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The destruction of periodontal tissue is a crucial problem faced by oral diseases,

such as periodontitis and tooth avulsion. However, regenerating periodontal

tissue is a huge clinical challenge because of the structural complexity and the

poor self-healing capability of periodontal tissue. Tissue engineering has led to

advances in periodontal regeneration, however, the source of exogenous seed

cells is still a major obstacle. With the improvement of in situ tissue engineering

and the exploration of stem cell niches, the homing of endogenous stem cells

may bring promising treatment strategies in the future. In recent years, the

applications of endogenous cell homing have been widely reported in clinical

tissue repair, periodontal regeneration, and cell therapy prospects. Stimulating

strategies have also been widely studied, such as the combination of cytokines

and chemokines, and the implantation of tissue-engineered scaffolds. In the

future, more research needs to be done to improve the efficiency of

endogenous cell homing and expand the range of clinical applications.
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1 Introduction

Periodontal tissue is a kind of complex tissue composed of both soft tissue like

periodontal ligament (PDL) and gingiva, as well as hard tissue such as alveolar bone and

cementum. It plays a crucial role in supporting teeth, bearing occlusal forces, and

maintaining oral mucosa integrity. When faced with the destruction of periodontal

tissue, negative effects such as tooth loss, and physical and mental health damage could

happen (Darveau, 2010; Kinane et al., 2017). The existing clinical treatment methods,

such as guided tissue/bone regeneration (GTR/GBR) can improve the clinical efficacy of

various tissue defects (Bottino et al., 2012; Xu et al., 2019). However, the effect on

periodontal regeneration is not as satisfying, especially in the recovery of physiological

structure and function. The ideal result of periodontal therapy is to regenerate the

cementum-periodontium-bone system while achieving this goal remains a huge

challenge. However, the insufficiency of stem/progenitor cells seems to be the primary

limitation for periodontal membrane and alveolar bone reconstruction.

With the development and improvement of cell therapy, researchers have found

various stem cells for periodontal regeneration. Mesenchymal stem cells (MSCs) and

periodontal ligament stem cells (PDLSCs) are most studied, together with other stem cells
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such as dental pulp stem cells (DPSCs) and induced pluripotent

stem cells (iPSC) (Huang et al., 2009b; Kwon et al., 2018). Those

stem cells are routinely isolated, cultured, and amplified in vitro

and relatedly applied. However, exogenous stem cell

transplantation still has various disadvantages, for example,

the complicated technology of in vitro operation, high-cost ex

vivo cell culture, and even the potential ethical and safety risks

(Lee et al., 2016; Pacelli et al., 2017; Safina and Embree, 2022).

Stem cell homing is a physiologic process which been studied

since the 1970s. The fact that intravenously injected HSPCs can

find their way home to the marrow was first found in clinical

transplant settings. To address the shortcomings of cell

transplantation, researchers turned to the homing of

endogenous stem cells, attempting to heal wounds by

activating the self-repairing capacity by recruiting endogenous

stem cells to the defect area (Chen et al., 2010; Ahmed et al.,

2021). Stem-cell-homing involves a series of physiological

processes including cell recognition, migration, proliferation,

and differentiation, and ultimately achieves tissue

regeneration, which plays a huge role under certain conditions

and has achieved remarkable therapeutic effects (Liesveld et al.,

2020). In this method, biomaterials were utilized for bioactive

factors delivery as well as the host’s inherent regenerative

potential activating (Safina and Embree, 2022; Xin et al., 2022;

Yao and Lv, 2022; Zhao et al., 2022). By mobilizing appropriate

stem/progenitor cells to specific spaces for tissue repair through

cell-material interactions at the defect site, the endogenous

regeneration process can be mimicked (Andreas et al., 2014;

Mao et al., 2022). The possible advantages of this strategy in

promoting periodontal regeneration are as follows: firstly, it

provides a solution to some of the limitations of stem cell

transplantation, and transforms periodontal regeneration

treatment methods into a clinically valid way; secondly, it

gives full play to the potential of host self-repair and

regeneration, making periodontal tissue regeneration safer;

moreover, compared with the introduction of exogenous stem

cells, it is simpler and less expensive to treat periodontal diseases

and other diseases (Abdulghani and Mitchell, 2019; Safina and

Embree, 2022). To make better use of the stem cell homing

technique to restore the periodontal defect, this paper reviews the

research status of the stem cell homing technique.

2 Brief history of cell homing for
tissue engineering

Stem cell homing was originally defined as the process of

endothelialization through blood vessels and migration of

hematopoietic stem cells (HSCs) after transplantation, and

finally, HSCs colonize in the bone marrow and restart

hematopoiesis, in which many cytokines and chemokines are

involved (Ji et al., 2015; Zhu et al., 2015). Blood lineages are

considered to be risen from hematopoietic stem and progenitor

cells (HSPCs), which then migrate to the bone marrow niche

through homing for further proliferation and differentiation (Li

et al., 2018a; Blokzijl-Franke et al., 2021; Ranzoni et al., 2021).

The homing mechanism of HSPCs is relevant to stem cell

transplantation therapy and has been investigated by many

researchers (Morrison and Scadden, 2014; Li et al., 2018a;

Liesveld et al., 2020), though the specific mechanism of

HSPCs homing was not elucidated. While researchers

considered that specific cells or cytokines may mediate this

process, thus enabling the homing of HSCs (Li et al., 2018a).

Recently, the tissue engineering technique has expanded the

meaning of stem cell homing as the process in which endogenous

stem cells mainly migrate directionally and across the vascular

endothelium to target tissues, and then colonize and survive (Ji

et al., 2015; Zhu et al., 2015). In vivo, stem cells are located in

various stem cell niches and are exposed to a large number of

complex and manageable biomaterials, including chemokines,

cytokines, growth factors, the extracellular matrix (ECM), and so

on (Chen et al., 2011; Yang et al., 2020) (Figure 1).

Tissue regeneration, also known as in situ tissue engineering,

has emerged over the past 20 years because of its remarkable

advantages. This technique mimics the human wound healing

process and aims to repair or regenerate tissue by recruiting

endogenous stem cells to the defections via targeted specific

bionic scaffolds and/or bioactive cues that stimulate the host’s

biological substance and repairing capacity (Ji et al., 2015; Safina

and Embree, 2022). To make the endogenous stem cells migrate

toward a specific tissue, these endogenous stem cells must

recognize the biomolecules that mediate homing first and

manipulate their activity to catalyze the homing process

(Chen et al., 2011). The possible mechanism might rely on

the development of the scaffold system which is implanted

into the damaged area (Lee et al., 2016; Abdulghani and

Mitchell, 2019). The proper microenvironment created by the

implanted scaffold will then promote the host stem cells to recruit

and move through the vascular network or tissue interstitial

space to the damaged tissue or organ, where the stem cells then

proliferate, differentiate, and form tissue within the scaffold

which eventually degrades, leaving only regenerated tissue

(Zheng et al., 2019; Chu et al., 2022).

In regenerative medicine, there is growing evidence proving

that cell recruitment could stimulate self-repair ability in hosts and

harness the born regenerative capacity of tissues. It was regarded as

a promising cell-based therapy and has been used to regenerate

heart tissue, cartilage tissue, and bone tissue in situ already (Chen

et al., 2011; Cai et al., 2018). In terms of articular cartilage repair, it

has been demonstrated that intra-articular and peri-articular

MSCs are involved in the cartilage repair process, but due to

their limited number, they are unable to achieve the desired repair

effect and require stem cells from other sites to recruit to the

injured site for repair and to facilitate this process, chemotactic

agents are required (Yang et al., 2020; Zhang et al., 2020). Lee et al.

(2010)utilized poly-ε-caprolactone and hydroxyapatite to create an
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anatomically correct TGF-β3-containing biological scaffold. The

results suggest that for such complex tissues, the regeneration may

happen via endogenous cell homing instead of cell transplantation.

In addition, endogenous stem cell homing technology has shown

great potential in the cardiovascular field, aiming at repairing

heart-damaged tissues in myocardial infarction (MI) and ischemic

heart disease, and is considered one of the most promising

therapeutic strategies (Pacelli et al., 2017; Li et al., 2018b).

Shafiq et al. (2018) developed specific cardiac patches, which

can promote the mobilization and recruitment of endogenous

MSCs to the defected area in acute MI models. The experimental

results showed that this new cardiac patch together with suitable

scaffold materials is a good choice for promoting in situ vascular

regeneration and deserves to be promoted.

For periodontal regeneration, though the injured

periodontium possesses a weak ability for self-healing, it can

be significantly promoted when proper treatment and guidance

are added (Xu et al., 2019). Increasing evidence demonstrates

that directing endogenous stem cells to defected areas

contributes to the regenerative and immunomodulating

function since the resident MSCs play a key role in

periodontal regeneration. Except for MSCs, PDL also

contains PDLSCs and osteogenic progenitor cells which can

regenerate cementum, bone, and the PDL tissue itself together

with MSCs (Cai et al., 2018; Yamamoto et al., 2018; Xu et al.,

2019). Additionally, a variety of factor-loaded scaffolds for

periodontal regeneration have been fabricated. Yu et al.

(2022) constructed a biphasic scaffold combining

intrafibrillarly mineralized collagen (IMC) and concentrated

growth factor (CGF) to synergist regeneration of periodontal

tissues. In animal experiments, PDLSCs, BMSCs, and induced

pluripotent stem cells showed the potential to stimulate the

formation of new periodontal tissues (Ji et al., 2015).

Consequently, the application of cell homing could eliminate

clinical constraints associated with periodontal wounds (Cai

et al., 2018). Wang et al. (2016) constructed a cell-free stromal

cell-derived factor-1α (SDF-1α)-scaffold-parathyroid hormone

system which can stimulate the proliferation of

CD90+CD34−stromal cells and promote the regeneration of

damaged tissues in a rat periodontal defect model. Liang

et al. (2021) also used rats to apply SDF-1 topically and

exendin-4 (EX-4) systemically. The experimental results

showed that combined SDF-1/EX-4 treatment could promote

the recruitment of MSCs in vivo, induce early

osteoclastogenesis, and promote the expression of osteogenic

proteins, which results in both the quantity and quality

improvement of regenerated bone. Although the cell homing

for periodontal regeneration is still at the experimental stage, it

has great potential to facilitate bone-ligament-cementum

regeneration in the treatment of periodontal diseases, such

as periodontitis, providing a safe, effective and cost-effective

alternative therapy (Liu et al., 2019a; Xu et al., 2019).

FIGURE 1
In situ tissue engineering uses biological molecular and scaffolds to recruit the stem cells from the niches while promoting proliferation and
differentiation and achieving tissue regeneration in the end.
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3 Main strategies for the regeneration
of periodontal tissues by endogenous
stem cells homing

In periodontal tissue regeneration and repair, endogenous

stem cells mainly used include BMSCs and PDLSCs, which can

migrate to the defect site and stimulate their proliferation and

differentiation by adopting appropriate strategies, such as

chemokines, and using tissue-engineered scaffolds (Figure 2;

Table 1).

3.1 The sources of endogenous stem cell

To repair periodontal tissues, reparative cells can be acquired

from stem niches (Kimura et al., 2014; Liu et al., 2015; Yin et al.,

2017). Mainly BMSCs and PDLSCs were studied. PDLSCs are the

first choice for studying cell delivery for periodontal regenerative

purposes, while bone marrow-derived cells also contribute to it

because of the insufficiency of the stem cells in PDL tissue (Yin

et al., 2017).

3.1.1 MSCs derived from bone marrow
Multipotent MSCs can be proliferated both in vitro and in vivo,

which then differentiate into mesodermal tissues of different

functions, including bone, cartilage, tendons, fat, and nerves

(Pittenger et al., 1999). As a consequence, MSCs have been

proposed as potentially useful tissue-engineering seeding cells.

Several studies have found that BMSCs can be the origin of

cementoblasts, osteoblasts, and periodontal fibroblasts, in

addition to secreting extracellular matrix from PDLs, cementum,

and alveolar bone (Kawaguchi et al., 2004; Hasegawa et al., 2006).

Immunohistochemistry was used to quantify the

engraftment of MSCs in the defect by Liu et al. (2015). A

sequential section approach was used to identify MSCs

(CD29+/CD45−), which showed that the number of MSC

transplanted with SDF-1 significantly increased.

He et al. (2019) selected rat BMSCs to investigate Mφ
polarization and endogenous stem cell recruitment which

enhance periodontal regeneration. It has been shown that the

homing of BMSCs was significantly improved both in vitro and

in vivo.

3.1.2 PDLSCs from odontogenic tissues
Recently, subsequent attempts were made to harvest MSCs

from odontogenic tissues, such as periodontal ligaments (Seo

et al., 2004), gingiva (Zhang et al., 2009), the dental follicle

(Morsczeck et al., 2005), the dental pulp (Gronthos et al., 2000),

apical papilla (Sonoyama et al., 2008), and human exfoliated

tissue deciduous teeth (Miura et al., 2003; Hynes et al., 2012).

From human-impacted third molars, Seo et al. (2004)

successfully isolated PDLSC, which can differentiate into

multiple periodontal tissues. (Liu et al., 2008; Huang et al.,

2009a; Park et al., 2011).

PDLSCs, located around the blood vessels of periodontal

tissues and having the characteristics of mesenchymal stem cells,

are one of the most practically applied multipotency stem cells in

the field of periodontal tissue repair and regeneration. Liang et al.

(2021) tested PDLSCs and confirmed that the proliferation and

migration of PDLSCs. In other research, the effects of growth

factors on controlling the fate of PDLSCs are studied (Ding et al.,

2020).

3.1.3 Non-hematopoietic stromal cells derived
from hosts

CD90+CD34− stromal cells have also been studied for

recruitment. CD90, also referred to as Thy-1, represents stem

and progenitor cells on the cell surface, which makes

CD90+CD34− stromal cells to be considered non-

hematopoietic stromal cells. A previous study also showed

that MSCs, including PDLSCs, could express CD73, CD90,

and CD105 while not CD14, CD34, and CD45 (Dominici

et al., 2006). Therefore, according to previous studies,

CD90+CD34−stromal cells were considered as MSCs (Wang

et al., 2016).

Several studies have shown that adult stem cells with

CD90 expression have high osteogenic differentiation potential

(Chung et al., 2013). In the study by Wang et al. (2016), stromal

cells with CD90+CD34− staining were analyzed quantitatively

FIGURE 2
Stimulation strategies, such as chemokines, cytokines,
scaffolds, and immune cells, for stem cell homing and periodontal
tissue regeneration.
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using immunofluorescence double staining. The results showed

that host-derived CD90+CD34−stromal cells were recruited and

transplanted into the defect. Ding et al. (2020) also used the

framework to recruit CD90+CD34− stromal cells. The in vivo

research results showed significant promotion of the recruitment

of host-derived CD90+CD34− stromal cells at the early stage of

wound healing, favoring tissue repair and regeneration.

3.1.4 Multiple sources derived stem cells
Some researchers studied the recruiting and regulating fate of

PDLSCs and BMSCs together (Ji et al., 2015; Yu et al., 2022).

According to Ji et al. (2015), PDLSCs and BMSCs were tested

in vitro with canine platelet-rich fibrin (PRF) and treated dentin

matrix (TDM). An orthotopic transplantation model using

Beagle dogs was developed to regenerate roots with a tooth-

PDL-alveolar interface by cell homing in a canine orthotopic

model, combined with the use of PRF membranes and TDM. In

vitro, PRF significantly stimulated the recruitment and

proliferation of PDLSCs and BMSCs. The in vivo results

similarly illustrated that roots connected to the alveolar bone

by cementum-PDL complexes can be regenerated by implanting

PRF and TDM in the alveolar microenvironment, possibly

through the homing of BMSCs and PDLSCs.

3.2 The strategies of stem cell homing

Currently, the main chemotactic strategies used include: 1)

the use of chemotactic agents, such as sdf-1, and the combination

of the two; 2) the use of scaffold materials loaded with biological

factors; 3) regulatory assistance through macrophages. They are

described as follows:

3.2.1 Local application of SDF-1
SDF-1, also known as C–X–Cmotif ligand 12 (CXCL12), is a

promising candidate for in situ tissue engineering among various

TABLE 1 Stem cells and the stimulation strategies in the research for periodontal regeneration.

Stem cells Recruitment
stimulation

Proliferation
stimulation

Differentiation
stimulation

Scaffolds In vivo
model

Regeneration
periodontal
tissues

References

PDLSCs SDF-1 — BMP-7 Neutralized type
I collagen
solution

Beagle dog
tooth avulsion
models

PDL tissue Zhu et al.
(2015)

MSC/HSC SDF-1 — — Absorbable
collagen
membranes

Rat
mandibular
bone defect
models

Periodontal bone Liu et al.
(2015)

CD90+CD34−stromal
cells

PTH/SDF-1 — — Medical collagen
repair
membranes

Rat
periodontal
defect models

Bone, cementum
and functional PDL

Wang et al.
(2016)

BMSCs SDF-1 — BMP-7 An artificial
scaffold made
from PCL and
HA hybrid

Rat orthotopic/
ectopic tooth
regeneration
models

PDL and new bone Kim et al.
(2010)

PDLSCs SDF-1 — EX-4 Medical collagen
membranes

Rat
periodontal
defect models

Periodontal bone Liang et al.
(2021)

BMSCs SDF-1 — IL-4/Mφs High-stiffness
TG-gels

Rat
periodontal
defect models

Bone, cementum
and soft tissue

He et al.
(2019)

BMSCs/PDLSCs PRF PRF PRF/TDM Fabrication of
canine TDM and
PRF membrane

Beagle dog
periodontal
defect models

Cementum–PDL
complex and tooth
root

Ji et al. (2015)

BMSCs/PDLSCs CGF/IMC CGF/IMC CGF/IMC Hierarchical
CGF/IMC
bilayer
architecture

Rat
periodontal
defect models

Bone, cementum
and PDL

Yu et al.
(2022)

BMSCs SDF-1 — — Commercially
available gelatin
sponge

Rat
periodontal
defect models

PDL and new bone Cai et al.
(2018)

PDLSCs/MSCs bFGF/iTE-
framework

bFGF/iTE-
framework

BMP-2/iTE-
framework

iTE-framework Rat
periodontal
defect models

Bone, cementum
and PDL

Ding et al.
(2020)
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cytokines and chemokines. Previous studies have shown that

during the healing process of impaired tissues [brain (Ardelt

et al., 2013), heart (Wang et al., 2012; Hajjar and Hulot, 2013;

Cavalera and Frangogiannis, 2014), muscle (Brzoska et al., 2012),

skin (Yang et al., 2013), and bone (Ji et al., 2013)], elevated levels

of SDF-1 at the site of injury can recruit stem/precursor cells

from the cardiovascular system and local tissues, and promote

their proliferation and differentiation at the site of damage,

leading to organ repair and regeneration (Brzoska et al., 2012;

Wang et al., 2012; Hajjar and Hulot, 2013; Yang et al., 2013).

In the study of Liu et al. (2015), it has been verified that SDF-

1 promoted the proliferation, migration, and differentiation of

PDLSCs in vitro. After that, they further confirmed the effect of

local application of SDF-1 on stem/progenitor cell homing and

periodontal bone regeneration in vivo through a rat mandibular

defect model. Host-derived CD29+/CD45− MSCs were

confirmed to be triggered to home and graft into periodontal

bone defects by loading SDF-1 into collagen membrane scaffolds.

As a result of SDF-1 treatment, MSCs were significantly

increased and CD45 + HSCs were engrafted.

The same results were obtained by Adelina S. (Cai et al.,

2018) using an SDF-1α loaded gelatin sponge (Spongostan®) for
rats with mandibular bone defects. At the same time, a possible

explanation has been proposed regarding the enhanced

periodontal regeneration caused by SDF-1α stimulation: first,

bone marrow-derived osteogenic progenitor cells present in the

flowing blood may be recruited to the defected area by the SDF-

1α/CXCR4 axis in response to the local release of SDF-1α
(Otsuru et al., 2008; Ji et al., 2013). The recruited cells play an

important role in periodontal regeneration by expressing their

multilineage differentiation capacity, as well as secreting

promoting cytokines and growth factors (Bryan et al., 2005).

Furthermore, SDF-1α may also induce other progenitor cells in

the bone marrow such as HSCs and endothelial progenitor cells

to migrate to the defect sites via the SDF-1α/CXCR4 axis,

creating a proangiogenic environment (Hattori et al., 2003;

Petit et al., 2007).

3.2.2 SDF-1 in combination with other
chemotactic factors

The main effect of SDF-1 is to actively direct endogenous

cell homing. However, its promoting effect on the

proliferation and differentiation of stem cells is limited.

Therefore, combining other active molecules, such as bone

morphogenetic protein 7 (BMP-7), parathyroid hormone

(PTH), and EX-4, to improve the efficiency of tissue

regeneration has been studied.

BMP-7 could modulate osteogenesis and bone cell

differentiation potently. A preclinical study assessed its

effects on the regeneration of periodontal bone defects and

improvement of cementum regeneration (Cook et al., 1995;

Giannobile et al., 1998; Ripamonti et al., 2001).

Groundbreaking research into the regeneration of PDL

tissue via cell homing with SDF1 and BMP-7 was carried

out by Kim et al. (2013) in 2010. BMP-7 may be responsible for

orthotopic mineralization and formation of the newly formed

alveolar bone in rat extraction sockets. The observed putative

periodontal ligament also suggests that SDF1 and/or BMP-7

can recruit multiple cell lineages. On this basis, Zhu et al.

(2015) further studied the application of SDF1 and BMP-7 in

the tooth trauma model frequently. Zhu et al. (2015)

hypothesized that SDF1 and BMP-7 may recruit

endogenous cells to the root surface to replace the

unavailable original PDL cells after avulsed teeth were

delayed. During the experiment, avulsed roots coated with

SDF1 and BMP-7 were put into the prepared alveolar bone

socket. By directing stem cells to the space between replanted

roots and the adjacent alveolar bone, SDF1 and BMP-7 were

proven to establish the integrated PDL-like structure.

PTH has been used as an optional treatment for bone defects.

In periodontal tissue repair, when a large number of endogenous

progenitor cells are mobilized directly to the peripheral blood,

they will return to the defect site and participate in tissue

regeneration, along which PTH is considered a promising

periodontal tissue repair agent (Barros et al., 2003; Bashutski

et al., 2010; Tokunaga et al., 2011). As a crucial factor for stem cell

homing, the chemotactic properties of SDF-1αmay be limited by

the N-terminal cleavage of the cell surface protein CD26/

dipeptidyl peptidase-IV (DPP-IV) at position 2 proline

(Christopherson et al., 2002; Christopherson et al., 2004).

PTH, known as a DPP-IV inhibitor, has been confirmed

recently to enhance the SDF-1α-driven homing of CXCR4 +

stem cells in the ischemic heart recently (Huber et al., 2011). In a

rat periodontal defect model, Wang et al. (2016) confirmed that

PTH/SDF-1α cotherapy was able to induce CD90 +

CD34−stromal cell migration and enhance the

chemotactic ability of SDF-1α, and accelerate periodontal

tissue regeneration.

EX-4, as a full agonist of the glucagon-like peptide-1

receptor (GLP-1R), could promote both migration and

proliferation of MSCs (Zhou et al., 2015; Zhang et al., 2016;

Sharma et al., 2018; Yap and Misuan, 2019). Recently, studies

on EX-4 have proved its capability to inhibit adipogenic stem/

precursor cell differentiation while promoting osteogenic

differentiation and bone formation. (Feng et al., 2016;

Meng et al., 2016; Luciani et al., 2018). Moreover, the

quantity of CXCR4+ MSCs was increased by EX-4 via

PI3K/AKT-SDF-1/CXCR4 signaling pathway (Zhou et al.,

2015). Liang et al. (2021) demonstrated that the

combination of SDF-1/EX-4 enhanced the proliferation and

migration of PDLSCs in vitro, together with the recruitment of

MSCs, inducement of early osteoclastogenesis, expression of

osteoblast protein in new bone formation, as long as the

formation of new bone in vivo. Therefore, the combination

of SDF-1/EX-4 could provide a new strategic option for

periodontal bone regeneration in situ.
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3.2.3 Chemotaxis effect of scaffold and its role as
growth factor carriers

Scaffold biomaterials should be designed to mimic the

natural extracellular environment as much as possible to affect

cell behavior and control cell fate in vivo. In the present study,

many scaffold materials can not only act as carriers but also play a

role in recruiting stem cells and promoting their proliferation

and differentiation.

Choukroun et al. (2001) reported in 2001 that PRF could

promote the recruitment, proliferation, and differentiation of

stem cells by releasing several growth factors, such as

transforming growth factor-β(TGF-β), platelet-derived growth

factor (PDGF), epidermal growth factor (EGF). TDM, a natural

acellular matrix scaffold, could retain essential non-collagenous

proteins and growth factors for the regeneration of apical

periodontal tissue (Li et al., 2008; Smith et al., 2012). Both

PRF and processed TDM are depots of various growth factors

that can promote cell homing. Ji et al. (2015) confirmed that PRF

can recruit BMSCs and PDLSCs. In addition, the proliferation of

PDLSCs and BMSCs was also stimulated in vitro, which is

consistent with other studies (Ehrenfest et al., 2010; Chang

and Zhao, 2011). The results also demonstrated that TDM

was able to direct the differentiation of seed cells (Ma et al.,

2008; Wu et al., 2008; Li et al., 2011; Guo et al., 2012; Yang et al.,

2012). Treated as one unit, PRF/TDM’s potential to stimulate the

differentiation of PDLSCs and BMSCs was confirmed in vitro. In

vivo, the experimental results showed that it is essential for

endogenous tooth root regeneration by using PRF as bioactive

cues, and TDM as an inductive scaffold, together with tooth

socket microenvironments.

In addition to scaffold materials of biological origin,

synthetic scaffold materials also have similar effects. Ding

et al. (2020) developed a super assembly framework (SAF)

in which bFGF and BMP-2 were designed to facilitate

regeneration of the local cementum-ligament-bone complex

in a sequential manner. The in situ tissue engineering

framework (iTE-framework) not only showed improved

physicochemical properties, but also was shown to promote

the proliferation, migration, and osteogenic differentiation of

PDLSCs in vitro. A rat periodontal defect model is created for

in vivo experiment. The results showed that both the

formation of new bone and the regeneration of PDL and

cementum tissue could be promoted by the iTE framework

significantly.

3.2.4 The role of immunomodulation in stem cell
recruitment

Microenvironments can influence cell homing by influencing

the properties of stem cells. Since there are already many well-

established drugs targeting the immune microenvironment in

treating periodontitis, it is a promising strategy to combine these

existing therapeutic agents and cytokines to enhance the immune

microenvironment and promote cell homing and tissue

formation, thus achieving higher levels of immune regulation

and tissue repair (Yang et al., 2021).

In correlative studies (Abbott et al., 2004), exogenous SDF-1

was found to be insufficient to stimulate stem cell recruitment

without injury for periodontal regeneration. A combination of

inflammation and SDF-1may increase stem cell recruitment in the

healing process (Chen et al., 2013). In further studies conducted by

Li et al. (2018a), it was confirmed that VCAM-1 + macrophage-

like cells are important for both homing and retention of HSPCs.

In the field of periodontal defect regeneration, He et al. (2019)

studied the effect of “macrophage regulation” in periodontal tissue

regeneration. It was hypothesized that high-stiffness TG gels

modulate Mφ polarization and promote endogenous stem cell

recruitment by modulating IL-4 and SDF-1α production.

Immunofluorescence staining and histological examination

showed that IL-4 could promote the polarization of Mφs into

the M2 phenotype, and further promote the osteogenic

differentiation of successfully homed BMSCs.

In the future, further studies on the role of

immunomodulation in stem cell homing are needed to

address these uncertain issues and reach scientific conclusions.

3.3 Scaffolds contributing to stem cell
regulation

3.3.1 Natural scaffold materials
Natural scaffold materials have good biocompatibility and

bioactivity, and can also be loaded with a variety of biological

factors, effectively promoting the reconstruction of periodontal

tissues.

Collagen, as a natural protein, is obtained from the skin,

bones, and ligaments of animals and is widely used in tissue

engineering scaffolds due to its superior biocompatibility,

biodegradability, and weak antigenicity (Reyes and García,

2004; Xiong et al., 2009). In the study of recruiting

endogenous stem cells for periodontal tissue regeneration,

collagen membrane or collagen solution is often used as a

tissue engineering scaffold and plays a role in transporting

chemokines and recruiting endogenous stem cells (Liu et al.,

2015; Zhu et al., 2015; Wang et al., 2016; Liang et al., 2021). A

commercial product, gelatin sponge (Spongostan ®) (Cai et al.,
2018), was also used as a carrier for the delivery of SDF-1α.

TDM is a kind of natural matrix scaffold that is decellularized

and retains multiple bioactive molecules, including non-collagenous

proteins and growth factors (Smith et al., 2012) that are crucial for

the formation of periodontal tissue around tooth roots (Li et al.,

2008). Several studies have shown that PDLSCs treated with dentin

non-collagenous proteins exhibit several signs of differentiation into

cementoblasts. In their previous studies, TDM demonstrated a role

as an inductive microenvironment and scaffold for tooth root

regeneration (Guo et al., 2012; Yang et al., 2012). TDM,

compared with nature dentin, has similarities in structure and
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mechanical characteristics but is more cost-effective. By regulating

molecules in a mechanically-suitable environment, it is expected to

trigger regenerative processes not only structurally but also

physiologically. There was evidence that TDM can direct the

differentiation of seeded cells (Ma et al., 2008; Wu et al., 2008; Li

et al., 2011; Guo et al., 2012; Yang et al., 2012). The study by Ji et al.

(2015) mentioned above demonstrated the effect of TDM in

periodontal tissue regeneration.

Another scaffoldmaterial of natural origin was prepared by Yu

et al. (2022). With biomimetic self-assembly and microstamping

techniques, they constructed a parallel hierarchy of mineralized

IMC layers and unmineralized collagenized-CGF layers. With

special micro-structure, mechanical characteristics, and growth-

factor-rich microenvironment, the differential biphasic scaffold

simulates the periodontal hard/soft tissue interface perfectly. This

solves the obvious disadvantage that monophasic scaffolds cannot

be used effectively for regenerating complex multiphasic tissues,

such as periodontal tissues (Dan et al., 2014; Cho et al., 2016). This

biomimetic IMC scaffold modulates and determines the fate of

PDLSC and BMSCs. Even though it cannot secrete growth factors,

the osteoid microenvironment can serve as a biofactor-rich

microenvironment that facilitates cell osteogenesis (Liu et al.,

2019b). CGF is rich in endogenous growth factors, including

TGF-β1, VEGF, PDGF-BB, IGF-1, and bFGF. The CGF

substrate superstructure with parallel-aligned gaps may also be

responsible for the oriented migration of stem cells (Liu et al.,

2013). In vitro experiments demonstrated that PDLSCs were

successfully differentiated into PDL/osteogenesis using the

biphasic scaffold containing CGF/IMC. After implantation in

rat periodontal defects, multilineage differentiation could be

effectively achieved by recruiting host stem cells into soft and

hard periodontal tissues.

3.3.2 Composite scaffolds
Natural scaffold materials have good biocompatibility and

bioactivity, but synthetic scaffold materials usually have more

controllable degradation rates and physical and mechanical

properties. To overcome the disadvantages of the above

materials when used alone, as well as simulate complex

periodontal tissues, a new direction in the development of

scaffold materials in recent years is to combine two or more

materials to obtain good physical and chemical properties while

improving their biocompatibility and bioactivity.

Unlike previous approaches that relied primarily on hard

materials like collagen, silk, or PLGA, the primary scaffold relies

on soft materials (Young et al., 2002; Modino and Sharpe, 2005;

Ikeda et al., 2009). The mechanical stiffness of polycaprolactone

(PCL) and hydroxyapatite (HA) hybrid has good load-bearing

properties (Woodfield et al., 2005). Rapid prototyping methods

such as 3D bioprinting may offer additional advantages such as

precise control, interconnectivity, as well as anatomical

dimensions (Woodfield et al., 2005; Lee et al., 2009). Kim

et al. (2010), anatomically shaped human layer scaffold and

rat incisor scaffold from a hybrid of PCL and HA via 3D

layer-by-bioprinting channels. The collagen solution loaded

with SDF1 and BMP-7 was also injected into the scaffold

microchannel by a micropipette. Next, the rat model was used

for orthotopic/ectopic tooth regeneration without cell

transplantation. Quantitatively, the combination of SDF1/

BMP-7 significantly improved the cell’s chances of homing

into the microchannels of human molar scaffolds compared to

scaffolds without growth factors. Besides recruitment of cells into

the microchannels, the regeneration of putative PDL and new

alveolar bone also supports the claim that cell homing is effective.

Other composite scaffolds, such as a three-dimensional (3D)

scaffold of high-stiffness Transglutaminase cross-linked gelatin

(TG-gel) constructed by He et al. (2019) and framework (SAF)

which can sequentially release bFGF and BMP-2 constructed by

Ding et al. (2020), also showed great potential for in situ

periodontal tissue regeneration.

4 Application of endogenous stem
cells homing in periodontal tissue
regeneration

Periodontal tissue is a complex tissue composed of PDL,

alveolar bone, cementum, and gingiva, which together play an

important role in supporting teeth, masticatory forces, and

maintaining the mucosa of the oral masticatory. In addition

to controlling the inflammation in the periodontal tissues caused

by periodontitis (Pihlstrom et al., 2005; Darveau, 2010; Kinane

et al., 2017), periodontal therapy aims to regenerate the

cementum-ligament-bone complexes (Phillips et al., 2000).

The traditional method is stem cell transplantation (Liu et al.,

2008), which is unsatisfactory for a complete and stable

restoration of periodontal tissue. The use of in situ tissue

engineering for periodontal regeneration has recently gained

popularity. Specifically, scaffolds are used to deliver

chemotactic agents to maximize the host’s intrinsic potential,

mobilize appropriate progenitor cells into an area designated for

tissue repair, and mimic endogenous regenerative processes

(Chen et al., 2015; Martino et al., 2015; Lee et al., 2017).

Therefore, the method can regenerate and repair a variety of

periodontal tissues, including periodontal ligaments, alveolar

bone, cementum, and periodontal ligament fibers (Table 1).

4.1 Hard tissue (alveolar bone and
cementum) regeneration

In severe cases of periodontitis, the alveolar bone could be

resorbed, resulting in tooth loss. During periodontal therapy, the

main goal is to regenerate bone. Tissue engineering techniques

have opened up new possibilities for regenerating periodontal

bone. Liu et al. (2015) performed in vitro experiments using a
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Wistar rat model of mandibular buccal bone defects. The effects

of SDF-1 on bone formation were assessed. At the early stage of

degradation, old bone was resorbed through osteoclastogenesis

facilitated by SDF-1, and collagen scaffold formation was

accelerated by MMP-9, making space for new bone and other

tissue. The anti-inflammatory properties of SDF-1 could reduce

the inflammatory response, promote vascularization, recruit

MSCs and HSCs to the wound for healing processes, and

ultimately enhancing bone regeneration. Even though it is still

unclear which mechanism governs bone regeneration, the study

confirms that loading SDF-1 into collagen scaffolds shows great

potential as in situ tissue engineering strategy in periodontal bone

regeneration.

It is insufficient to apply SDF-1 alone for favorable bone

regeneration (Cipitria et al., 2017). Hence, other growth factors

should be combined to boost periodontal bone regeneration. An

in vitro and in vivo study conducted by Liang et al. (2021) showed

that SDF-1/EX-4 combination treatment enhanced PDLSC

proliferation and migration, as well as in vitro mineral

deposition production and early osteoclastogenesis. The

osteogenic protein expression in a rat periodontal bone defect

model has also been upregulated. This strategy therefore

improves the quantity and quality of regenerated bone and

provides a new tool for periodontal bone regeneration in situ.

4.2 Soft tissue (periodontal ligament)
regeneration

In dental trauma, tooth avulsion is one of themost common but

severe cases (Andreasen et al., 1994). After the tooth was avulsed, the

fibers of its PDL were torn, which would render immediate but

FIGURE 3
Potential mechanisms of periodontal hard/soft tissue regeneration by the hierarchical CGF/IMC bilayer architecture. Reprinted from ref (Yu
et al. (2022)).
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severe injury to the periodontal soft tissue. To survive after avulsed

teeth are replanted, regeneration of PDL is essential.

By coating the root surface with SDF-1 and BMP-7, Wenting

Zhu et al. (2015) succeeded in generating a PDL-like neo-tissue

between the surrounding alveolar bone and the replanted root

surface. Since the collagen fibers were inserted deep into the

cementum and adjacent bone perpendicularly, neo-tissue

displayed periodontium-like characteristics. In essence, it was

possible to restore the integrity of the periodontal structure of the

teeth. Using this method, it would be possible to determine

whether avulsed teeth could be rescued after they had been given

up clinically.

4.3 Reparation of complex multiphase
periodontal tissues

The disease of periodontitis involves both periodontal

ligaments and alveolar bone, which causes inflammation of

gingival tissues, the loss of periodontal attachment, and

ultimately leads to tooth loss (Pihlstrom et al., 2005). To

limit inflammation within the periodontal tissues and

control the progression of periodontitis, the main goal of

periodontal therapy is to restore these lost tissues to their

original morphology, structure, and function. Due to the

complex mineralized/non-mineralized layered structure of

periodontal tissues (Woo et al., 2021), regenerative repair is

a challenging task for dentists (Bartold et al., 2000) once the loss

of hard tissue and soft tissue occurs. While stem cell-based cell

delivery therapy shows great promise in periodontal wound

healing, culture-expanded stem cells require complex

procedures and are expensive to apply. (Chen et al., 2010;

Chen et al., 2012b). Endogenous regeneration techniques can

stimulate potential self-repair mechanisms in the host by

promoting endogenous stem cell recruitment and adaptation

to the lesion site (Chen et al., 2011). Compared to complex and

expensive ex-vivo manipulation techniques, these options

enhanced safety, affordability, and flexibility, making them

increasingly popular in periodontal regenerative medicine

(Chen et al., 2010).

Using the rat periodontal fenestration defects model, Wang

et al. (2016) explored the effects of a cell-free system that

combined PTH systemic application to SDF-1α-scaffold on

periodontal tissue regeneration in vivo, while co-presentation

of IL -4 and SDF-1α in high-stiffness TG-gels on periodontal

regeneration was studied by He et al. (2019). Two experiments

both led to satisfactory soft tissue and hybrid tissue

regeneration.

Due to the difficulty of regenerating complex multiphase

tissues by monophasic scaffolds (Dan et al., 2014; Cho et al.,

2016), Yu et al. (2022) constructed a biomimetic tissue-specific

functional structure to regenerate periodontal tissues (Figure 3).

In the hierarchical biphasic architecture, IMC scaffolds could be

used for osteogenic differentiation, while CGF fibers exhibited

fibroblastic differentiation potential. After implanting the

critical-sized intact defect in a rat model, the host stem cells

could be recruited effectively, which then achieve multilineage

differentiation into periodontal tissues. As the PDL fibers were

inserted into the newly formed bone tissue, the CGF/IMC

biphasic scaffold successfully reconstructed complete and

functional periodontium after 8 weeks of implantation.

5 Conclusion and prospects

The repair of periodontal defects is a difficult problem of

international concern. The existing traditional clinical treatment

methods, such as GTR and GBR, fail to restore the physiological

structure and function of teeth and periodontal tissues effectively.

With the rapid advancements in cell therapy, stem cell

transplantation has become the main focus and means of

promoting tooth and periodontal regeneration. However,

in vitro culture of stem cells requires strict conditions, complex

procedures, and faces a huge risk of clinical application. The use of

in vivo endogenous stem cell migration to promote tissue

regeneration is expected to solve the difficulties of stem cells

in vitro and reduce the risk of clinical application, which has a

broad research prospect and clinical application space.

Stem cell homing involves a series of physiological processes

such as cell adhesion, migration, proliferation, and remodeling,

and requires appropriate scaffold materials as well as a certain

microenvironment. Current research mainly includes in vitro cell

experiments and in vivo animal experiments, while does not

involve clinical trials yet. At present, the chemotactic strategies

mainly use a variety of chemotactic agents, such as SDF-1, BMP-

7, EX-4, PRF, to encourage the migration and proliferation of

endogenous stem cells, as well as the differentiation into

periodontal tissues. Some scaffold materials are also involved

in chemotaxis. Additionally, the application of immune cells

(such as macrophages) in cell homing has also been studied.

However, despite the validated role of stem cell homing in

periodontal tissue regeneration, there are still significant

limitations of the strategy. Firstly, the stem cell sources are

hard to define, and the mechanisms by which chemotactic

strategies promote stem cell homing have not been fully

elucidated. Additionally, the property of endogenous stem

cells may be affected under certain physiological conditions

such as inflammation and aging, which will limit the effect of

stem cell homing strategy. On the other hand, the currently used

animal models are comparatively limited and lack in vivo

findings in mammals. Meanwhile, due to the maturity of the

technology itself, it has not been put into clinical trials.

In the future, the regulation of endogenous stem cell fate by

different chemotactic agents and the combination of chemotactic

agents and scaffold materials will remain the key point of

research. Further understanding of homing mechanisms and
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development of methods to enhance this phenomenon may have

further clinical benefits. At the same time, more advanced

detection techniques are required to identify the source of

recruited stem cells. In addition, improving the animal

experimental model of periodontal tissue engineering is also

the focus of future research. Only by clarifying the mechanism

and obtaining reliable results on a suitable animal model can the

transformation from basic experiments to clinical applications be

achieved as soon as possible.
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