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Nanopore technology enables portable, real-time sequencing of microbial

populations from clinical and ecological samples. An emerging healthcare

application for Nanopore includes point-of-care, timely identification of

antibiotic resistance genes (ARGs) to help developing targeted treatments of

bacterial infections, and monitoring resistant outbreaks in the environment.

While several computational tools exist for classifying ARGs from sequencing

data, to date (2022) none have been developed for mobile devices. We present

here KARGAMobile, a mobile app for portable, real-time, easily interpretable

analysis of ARGs from Nanopore sequencing. KARGAMobile is the porting of an

existing ARG identification tool named KARGA; it retains the same algorithmic

structure, but it is optimized for mobile devices. Specifically, KARGAMobile

employs a compressed ARG reference database and different internal data

structures to save RAM usage. The KARGAMobile app features a friendly

graphical user interface that guides through file browsing, loading,

parameter setup, and process execution. More importantly, the output files

are post-processed to create visual, printable and shareable reports, aiding

users to interpret the ARG findings. The difference in classification performance

between KARGAMobile and KARGA is minimal (96.2% vs. 96.9% f-measure on

semi-synthetic datasets of 1 million reads with known resistance ground truth).

Using real Nanopore experiments, KARGAMobile processes on average 1 GB

data every 23–48min (targeted sequencing - metagenomics), with peak RAM

usage below 500MB, independently from input file sizes, and an average

temperature of 49°C after 1 h of continuous data processing. KARGAMobile

is written in Java and is available at https://github.com/Ruiz-HCI-Lab/

KargaMobile under the MIT license.
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Introduction

Advances in high-throughput sequencing technologies have

brought miniaturization and increased speed output of devices,

permitting to perform experiments in situ and in real-time

(Runtuwene et al., 2019). Oxford Nanopore’s MinION is the

smallest sequencing device available in the market, measuring

10.5 × 2.3 × 3.3 cm, weighing 87 g, and USB powered. The

MinION output is 420 nucleotide bases per second, with a

maximal sequence read of 4 Megabases, and a maximal yield

of 50 Gigabases over a 72-h run (https://nanoporetech.com/

products/minion). The MinION can be used for both targeted

whole genome sequencing (Loman et al., 2015) and

metagenomics (Nicholls et al., 2019).

An emerging healthcare application for Nanopore includes

point-of-care, timely identification of antibiotic resistance genes

(ARGs) to help tailoring treatment in bacterial infections and

monitoring outbreaks in the environment (Peter et al., 2020).

Antimicrobial resistance (AMR) occurs when an organism

acquires resistance to one or more antimicrobials (e.g.,

antibiotics), making it more challenging to treat and prevent

spread across individuals and environments. AMR is a global

public health and ecological concern with high mortality and

economic costs worldwide (Prestinaci et al., 2015; Dhingra et al.,

2020) and it was classified by the World Health Organization

(WHO) as one of the “top ten global health threats” in 2019.

Close to three million resistant infections occur in the

United States each year and more than 35,000 people die as a

result (CDC, 2019). Frequently, the goal is either testing a clinical

sample to determine its resistance to various antibiotic

treatments, or monitoring an environment on a routine basis

to determine public health risks such as in foodborne infections.

The traditional form of testing for AMR is via sample culture and

vitro phenotypic antibiotic susceptibility testing (Vasala et al.,

2020). Since the majority of microbial species is unculturable and

cannot live outside their natural environment, phenotypic

resistance testing is inadequate in a large number of settings.

However, sequencing technologies have become more readily

available and their application for AMR surveillance is more

widespread. Here, we note that AMR is largely determined by the

ARGs found in the DNA of a biological sample, making the use of

genome sequencing (both affordable and fast) to characterize

resistance feasible; one only needs to have an accurate

computational tool to identify ARGs (Hendriksen et al., 2019;

Lv et al., 2021). Several online resources for ARGs as well as

genotype-phenotype data are available, including the

Pathosystems Resource Integration Center (PATRIC), the

Comprehensive Antibiotic Resistance Database (CARD), and

MEGARes (Alcock et al., 2019; Davis et al., 2019; Doster

et al., 2019). In parallel, several computational tools for

characterization of ARGs from sequencing data (both whole

genome and metagenomics) exist, including AMRPlusPlus

(Doster et al., 2019), DeepARG (Arango-Argoty et al., 2018),

KARGA (Prosperi and Marini, 2021), MetaMARC (Lakin et al.,

2019), Resfinder (Bortolaia et al., 2020), AMR-meta (Marini

et al., 2022b), and VAMPr (Kim et al., 2020). Some of these

tools work directly on short read data, while others on assembled

contigs or draft genomes. Overall, most of them require a

significant amount of memory and computational power. A

comprehensive benchmark on clinical samples has been

published by Marini et al. (Marini et al., 2022a).

Surveillance of AMR is particularly important in rural areas,

where there is a significant amount of antimicrobial use. In fact,

over 80% of antibiotics usage in the United States is relative to

food production animals (swine, cattle, and poultry). This has

been cited as the cause for increased drug-resistant infections in

areas with abundant farming (Manyi-Loh et al., 2018).

Unfortunately, rural areas (e.g., farms, food production

facilities and clinics) frequently lack the sequencing facilities

and computational resources that have been used to generate and

analyze shotgun genomics data for AMR detection. However,

third-generation sequencing technologies have enabled portable

sequencing and remove the laboratory burden. These

miniaturized, battery-powered sequencers take as input a

biological sample and produce high throughput sequencing

data that is transferred on a portable device, such as a

smartphone (Check Hayden, 2015). There is now availability

of portable kits that allow both the sample preparation and

sequencing to be done on-site within 30 min, e.g., the

VolTRAX (https://nanoporetech.com/products/voltrax).

The challenge that remains is a computational one, i.e., the

sequencing technology is now portable but the bioinformatics

analysis is not, defying the purpose of the portability itself. The

data is required to be transferred from the portable device to a

high-performance server or computing cloud in order to perform

the analysis. The Nanopore MinION must be connected to a

desktop that is powerful enough to perform data analyses,

or–more likely–to transfer the data elsewhere for analyses.

Both commercial software for Nanopore analytics (e.g.,

Metrichor, https://metrichor.com/) and open-source tools (e.g.,

Poretools (Loman and Quinlan, 2014), PoreSeq (Szalay and

Golovchenko, 2015), poRe (Watson et al., 2015), Nanocall

(David et al., 2017), Minimap2 (Li, 2021)) require the transfer

of data to hardware with specific confiugurations and capabilities

(e.g., Linux/UNIX, SIMD-SSE acceleration, software library

dependencies).

One of the challenges of large data transfers is that many of

the rural communities do not have high-speed broadband

deployed (Kang, 2019; Kennedy, 2019). According to the US

Federal Communications Commission (FCC)’s Eight

Broadband Progress Report, 19 million Americans still lack

access to broadband service at threshold speeds. In rural areas,

nearly one-fourth of the population lack access to this service

and in tribal areas, nearly one-third of the population lacks

access. Thus, although the necessary data can be generated in

resource-limited areas via third generation sequencing, they
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cannot be analyzed on-site. From an epidemiology and public

health perspective, this delays bacterial outbreak surveillance

and quantification of AMR in critical areas where even

healthcare services might be delayed. Furthermore, the

transport of a powerful desktop/laptop computer may

present some disadvantages in mobile labs. Two reasons are

weight and sterilization. If researchers have to carry their

equipment for several miles, even just a laptop adds 2–5 Kg

in weight and volume, without considering the power needs A

“daysack-scale” portable shotgun sequencing kit has been

estimated to weigh ~10 kg, including a 12-V DC micro

centrifuge, a Nanopore sequencer and flow cell, a ruggedized

laptop, and a multi-voltage power pack, among the other items

(Edwards et al., 2022). A tablet or a phone both have minimal

weight, volume, require less power, and can be charged with

portable batteries. For sterilization purposes, tablets and mobile

phone are also much easier to deal with, as they are generally

water-resistant, thus can be sprayed and wiped with antiseptic

solution. While it is true that a laptop is needed in several steps

of the Nanopore sequencing, there are also bundled devices that

relax such requirement; for instance, the MinION Mk1C (450 g

weight, 14 cm × 3 cm size) comes with pre-installed basecalling

and analysis software. In a prior work, we also showed that

basecalling can be performed on smartphones (Oliva et al.,

2020).

To date (2022), there is no ARG detection software available

that runs on mobile devices. One of the reasons is that the

software needs to be recompiled for mobile chipsets, and this is

not always feasible due to lack of libraries or instruction sets

(Oliva et al., 2020). In fact, code often needs to be re-

implemented (Palatnick et al., 2020) in a manner that it

accounts for RAM constraints and device overheating

(Milicchio and Prosperi, 2021).

In this paper, we present KARGAMobile, a mobile app for

portable, real-time, easily interpretable analysis of ARGs from

Nanopore sequencing data. It does not require any transfer of

data, eliminating the need for a high-speed internet

connection. All computations are done within the mobile

device hardware, without external CPUs. The code is

written entirely in Java, without any external dependency,

and it works within the memory constraints of any off-the-

shelf Android OS. Our app ports the code–and optimizes it for

mobile hardware–of an existing, validated algorithm called

KARGA. We show that the ARG detection performance of

KARGAMobile is in line the original KARGA and with other

AMR classification tools. KARGAMobile features a graphical

user interface and generates visual summary reports,

shareable and exportable. Speed of execution on real

datasets from hospital outbreaks demonstrates its

applicability in real-time scenarios. Thus, KARGAMObile

effectively enables detection of AMR in rural environments

that are resource-limited and we expect a beneficial impact for

public health.

Methods

KARGAMobile algorithm

KARGAMobile’s algorithm is derived from an extensively

validated ARG classification method named KARGA (Prosperi

and Marini, 2021; Marini et al., 2022a). KARGA classifies a DNA

sequence–in the form of sequence read from a FASTQ file–as

part of an ARG (or not) by employing a statistical approach that

compares the k-mer spectrum of the read with that of all ARGs

obtained from a given database (including reverse complements).

Here, we define a k-mer of a sequence (or of a collection of

sequences) as a substring made of k consecutive characters. The

k-mer spectrum is defined as the set of all the k-mers of a

sequence (or of a collection of sequences) along with their

frequencies (because a k-mer can be found in multiple

positions of a sequence set). KARGA’s reference ARG

database is MEGARes, which is selected due to its

comprehensiveness and well-structured AMR ontology,

comprised of a hierarchical, multi-level structure, going from

AMR type, to class, to mechanism, to group (Doster et al., 2019).

Of note, KARGA does not include genes that are responsible for

antibiotic resistance through point mutations, which are called

ARG variants (ARGVs) (Woodford and Ellington, 2007); this is

because the current version of MEGARes (2.0) flags ARGVs, but

does not provide confirmation of mutations’ presence.

When classifying a read, the algorithm first uses a statistical

test apt to minimize the probability of a false positive match with

the ARG database. Thus, it is possible that no ARGs are reported

for one read if the test fails. Specifically, for each read, the

statistical test verifies that the number of k-mers matching the

ARG k-mer spectrum is higher than the expected number of

matches from a null distribution of non-ARG k-mer matches, for

given false positive rate. The false positive distribution is

calculated by matching k-mers of random reads (with the

same average length and standard deviation as the real data)

to the ARG spectrum. We employ an empirical calculation of the

distribution based on random read simulation, which is very

close to the theoretical estimate, with the advantage of being very

easy to implement (Prosperi et al., 2012). Here, we set the false

positive rate to 0.01, and we discard all reads whose number of k-

mer matches with the ARG spectrum is below the number of

matches from the null distribution corresponding to the 99th

percentile (Figure 1). If the read passes the test, based on the

spectrum comparisons, the algorithm calculates the probability

that the read comes from one ormore ARGs, using a multinomial

classification. In detail, when a k-mer from a read matches to

more than one ARG, it is assigned a fractional score; for instance,

if it matches to 5 genes, the score is 0.2. Then, all the scores from

all k-mers of a read are summed up for each ARG and normalized

by the total counts. In this way, a vector of probabilities that sums

up to 1, i.e., a multinomial distribution, is created for each read

(Figure 2). KARGA has two modalities for classifying reads:
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‘best-match’ and ‘multinomial.’ The best-match reports the most

probable ARG (if the statistical test is passed), while the

multinomial reports all matching ARGs, ranked by decreasing

probability, up to 95% cumulative. By default, reads are classified

at the most detailed group level (according to MEGARes

ontology). However, it is possible to classify at higher levels,

e.g., antibiotic mechanism or class, using the information

provided in the output from single or multiple read

classifications.

In addition, after all input sequences are processed, KARGA

creates a file with a description of the overall resistome of the

sample. In other words, for each ARG detected in the reference

database, KARGA prints its sample coverage and depth

(Figure 2). The coverage of an ARG is defined as the number

of k-mers matched by at least one read (in forward, reverse

strand, and counting its repetitions in the ARG), while the depth

is how many times on average an ARG k-mer was matched by

considering all reads. Note that when the multiple multinomial

classification is enabled, the resistome output can also change,

since a read can be assigned to more than one gene (in a

weighted way).

KARGA makes use of a double-lookup strategy that links k-

mers to ARGs and ARGs to k-mers, implemented as two-level

nested hash tables (HashMap< String, HashMap< String,

Integer ≫) to assure efficient querying time. All k-mers are

also stored in both forward and reverse strand to avoid the

need of reversing each single input read. Due to limitations of

Android development, we are required to limit the memory usage

to 512 MB RAM. To accomplish this, we re-implemented KARGA

in the following ways: 1) we replaced one of the two-level nested

FIGURE 1
Empirical distribution of matches of random k-mers to the ARG spectrum to estimate the desired threshold of false positive rate.

FIGURE 2
Schematic representation of KARGA’s ARG classification
algorithm for individual reads and resistome summary for the
whole sample.
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hash tables with an array structure with Integer indexing of ARGs

(HashMap< String, ArrayList< Integer ≫), which is the level with

the lowest expected number of queries; 2) we removed all reverse

complements k-mers from the hash tables, calculating instead the

reverse complements of reads on the fly during processing; and 3)

lastly, we created a compressed version of MEGARes by reducing

redundancy in the ARGs and retaining only one gene representative

among those that cluster together at very high similarity. Specifically,

we used CD-HIT (Li and Godzik, 2006) with a threshold of 92.5%.

With these changes, the KARGAMobile implementation runs

within 512MB of RAM within a wide range of operating,

realistic parameter values (i.e., k between 13 and 45) and the

RAM usage remains constant regardless input file size

(FASTQ or gzipped FASTQ) or read size (i.e., between

150 and 10,000 bases).

One thing to note is that KARGAMobile uses an in-

memory database which is loaded at each program

execution, without any data transforms or succinct

structures, e.g., integer hashing of strings, Burrows-Wheeler

transform, or FM-index (Shibuya, 2019). ARGs are several

orders of magnitude smaller in size than bacterial genes and

genomes. The largest ARG database available to date (2022) is

MEGARes, which contains about 8,000 gene entries for a total

of 3.5 Mb. While it is true that bacterial genome collections

increase at a high pace, the same is not true for ARGs. This is

due to the fact that many genes are shared across species, so

discovery of new species does not necessarily translate into

discovery of new ARGs. Also, new ARGs require laboratory

confirmation of AMR (Hu et al., 2016; Evans et al., 2020), so

the confirmation process takes longer and it is bound by the

current drugs available. More drugs could lead to new ARGs,

but the time scale for the development and introduction of a

new drug is in terms of years. Thus, while the in-memory,

standard data structure choice might not be elegant or

scalable, it favors code simplicity and does not require any

external dependency. KARGAMobile will work with the

factory Java virtual machine on Android OS.

Design of the mobile application

KARGAMobile, the smartphone application built on the Java

code of KARGA, is developed entirely in the Android Studio

Integrated Development Environment (IDE) version 2021.2.1

(https://developer.android.com/studio/releases). The target

Application Program Interface (API) level for the application

is API level 31, although it supports down to a minimum API

level 28. Android Studio suggests approximately 69% of all

Android devices will support applications developed in API

level 28. By targeting the API level 31, the application is

intended to be as time resilient as possible, being that Google

Play’s policies require for all apps to target this level or above

starting November 2022. KARGAMobile also takes advantage of

both novel and well-known Android app interface design

components, such as the Android Jetpack (https://developer.

android.com/jetpack) and the MPAndroidChart (https://

github.com/PhilJay/MPAndroidChart) libraries. These libraries

are used to create some of the different interface objects that

allow the app to achieve its purpose.

App interface
The app interface was created by following a simplified

version of the user-centered design process (Norman and

Draper, 1986). To design the interface, we used multiple user

interface and user experience (UI/UX) design artifacts,

including paper prototypes and wireframes, with strong

involvement of the original KARGA’s developers as well as

potential end users (Jacko, 2012). Other decisions regarding

UI/UX, such as objects location, fonts, and color selection,

were made following best practices, Android

recommendations for developers and the gestalt principles

of design (Rogers et al., 2011). In general terms, these and all

the other different interface components were created to

better support the KARGA tool functionality in a

smartphone graphical user interface (GUI) context and

environment that is naturally different from the original

command-line interface, with no GUI. Thus, the

application was developed to include interface features that

support and extend all of the available functions. When the

user starts the application for the first time, they are asked to

enable KARGAMobile to access the phone’s memory and

storage. This is required to enable the app to load the

sequence and reference files and to store all the different

results. The user is then presented with the home menu

shown in Figure 3, where they can navigate to the main

features of the application. Touching the ‘Configurations’

button opens the screen that allows the user to change

application-wide configuration values required for ARG

analysis, as seen in the second image in Figure 3. The

current version of KARGAMobile allows the user to set

the k parameter (from 13 to 45, with a default value of

17), as well as the percentage coverage threshold (from 0%

to 100%, with a default value of 80%) of the ARGs that will be

displayed in the results. In the home menu, the user can also

select the ‘New Gene Identification’ option, which opens the

main function screen shown in the third image from the left

in Figure 3. In this screen, the user is prompted to choose both

the input read file and the reference database that will be used

as parameters for the ARG analysis. While there is virtually

no limit to the read file size (except for longer processing

times and potential device overheating), the database file

must be calibrated to meet the RAM requirements. Once

any of the select file buttons have been pressed, Android’s

own file picker system is invoked by KARGAMobile, which

serves the purpose of providing the user with a file selection

solution that should feel familiar and safe to them. Thanks to
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the permissions that were granted the first time, these files can

be located anywhere in the user’s phone memory or in any

attached microSD card. When both files have been selected,

the system enables the ‘Identify Genes’ button, which once

pressed, starts and runs through the whole ARG analysis

process. Since Android’s regular worker threads are

constrained to a ten minute limit (and the ARG

analysis can run for longer times), we used high-priority

foreground asynchronous threads with long-running

capabilities (https://developer.android.com/topic/libraries/

architecture/workmanager/advanced/long-running) and

implemented the mechanisms to communicate back with

our app and be notified once the analysis process was

completed.

Visualizing results
When the ARG analysis is done, the app enables the ‘Show

Results’ button that can be seen in the rightmost screen in

Figure 3. It is also at this point that the system automatically

creates and stores a comma-separated value file with every

identified ARG in the default app location folder. This file can

be kept for future reference and can also be sent to others. When

FIGURE 3
Graphical user interface of the KARGAMobile app. The figure shows (left to right) the start menu, configuration, file selection and run screens.

FIGURE 4
Screenshots of the KARGAMobile app after completing a run, showing (from left to right) the ARG coverage and depth summaries in textual
mode, the visual charts of ARGs grouped by AMR classes, and the export/sharing data options.
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the ‘Show Results’ button is pressed, the user is taken to the

results screen, which can be seen in the first image in Figure 4.

The results screen tab menu give the user three different options:

“Genes”, “Classes”, and “Export’, with the “Genes” tab selected by

default. In this first tab, the user is presented with the resulting

ARG list. To display the ARG list directly in screen, the app

makes use of a memory efficient solution provided by Android

Jetpack’s RecyclerView (https://developer.android.com/guide/

topics/ui/layout/recyclerview). With this component, the

system is able to dynamically display large lists of items that

only consume phone resources when the objects are being

rendered on screen. Each item that comes into view is then

displayed by automatically parsing all the ARG information into

another Android component, called a CardView object. Using

CardView works as a convenient graphical template that

maintains a normalized visual aesthetic, which can also be

easily modified in future app versions. In our tests, we were

able to render ARG lists with approximately 5,000 different

objects without delays when scrolling through the item

collection. When the user taps the second tab, “Classes”, the

app displays a bar graph that represents the top 10 most frequent

ARG classes in the list, as seen in the second image of Figure 4.

This graph can be easily explored and manipulated using

common touch gestures such as the two-finger pinch, which

allows the user to zoom-in and out on their element of choice.

Also when selected, each bar in the graph will be highlighted

in a different color and indicate the ARG class that it

represents. Finally, the last tab in the Results section,

‘Export’, provides the user with the sharing functionality,

which in turn leverages underlying Android capabilities

(https://developer.android.com/training/secure-file-sharing/

share-file), as seen on the last two images in Figure 4. With

this feature, the user can send the ARG list to any of the

different apps in their phone, be it messaging, e-mail,

collaboration and work, or cloud-storage.

Data and experimental settings

To validate KARGAMobile’s performance in detecting

ARGs, we used first semi-synthetic datasets and then real,

experimental Nanopore data. The semi-synthetic data that

included ARGs from the MEGARes database v.2.0 (ground

truth for antibiotic resistance) and genes sampled from a

vertebrate genome (ground truth for non-ARG genes), the Sus

scrofa. MEGARes contains about 8,000 ARGs responsible for

antibiotic resistance (with the top-5 being betalactams,

aminoglycosides, glycopeptides, fluoroquinoloes, and

tetracyclines), as well as metals and biocides. The datasets

were generated using PBSIM2 (Ono et al., 2020), with

Nanopore-specific chemistry simulation (ratio of differences

for substitutions, insertions, and deletions set as 23, 31, and

46), tailored for bacteria and vertebrate organisms

(PSBIM2 models R10.3 and R9.4, respectively). Target

coverage was 10x, 32x, and 64x for MEGARes, and 0.5x, 1x,

and 2x for Sus scrofa. According to coverage, three datasets were

generated, made of 165,038 (165K), 537,927 (500K), and

1,070,717 (1M) reads. The model-based median (min-max)

error rate was set to the default value for Nanopore, which

was 15% (0%–35%), and all other PBSIM2 parameters were

also set to Nanopore defaults. We calculated overall accuracy

and false positive rate, comparing results against KARGA. Also,

the parameter k was optimized to maximize performance with

Nanopore data, since the default value of KARGA is tailored to

Illumina sequencing technology.

The real Nanopore experiments included both targeted

whole genome sequencing and metagenomics. The targeted

sequencing data were previously published by (Peter et al.,

2020), who tracked ARGs in outbreaks of Citrobacter cronae,

Citrobacter freundii, and Pseudomonas aeruginosa from a

German hospital over six years. The metagenomics data have

been presented by (Yang et al., 2019), who analyzed clinical

respiratory specimens from people hospitalized with severe

pneumonia (both culture-positive and culture-negative)

undergoing mechanically-ventilation. These Nanopore data are

available publicly at https://www.ncbi.nlm.nih.gov/sra/?term=

PRJEB31907 and https://www.ncbi.nlm.nih.gov/sra/?term=

PRJNA554461, respectively.

All tests were performed on a Samsung Galaxy S9+

smartphone (SM-G9650), with a Qualcomm Snapdragon

845 CPU, 6GB RAM, mounting Android OS 10. Wall/CPU

time, memory profiling and temperature were measured

directly in the app using Android’s available functionalities.

All the different analytic tests run on a different thread that

was constantly profiling the mapping thread and recording the

values, generating a separate comma-separated value file with all

the data at the end of every ARG analysis for future reference.

This feature is also included as part of the KARGAMobile app

and can be easily enabled or disabled through a global trigger

directly in the code.

Results

The KARGAMobile main menu screen allows the user to

start a “New gene identification” analysis with standard

parameters, or to open the “Configurations” menu to choose

the parameters, as described in the Methods section. The main

menu and configuration screenshots are shown in Figure 3, along

with the file selection screen to set the ARG reference database

(FASTA format, including the pre-loaded default) and the input

read file (FASTQ or FASTQ.gz compressed format). After the

analysis is completed, the user can visualize results in textual or

graphical mode, as illustrated in Figure 4. The text mode

summarizes ARGs by name, AMR ontology term (namely,

antibiotic class, group and mechanism), coverage and depth.
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The graphical mode displays frequency bar charts aggregated at

the AMR class level. All results can be shared and exported in

different ways, including e-mail and cloud storage, or sent to a

printer device.

The compressed version of MEGARes v.2.0 used in

KARGAMobile included 2,050 ARGs, reduced from the

original set of 7,378 (we here excluded chromosomal genes

with mutations). The average (st.dev.) read length of the semi-

synthetic validation datasets was 876 (±437) and 8,984 (±6,977)

bases for MEGARes and Sus scrofa, respectively. Accuracy and

false positive rate of the two tools were very similar, as shown in

Table 1. From the validation results, the optimal value of k was

25 for both KARGAMobile and KARGA: on the largest dataset,

the f1-measure was 96.9% for KARGA and 96.2% for

KARGAMobile, the balanced accuracy was 97.3% and 96.9%,

the false negative rate was 5.4% and 6.3%, with zero false positive

rate. Of note, the k value is higher than the usual KARGA (non-

mobile version) default. Two contrasting factors influence the

optimal value: the read length drives the value up, with Nanopore

reads longer than Illumina ones; and the error rate drives the

TABLE 1 Validation performance of KARGAMobile and KARGA on semi-synthetic datasets.

Method set k FPR FNR BA F1

KARGA 165K 13 49.7% (±0.2%) 4% (±0.1%) 73.2% (±0.1%) 78.1% (±0.1%)

165K 17 19% (±0.1%) 1.4% (±0%) 89.8% (±0.1%) 90.6% (±0.1%)

165K 25 0% (±0%) 6.3% (±0.1%) 96.9% (±0%) 96.8% (±0%)

165K 31 0% (±0%) 12.8% (±0.1%) 93.6% (±0.1%) 93.2% (±0.1%)

165K 45 0% (±0%) 43.9% (±0.2%) 78.1% (±0.1%) 71.9% (±0.1%)

KARGAMobile 165K 13 49.9% (±0.2%) 2.6% (±0.1%) 73.7% (±0.1%) 78.8% (±0.1%)

165K 17 12.3% (±0.1%) 1.6% (±0%) 93.1% (±0.1%) 93.4% (±0.1%)

165K 25 0% (±0%) 7.5% (±0.1%) 96.2% (±0%) 96.1% (±0%)

165K 31 0% (±0%) 15.9% (±0.1%) 92.1% (±0.1%) 91.4% (±0.1%)

165K 45 0% (±0%) 51.6% (±0.2%) 74.2% (±0.1%) 65.2% (±0.1%)

KARGA 500K 13 49.2% (±0%) 7.5% (±0%) 71.6% (±0%) 77% (±0%)

500K 17 19% (±0%) 1.7% (±0%) 89.7% (±0%) 90% (±0%)

500K 25 0% (±0%) 5.6% (±0%) 97.2% (±0%) 96.7% (±0%)

500K 31 0% (±0%) 10.7% (±0%) 94.6% (±0%) 93.1% (±0%)

500K 45 0% (±0%) 28.8% (±0%) 85.6% (±0%) 72.3% (±0%)

KARGAMobile 500K 13 49.6% (±0%) 5.1% (±0%) 72.6% (±0%) 77.7% (±0%)

500K 17 12.1% (±0%) 1.7% (±0%) 93.1% (±0%) 93.1% (±0%)

500K 25 0% (±0%) 6.6% (±0%) 96.7% (±0%) 96.1% (±0%)

500K 31 0% (±0%) 1.3% (±0%) 93.5% (±0%) 91.3% (±0%)

500K 45 0% (±0%) 3.2% (±0%) 83.9% (±0%) 65.8% (±0%)

KARGA 1M 13 49.2% (±0%) 6.3% (±0%) 72.2% (±0%) 77.2% (±0%)

1M 17 1.8% (±0%) 1.6% (±0%) 89.8% (±0%) 90% (±0%)

1M 25 0% (±0%) 5.3% (±0%) 97.3% (±0%) 96.9% (±0%)

1M 31 0% (±0%) 10.4% (±0%) 94.8% (±0%) 93.3% (±0%)

1M 45 0% (±0%) 28.4% (±0%) 85.8% (±0%) 72.6% (±0%)

KARGAMobile 1M 13 49.4% (±0%) 4.1% (±0%) 73.2% (±0%) 77.8% (±0%)

1M 17 12.1% (±0%) 1.6% (±0%) 93.1 (±0%) 93.1% (±0%)

1M 25 0% (±0%) 6.3% (±0%) 96.9% (±0%) 96.2 (±0%)

1M 31 0% (±0%) 12.6% (±0%) 93.7% (±0%) 91.6% (±0%)

1M 45 0% (±0%) 31.9% (±0%) 84% (±0%) 66.1% (±0%)

FPR: false positive rate; FNR: false negative rate; BA: balanced accuracy; F1: f1-measure.
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value down, with Nanopore reads being more erroneous than

Illumina ones. In fact, when looking at the resistome summary

for the semi-synthetic data, values of k between 17 and

25 behaved better than 25, because they allowed to identify

more genes at higher coverage, with the same false positive

rate. Specifically, at k = 17, 100% of ARGs from MEGARes

could be retrieved at least 50% coverage, with no spurious

attributions of reads generated from the Sus scrofa genome.

Conversely, at k = 25, only 89% of ARGs could be identified

at 50% coverage, without any spurious Sus scrofa read

assignment.

We then tested KARGAMobile on the real Nanopore

experimental datasets from targeted sequencing of hospital

outbreaks, and metagenomics sequencing of mechanically-

ventilated patients with severe pneumonia. Respectively, we

used 14 FASTQ files from (Peter et al., 2020), ranging from

238MB to 5,779MB, and 6 FASTQ files from (Yang et al., 2019),

ranging from 221MB to 775 MB. Table 2 gives details on run

times, memory and temperature usage. On the targeted bacterial

sequencing data, KARGAMobile processed on average 1 GB in

23 min, with a peak RAM usage of 498 MB independently from

input file size and average/peak temperature of 49/60°C after 1 h

of continuous data processing. In fact, when executing a formal

one-sample t-test for possible deviations from the null hypothesis

of independence of RAM usage and temperature, none of the

experiments yielded a p-value lower than 0.64. On the

metagenomics data, the processing speed was 48 min per 1GB,

the average peak RAM usage was 394MB, and the average/peak

temperature was 46/53°C after 30 min of continuous data

processing.

In order to better investigate the temperature usage and

possible critical overheating, we run consecutive tests on a

single device, using the metagenomics data, until the device

shut off for overheating, or a five-hour limit was reached.

After 5 h and 30 min of wall time (05:15 h h:mm of CPU

time), 25 files had been completed successfully, using an

average RAM of 318 MB (peak of 512 MB), at an average

temperature of 44.6°C (max of 59.1°C). During the whole

process, the device never shut off for overheating.

In Table 3, we show the distribution of ARG findings for both

the targeted sequencing an the metagenomics datasets using gene

coverage thresholds of 50% and 80%, counting the number of

different ARGs and ARG classes. For both datasets, it is notable

that while the ARG number increased sensibly by decreasing the

TABLE 2 Run summary of KARGAMobile on real experimental data: (1) targeted sequencing of C. cronae, C. freundii, and P. aeruginosa in hospital
outbreaks; (2) metagenomics experiments from mechanically-ventilated patients hospitalized with severe pneumonia.

Accession File size
(MB)

CPU/wall time
(mm)

Avg/max RAM
(MB)

Avg/max temp. (°C)

Targeted sequencing ERX3333096 228 5/5 323/476 44/49

ERX3333087 538 12/12 323/506 47/52

ERX3333084 810 23/24 321/512 47/58

ERX3333097 877 22/23 320/512 50/55

ERX3333088 925 23/24 321/512 48/53

ERX3333095 1041 24/25 321/512 49/56

ERX3333085 1088 22/23 317/459 46/52

ERX3333086 1137 22/23 323/511 47/54

ERX3333093 1468 34/35 320/512 49/55

ERX3333090 3521 74/76 319/512 49/60

ERX3333094 4424 96/99 322/512 49/58

ERX3333092 4639 104/106 319/499 50/63

ERX3333091 4931 105/108 319/473 49/60

ERX3333089 5779 115/118 319/462 49/60

Avg. (st.dev) 2243 (1943) 49 (40)/50 (41) 321 (2)/498 (21) 48 (2)/56 (4)

Metagenomics SRX6447026 221 12/13 317/383 44/51

SRX6447019 382 17/18 320/409 46/55

SRX6446993 397 17/18 320/397 46/52

SRX6447061 473 22/22 317/376 40/48

SRX6447024 483 21/21 319/402 44/51

SRX6447018 775 34/35 318/397 46/53

Avg. (st.dev) 455 (183) 20 (7)/21 (7) 318 (1)/394 (12) 44 (3)/52 (2)
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ARG coverage threshold, the detection at the class level was less

affected. More ARGs were detected in the targeted sequencing

data because the biological samples had high yield of

antimicrobial resistance findings, while some of the sample

cultures from the respiratory samples used for metagenomics

came culture-negative. Of note, even if the ARG summaries are

normalized by the ARG database size, difference in species

coverage does not allow a direct comparison between the two

experimental setups.

Discussion

KARGAMobile is the first real-time Android app for

detection of ARGs from Nanopore sequencing data, both

whole genome as well as metagenomics, providing high

accuracy and low false positive rates. KARGAMobile has a

minimalist graphical interface and results are delivered,

summarized in an interpretable way for the end user. The app

works with off-the-shelf Android OS and its factory-set Java

virtual machine, without any special configuration need.

One limitation of our tool is that it does not detect

ARGVs; however, ARGV detection is a fundamentally

different problem, since it involves the location and

confirmation of specific point mutations, in addition to

the identification of an ARG (Prosperi et al., 2019). Only

a couple of tools are able to handle ARGVs, namely RGI and

Pointfinder (Zankari et al., 2017; Alcock et al., 2019), but

they process exclusively assembled genomes. A second

limitation of KARGAMobile, as we mentioned in the

methods, is that the implementation still make extensive

use of raw String types, as well as HashMap data structures,

which have a substantial memory padding. The overall

RAM usage is contained through the compressed

database, but discovery and addition of new genes in the

future might require additional code optimization, or the

usage of a disk-based hashing structure with minimal

dependencies, e.g., mapDB (https://mapdb.org). A third

limitation is that, although the device did not shut off

for overheating in any of the trials, including the stress

test made of 5-hour-long consecutive runs, the

temperatures measured in our experiments were in the

high range for a mobile device. Recent work showed that

cache-oblivious k-mer data structures can decrease power

dissipation more then 25% than non-cache-based

(Milicchio and Prosperi, 2021). As a future perspective,

TABLE 3 Distribution of ARG findings by KARGAMobile using gene coverage thresholds of 80% and 50%, counting the number of different ARGs and
ARG classes, on real experimental data: (1) targeted sequencing of C. cronae, C. freundii, and P. aeruginosa in hospital outbreaks; (2)
metagenomics experiments from mechanically-ventilated patients hospitalized with severe pneumonia.

Accession ARGs (80%) Classes (80%) ARGs (50%) Classes (50%)

Targeted sequencing ERX3333096 5 4 12 7

ERX3333087 8 6 16 8

ERX3333084 43 15 64 15

ERX3333097 50 14 66 15

ERX3333088 15 9 27 11

ERX3333095 46 14 67 15

ERX3333085 21 11 31 12

ERX3333086 11 8 60 15

ERX3333093 54 15 66 15

ERX3333090 6 4 10 5

ERX3333094 15 10 29 12

ERX3333092 21 11 34 12

ERX3333091 7 4 12 5

ERX3333089 12 6 26 6

Metagenomics SRX6447061 0 0 1 1

SRX6447026 14 7 34 10

SRX6447024 3 2 3 2

SRX6447019 7 5 13 6

SRX6447018 48 19 140 25

SRX6446993 0 0 1 1
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we look forward to deploying an iPhone version of

KARGAMobile.

In conclusion, KARGAMobile is a consumer-grade app that has

broad employment potential, including stakeholders as public health

officials, healthcare providers, and agricultural researchers.
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