCE electrode’s quantitative
response and great sensitivity to Abs of S. mansoni
are as low as 38 pg/indicateting that it may be
developed as a site-user, low-cost, and rapid
electrochemical immuno-sensor

Shohayeb et al.
(2016)

4 AuNP-IgG Conjugate S. mansoni . . .. . .. . .. . .. . .. . . Conjugate was tested as the analyte with a differing
concentration of conjugate soluble Egg Antigen
(SEA). The single response was directly
proportional to the SEA concentration. A SEA
concentration plot against the current change was
obtained. The detection limit of 3.31 × 10−5 ng/ml
was obtained with formula 3σ/slope, where σ is the
standard deviation of three blank solutions

Naumih et al.
(2016)

5 MBA-Fe3O4-NPs-
AuNPs-DNA Probe
System

S. mansoni . . .. . .. . .. . .. . .. . . On the changed surface of the electrode, the probe
system exhibits an efficient electrochemical
response. At varied DNA quantities in the genome,
the proposed biosystem was capable of identifying
S. mansoni unique nucleotide sequences in
cerebrospinal fluid (CFS) and blood samples. At
higher DNA concentrations, bio recognition
caused an increase in electron transfer resistance
and a decrease in current peaks during
electrochemical testing. The established platform
had detection limits of 0.781 and 0.685 pg L-1
DNA for serum and CFS, respectively

Santos et al.
(2017)

6 MPTS-AuNPs-DNA
Probe System

S. mansoni . . .. . .. . .. . .. . .. . . The proposed biosystem detected the S. mansoni
genome sequence in urine samples, cerebrospinal
fluid system, and serum in varying amounts. It
measured concentrations in urine (27–50 pg L−1),
cerebral fluid (25–60 pg L−1), and serum
(27–42 pg L−1). The limit detection (LOD) of the
biosensor was 0.6 pg μL−1. The developed labeled
free genosensor was able to detect small
concentrations of S. mansoni DNA in complex
biological fluids

Santos et al.
(2019)

7 GICA S. japonicum 174 GICA shows a sensitivity of 93.7% in patients with
Schistosomiasis and 97.6% specificity in the
healtyh population and patients with other
parasitic diseases.Partially purified SEA in GICA is
effective for detecting schistosomiasis in the fields
since it requires a little amount of blood, has high
sensitivity, and has a low cross-reaction rate

Shou-fu et al.
(2014)

(Continued on following page)
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(Mamo and Poland, 2012). Nanoparticles are used in both

prevention and treatment. It can be used as a vehicle for

antigen delivery or as an immunostimulant adjuvant to

activate or boost immunity. Prophylactic nanovaccinology

is used to regulate and prevent various illnesses, whilst

therapeutic nanovaccinology is used to cure cancer

(Bolhassani et al., 2011; Krishnamachari et al., 2011).

Traditional vaccinations contain live attenuated

microorganisms, dead bacteria, or components of microbes.

While many of these vaccinations were essential for

controlling infectious organisms, many of them did not

give protection against specific diseases (Gregory et al.,

2013). A range of infectious diseases lacks licensed

vaccines, as most of them are purified proteins,

polysaccharides, or naked DNA encoding a protective

antigen (Harandi et al., 2010). Control methods for

schistosomiasis are primarily grounded on chemotherapy,

but given eras of bulk action, the number of people

diseased remains persistent (Harder, 2002). General

prevalent zones have continuous reinfection of people and

poor sanitation situations in the evolving countries, making

drug treatment alone inadequate (Bergquist and Colley, 1998).

Researchers find that the long period strategy for managing

schistosomiasis is through combining immunization with

drug treatment (Bergquist, 2002). An antischistosomal

vaccine that even partially reduces worm loads might

significantly decrease the pathology and limit the infection

with a parasite (Chitsulo et al., 2004). The researcher has now

redirected the usage of nanotechnology as vaccine delivery

vehicle for treatment. The vaccine antigen would either be

enclosed or imprinted on the exterior of the NPs. By

packaging antigenic components, NPs allows for the

administration of antigens that would otherwise be quickly

degraded after injection or trigger a localized immune

response. The conjugation of antigens to NPs allows the

immunogen to be given to the immune system in the same

way as the pathogen would, resulting in a comparable reaction

(Gregory et al., 2013). Nanotechnology is used because of its

greater stability and easier accessibility to the target site. The

list of various nanoparticles used along with vaccine materials

against schistosomal infections is given in Table 4.

Advantages and disadvantages of
nanotechnology

A lot of research has been conducted on nanotechnology

because nanoparticles with dimensions of 100 nm or fewer

usually have a high specific zone, a high adsorption capacity,

and a variety of particular physicochemical, optical, and

electrical characteristics (Ghormade et al., 2011). Nano-

loading of NPs in nano-drug delivery systems can alter the

permeability, of the membrane and remove special big barriers,

thereby endorsing straight drug diffusion and intracellular

delivery (Sun et al., 2008; Kunzmann et al., 2011). A nano

drug delivery system can therefore increase consumption levels

and curative effects, and decrease drug side effects. Biosensors

are an influential and creative analytical tool with admirable

classifications, very sensitive, quick, simple, and low-cost. It can

be used in the field of drug finding, diagnosis, biomedicine, food

safety, and environmental monitoring (Ullah et al., 2020c). As a

result, these devices have become extensively established and

employed in a variety of biological disciplines, including cancer

detection, diagnostic reagent creation, and gene therapy. The

relatively high cost and adverse environmental impact of the

most often utilized NPs, such as gold, iron oxide, or ZnO-like

NPs, severely limit their agro-biotechnological uses (Sun et al.,

2008; Tang et al., 2012). The biosensor is also not commercially

available for the majority of infections; further research is

needed to evolve the technology (Janissen et al., 2017; Ullah

et al., 2020c).

Future prospective

This review comprehensively documented the application

of nanoparticles in schistosomiasis treatment, prevention, and

diagnosis. Despite various treatments, option schistosomiasis

TABLE 3 (Continued) List of Nano-sensor/Nano-material used in improving the diagnostic ability against schistosomal infections.

S.
No

Nano-sensor
nano-materials
used

Schistosomes
species studied

Num. of schistosoma
positive sample in
study

Efficacy References

8 GICA S. japonicum 100 GICA identification strips of S. japonicum in mice,
rabbits, buffaloes, and goats show high sensitivity
(100% in each spp.) and specificity (100%, 100%,
94.23%, and 88.64% respectively). When
compared with ELISA, the GICA strips exhibited
similar sensitivity and specificity in the diagnosis
of schistosomiasis in mice, rabbits, buffaloes, and
goats. Besides, only 5 μl of serum is required for
the test and the detection can be completed within
5 min

Xu et al. (2017)
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TABLE 4 List of various nanoparticles used along with vaccine materials against schistosomal infections.

S.
No

Nanosensor used Schistosomes
species studied

Animal
model
used

Efficacy References

1 NPs-coated pVR1020-SjGST
DNA vaccine

S. japonicum Mice Positive immunological responses were generated by the
NP-coated DNA vaccine formulation. It induces a
significantly enhanced immune response, a T-helper
1 polarized cytokine milieu, a higher proportion of IFN-γ
producing CD4+ T-cells, and a concomitant decrease in
IL-4-producing CD4+ T-cells. There has been no effect on
worm load, but there was a considerable drop in tissue egg
burden, with a 71.3% in tissue egg burden and a% drop in
female adult worm fecundity. The SjGST DNA vaccine
delivered via the nanoparticle gene delivery system had the
same anti-fecundity effect on female adult schistosomes as
the conventional subunit vaccine with adjuvant, indicating
that this DNA vaccine formulation is a promising
candidate for anti-pathology and transmission-blocking
applications

Mbanefo et al.
(2015)

2 Alginate coated chitosan NPs S. mansoni Mice Mice immunized with CpG-associated nanoparticles
exhibited important modulation of the granuloma
reaction. Orally NPs immunized mice from all the
groups provided a substantial degree of defense against
the risk of infection with S. mansoni worms, This
suggests that chitosan plays a key role in generating a
protective immune response. Mice vaccinated with
SmRho plus antigen-based nanoparticles linked to
CpG reduced granuloma by 38% and gave 48%
protection against S. mansoni infection

Oliveira et al.
(2012b)

3 SWAP-MSN S. mansoni Mice During the 120-day experiment, mice were given only
SWAP (as a negative control) showed no increase in
IgG1 levels, indicating that they were only maintaining
homeostatic levels. Mice given SWAP-loaded MSNs or
SWAP combined with aluminum salt, on the other
hand, had a significant increase in serum IgG1 levels,
indicating that both formulations could stimulate the
mice’s immune system against Schistosoma mansoni.
It is worth noting that until 14 days after
immunization, no significant differences in serum
IgG1 levels were observed between the three groups.
After 14 days, however, mice treated with SWAP-
loaded MSNs had higher antigen levels than other
groups (p > 0.5)

de Pádua Oliveira
et al. (2016)

4 chitosan NPs loaded with
plasmid DNA encoding Rho1-
GTPase

S. mansoni Mice The result of this study shows chitosan NPs can
significantly reduce liver pathology. Animals immunized
with CH nanoparticles without DNA and challenged with
cercariae had a 47% reduction in adult wormburdenwhen
compared to the saline control group

Oliveira et al.
(2012a)

5 AuNHs-NH2-rSm29 S. mansoni Mice The AuNHs-NH2-rSm29-treated group had a higher
level of protection (34%). In AuNRs-NH2-
rSm29 immunization Th1 immunological response
with increased IFN-ɤ production, mostly by CD4+ and
CD8+ T cells, was found. In vitro study, these nanorods
also activate dendritic cells, boosting MHCII and
MHCI expression as well as IL-1 β n production in an
NLRP3-, ASC-, and Caspase-1-dependent way

Assis et al. (2018)

6 PAMAM-Lys demdrimer S. japonicum Mice PAMAM-Lys dendrimers are a new vaccine delivery
vector that can boost DNA vaccine immunoreactivity
and protect against S. japonicum infestation.
Antibodies were significantly higher in PAMAM-Lys
combined DNA vaccine-treated mice than in naked
DNA vaccine-treated mice. The PAMAM-Lys vector
induced an IgG2a-dominated antibody response as
well as a significant increase in IL-2 and IFN-c
production

Wang et al. (2014)
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is frequently seen in endemic as well as non-endemic areas.

Further, the basic hurdle in schistosomiasis treatment is the

low bioavailability of anti-schistosomal materials, the

resistance of parasites due to misuse of drugs, and

improper diagnosis. Researchers are working on the

understanding treatment, diagnosis, prevention, and control

of schistosomiasis. Unluckily there has not been any

promising approach toward anti-schistosomal therapy. The

involvement of scientists would confidently tackle the

improvement of the treatment plans for this deliberating

disease. Nanomedicine is an important application of

nanotechnology for medical science for the last 20 years,

which has grown as one of the most favorable techniques

for the precision of conservative chemotherapies and

diagnosis. The drug delivery system has the capability of

administration of a low dose of drug and target-specific

activity could be achieved by using nanotechnology.

However, the fabrication and manipulation of

nanomaterials in a repeatable and cost-effective way are

still in their early stages. But it is expected that the

application of NMs in schistosomiasis therapy will improve

the current methods used in the detection, treatment, and

control. The challenges involved in anti-schistosomal

chemotherapy will be minimized by nanomedicine. The use

of nanotechnology will increase bioavailability, decrease the

quantity, toxicity, and side effects, and surge patient

compliance. Hopefully, nanomedicine will deliver fairly

improved and economical anti-schistosomal treatment

practices than conventional chemotherapy, and probably

will decrease the fiscal load of this tropical neglected

disease. Therefore, nanotechnology approaches will

encompass a wide range of solutions over conventional

approaches in the upcoming days, for fast diagnosis,

control, and prevention of this tropical neglected disease. It

will be critical to discuss alternative ways to improve existing

nanomedicine or nanotechnology approaches to improve

schistosomiasis diagnosis and treatment.

Conclusion

Schistosomiasis continues to increase globally in tropical

regions. It upsets the world’s deprived countries where there

is a lack of basic facilities like safe water, sanitation, and other

hygiene environmental conditions. The increasing shortcomings

in the use of PZQ and other commonly used diagnostic methods

have paved toward the use of potential alternative drug therapies.

In this analysis, we have focused on the current application of

nanomaterials used in biomedicine. Because of their distinct

properties, nanomaterials have attracted a great deal of

attention, and they have been utilized in the improvement of

diagnostic techniques, therapeutic targets, and schistosomiasis

prevention and vaccine. NPs are novel drug delivery systems for

PZQ, which is a powerful anti-schistosomal medication that may

be employed against different stages of Schistosoma. Silver, gold,

selenium, silica, liposome, etc. are considered potential

nanomaterials used for the treatment, and as vaccine

candidates against schistosomiasis. Nanoparticles are easy to

develop, have low toxicity, improve drug bioavailability by

solubility modification, and improve drug absorption across

the biological barrier. Nanotechnology also improves the

sensitivity and efficacy of diagnostic kits. Therefore, the

combination of these nanomaterial products may change the

existing situation of therapeutics, control, and medical diagnosis.
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Glossary

AChE Acetylcholinesterase

AgNPs Silver nanoparticles

AuNPs Gold nanoparticles

BN Boron nitride

BNNSs Boron nitride nano spheres

Cur-GNPs Curcumin loaded gold nanocapsules

DNA Deoxyribonucleic acid

CTAB Cetyltrimethylammonium bromide

DDS Drug delivery system

ED95 Effective dose 95

ENMs Engineered nanomaterial’s

GICA Colloidal gold immunochromatography assay

Lip.PZQ Liposomal-Praziquantel

LNCs Lipid nanocapsules

LOXA Liposomes entrapped oxamniquine

nAChR Nicotinic type of acetylcholine receptor

NMs Nanomaterials

NPs Nanoparticles

M-PZQ Market praziquantel

MFS-LNC Miltefosine lipid nanocapusles

MSNs Mesoporous silica nanoparticles

PZQ Praziquantel

PZQ-Si Praziquantel-mesoporous silica

PZQ-NLC2 Praziquantel-Nanostructured lipid carriers 2

PZQ-NLC4 Praziquantel- Nanostructured lipid carriers

ROS Reactive oxygen species

S Schistosoma

Se-NPs Selenium-nanoparticles

SGTP1 Schistosome glucose transporter 1

SGTP4 Schistosome glucose transporter 4

SLNs Solid nanoparticles

SLN-PZQ Solid nanoparticles praziquantel

SWAP Soluble worm antigenic preparation

VL Visceral leishmaniasis

WHO World health organization

ZnO-NPs Zinc oxide nanoparticles
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