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Salp swarm algorithm (SSA) is a simple and effective bio-inspired algorithm that

is gaining popularity in global optimization problems. In this paper, first, based

on the pinhole imaging phenomenon and opposition-based learning

mechanism, a new strategy called pinhole-imaging-based learning (PIBL) is

proposed. Then, the PIBL strategy is combined with orthogonal experimental

design (OED) to propose an OPIBL mechanism that helps the algorithm to jump

out of the local optimum. Second, a novel effective adaptive conversion

parameter method is designed to enhance the balance between exploration

and exploitation ability. To validate the performance of OPLSSA, comparative

experiments are conducted based on 23 widely used benchmark functions and

30 IEEE CEC2017 benchmark problems. Compared with some well-established

algorithms, OPLSSA performs better in most of the benchmark problems.
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1 Introduction

In recent years, metaheuristics have received incredible attention worldwide, and their

great success on global optimization tasks has established superb beliefs for researchers,

motivating them to develop more algorithms with good performance. Basically,

metaheuristics are classified into four categories, namely swarm-based, human-based,

evolution-based and physics-based approaches. Among them, swarm intelligence-based

methods have attracted most enthusiastic admiration, and they usually metaphorically
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represent some unique swarming behavior of organisms in the

nature. The most classical swarm intelligent algorithm, particle

swarm optimization (PSO) algorithm (Kennedy and Eberhart,

1995), mimics the flocking behavior of birds as they fly through

the sky. Artificial bee colony (ABC) algorithm (Karaboga and

Basturk, 2007; Wang et al., 2020), inspired by the collaborative

honey-harvesting behavior of bees, has also captured widespread

attention and has been successfully applied to solve real-word

problems. The ant colony optimization (ACO) algorithm (Blum,

2005) is motivated by the phenomenon that ant colonies transmit

information by secreting pheromones to accomplish foraging.

The ACO algorithm is admired by researchers because of its

unique advantages in solving business travel problems. Besides,

many excellent nature-inspired swarm intelligent approaches

have been validated to be effective in tricky global

optimization projects, they include but are not limited to: bat

algorithm (BA) (Yang and Gandomi, 2012), krill herd

optimization (KHO) (Gandomi et al., 2012), cuckoo search

(CS) algorithm (Gandomi et al., 2013), fruit-fly optimization

algorithm (FOA) (Mitić et al., 2015), grey wolf optimizer (GWO)

(Mirjalili et al., 2014), moth-flame optimization (MFO) (Mirjalili,

2015), grasshopper optimization algorithm (GOA) (Abualigah

and Diabat, 2020), whale optimization algorithm (WOA)

(Mirjalili and Lewis, 2016), marine predators algorithm

(MPA) (Faramarzi et al., 2020a), white shark optimizer

(WSO) (Braik et al., 2022), starling murmuration optimizer

(SMO) (Zamani et al., 2022), harris hawks algorithm (Heidari

et al., 2019), squirrel search optimization (SSO) algorithm (Jain

et al., 2019), dragonfly algorithm (DA) (Mirjalili, 2016), chimp

optimization algorithm (ChOA) (Khishe and Mosavi, 2020), rat

swarm algorithm (RSA) (Dhiman et al., 2021), Animal migration

optimization (AMO) (Li et al., 2014), butterfly optimization

algorithm (BOA) (Arora and Singh, 2019), emperor penguin

optimizer (EPO) (Dhiman and Kumar, 2018), tunicate swarm

algorithm (TSA) (Kaur et al., 2020), horse herd optimization

algorithm (HOA) (MiarNaeimi et al., 2021), monarch butterfly

optimization (MBO) (Wang et al., 2019), firefly algorithm (Fister

et al., 2013; Wang et al., 2022a), and seagull optimization

algorithm (SOA) (Dhiman and Kumar, 2019).

Swarm intelligent algorithms have emerged in various

scientific and engineering fields, they are based on different

metaphors, and their mathematical models consequently

differ, which correspond to distinctive search mechanisms.

Nevertheless, the framework of these algorithms is broadly the

same, all divided into two phases: exploration (cohesion) and

exploitation (alignment) (Wang et al., 2022b). In the exploration

phase, it is encouraged to maximize the stochasticity of the search

agents, which is related to the global search process. In the later

iteration, the algorithm shifts from exploration to exploitation,

refining the promising regions that have already been explored,

which is pertinent to the local search process. Balancing these two

phases is a core essential and challenging task for metaheuristic

techniques.

Recently, a novel nature-inspired swarm intelligent

technique, namely salp swarm algorithm (SSA) (Mirjalili et al.,

2017), has been reported by Mirjalili in 2017. SSA simulates the

distinctive foraging and navigation behaviors of the marine

biological salps. The framework is mainly based on the leader-

follower mechanism of the salp swarm. Compared with other

population intelligence-based approaches, SSA has many

advantages, such as fewer control parameters, easy

implementation, and special search pattern. Prior studies have

shown that SSA displays better performance than other

metaheuristic techniques on numerical optimization problems

and engineering design cases. Therefore, SSA is favored and

employed to tackle various optimization problems. In (Ewees

et al., 2021), Ewees et al. enhanced SSA algorithm using firefly

search mechanism for solving unrelated parallel machine

scheduling problem. In (Xia et al., 2022), Xia et al. proposed

barebone SSA algorithm, and embedded quasi-oppositional

based learning strategy. The developed SSA variant was used

inmedical diagnosis systems. In (Ozbay and Alatas, 2021), Ozbay

et al. added inertia weights to the standard SSA to improve the

ability of the algorithm to find the optimal solution and utilized

the boosted SSA for fake news detection and obtained satisfactory

results. In, Faris et al. (2018) introduced a binary version of SSA

with a crossover mechanism for feature selection problems. In,

Tu et al. (2021) proposed a quantum-behaved SSA approach and

studied the application of the advocated approach in wireless

sensor networks. In, Wang et al. (2021) developed an improved

SSA with opposition based learning mechanism and ranking-

based learning strategy for global optimization problems and PV

parameter extraction task.

Although the SSA algorithm has shown excellent

performance on global optimization problems, it still suffers

from premature convergence and insufficient solution

accuracy when large-scale optimization tasks and complex

restricted engineering design issues. To address these

limitations of the standard SSA, many high-performance SSA-

based algorithms have been developed. In, Ding et al. (2022)

developed a velocity-based SSA algorithm. The proposed

algorithm enhances the search efficiency of SSA by limiting

the maximum speed of the algorithm. Furthermore, an

adaptive mechanism was added to the SSA to balance the

exploration and exploitation ability. The introduced algorithm

was tested using the CEC 2017 benchmark suite. Experimental

results show that the velocity-based SSA algorithm outperforms

all competitors. Finally, the proposed algorithm is employed to

solve the mobile robot path planning task, and the results show

that the algorithm is able to plan reasonable collision-free path

for the robot. In (Çelik et al. (2021), devised three simple but

efficacious strategies to improve the performance of the standard

SSA. First, the control parameter is amended chaotically to

enhance the tradeoff between exploration and exploitation.

Then, a new mutualistic phase is injected to augment the

information exchange between leading salps. Finally,
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stochastic techniques are applied to improve the dynamics

among the followers. In, Chen et al. (2022) made three

adjustments to the basic SSA. Opposition-based learning

technique is adopted to enrich the population diversity. The

leader location update formula is modified to help the salp chain

jump out of sub-optimal solution. A social learning tactic

inspired by PSO is introduced to accelerate the convergence

of the optimizer. In, Zhang et al. (2021) introduced a mutual

learning mechanism in the exploitation phase of SSA to improve

its performance, and used a tangent factor to update the location

of the search agent. In, Wang et al. (2022c) designed an

orthogonal quasi-opposition-based learning structure to avoid

the population from falling into local optima. Moreover, a

dynamic learning paradigm is proposed to effectively improve

the search pattern of the followers. In (Bairathi and Gopalani,

2021), Bairathi et al. proposed a boosted version of SSA for

complex multimodal problems. First, stochastic opposition-

based learning is used to enhance the ability to search for

unknown regions. Then, multiple search agents are employed

to serve as leaders instead of one to intensify the global search

ability. Finally, it is compounded with the simulation annealing

algorithm to improve the local development ability. In, Singh

et al. (2022) proposed a hybrid algorithm of HHO and SSA to

cover the unbalanced local search and global exploration of the

basic SSA.

Many existing SSA variants focus mainly on alleviating the

shortcomings of lack of convergence accuracy and unbalanced

exploitation and exploration suffered by the basic SSA. For this

purpose, different strategies have been injected into SSA and

achieved remarkable results. However, these two limitations have

not been completely solved and there are still research gaps.

Moreover, the “No Free Lunch” theorems (Wolpert and

Macready, 1997) logically proves that it is impossible to

expect one algorithm to solve all optimization problems. That

is to say, while each algorithm has some unique characteristics

along with shortcomings. Even for reputable algorithms, they still

have some limitations. For example, AMO is a classical

metaheuristic algorithm inspired by animal migration

behavior. This optimizer can effectively improve the initial

random population and converge to the global optima. It has

many advantages, including simple search pattern, easy to

implement, and strong global optimization ability. Thanks to

the success of the AMO algorithm, it has been applied to many

different optimization problems, such as clustering (Hou et al.,

2016), the optimal power flow problem (Dash et al., 2022), and

multilevel image thresholding (Rahkar Farshi, 2019). However,

as most metaheuristic techniques, it suffers from premature

convergence and often falls into optima. To solve this

drawback, many AMO variants have been proposed, such as

the opposition-based AMO (Cao et al., 2013), and Lévy flight

FIGURE 1
The schematic diagram of PIBL on the leading salp.

TABLE 1 Orthogonal array of L9 (34).

M K

1 2 3 4

1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1
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assisted AMO (Gülcü,, 2021). Differential evolution (DE) (Storn

and Price, 1997) is a global search algorithm, which simulates the

biological process in the nature. In DE algorithm, individuals

repeatedly perform mutation, crossover, and selection to guide

the search process to gradually approach the global optima

solution. Because of its simplicity and effectiveness, it has

received a lot of attention and has been applied to solve many

real-world problems (Wang et al., 2022d). However, DE has

some limitations, such as unbalanced exploration and

exploitation ability and being sensitive to the selection of the

control parameters. To alleviate these drawbacks, Li et al. (2017)

proposed a Multi-search DE algorithm with three adjustments.

First, the population is divided into multiple subpopulations and

the subpopulation group size is dynamically adjusted. Second,

three effective mutation strategies are proposed to take on the

responsibility for either exploitation or exploration. Finally, a

novel parameter adaptation method is designed to solve the

automatically adjust the algorithmic parameters. However, there

is no mechanism in this DE variant for large-scale problems,

which will result in its performance will still be restricted by the

phenomenon of “curse of dimensionality” as the number of

dimensions increase. The CS is an effective optimization

algorithm with two features that make it stands out against

other metaheuristic techniques. First, it uses a mutation

function based on Lévy flight to improve the quality of the

randomly selected solutions at each iteration. Second, it uses

one parameter called abandon fraction that does not require fine-

tuning. However, CS suffers from the drawback of being prone to

premature convergence (Zhang et al., 2019). To address this

limitation, many CS variants were developed. For example, Li

et al. (Li and Yin, 2015) used two novel mutation rules and the

new rules were combined by a linear decreasing probability rule

to balance the exploitation and exploration of the algorithm.

Further, the parameter setting was adjusted to enhance the

diversity of the population. The performance of the developed

CS-based method was tested using 16 classical test functions.

Experimental results show that the introduced approach

performs better than its competitors, or at least comparable to

the peer algorithms. However, according to the statistical results,

the proposed algorithm still suffers from the drawback of

insufficient convergence accuracy. In this paper, a novel SSA

variant called OPLSSA is introduced considering the above two

considerations. First, a novel pinhole-imaging opposition-based

learning mechanism is deigned and combined with the

orthogonal experimental design for effectively enhancing the

global exploration ability. Second, the follower update pattern

is modified by introducing adaptive inertia weights to provide

dynamic search with adaptive mechanism. Comprehensive

comparison experiments on 23 widely used numerical test

functions and 30 CEC 2017 benchmark problems demonstrate

that the proposed approach outperforms the traditional SSA,

popular SSA-based methods, and well-established population-

based intelligent algorithms.

The remainder of this work is structured as follows: The

standard SSA, including the principle, mathematical model and

shortcoming analysis, is presented in Section 2. The developed

FIGURE 2
Construct OPIBL leader.
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modifications and the advocated OPLSSA algorithm are

described in detail in Section 3. The effectiveness of the

proposed approach is verified by comparison experiments in

Section 4. Finally, the conclusions and future tasks are provided

in Section 5.

2 The original salp swarm algorithm

2.1 Description of salp swarm algorithm

The SSA algorithm is a well-established swarm intelligent

approach inspired by the unexplained behavior of salp swarm

that organize in chains to improve foraging efficiency in oceans.

SSA, resembling other population intelligence-basedmethodologies,

commences its search process with a suit of randomly generated

search agents, each of which indicates a solution to the pending

problem. SSA compartmentalizes the salp population into two

groups: leaders and followers. The leader is the key member,

which plays a leadership role and at the front of the chain to

lead the population in search of food. The followers, on the other

hand, move implicitly or outright along the trajectory of the leader.

In SSA, the leading salp changes position depending on the

following formula.

X1,j � Fj + c1 × ubj − lbj( ) × c2 + lbj( ) c3 ≥ 0.5
Fj − c1 × ubj − lbj( ) × c2 + lbj( ) c3 < 0.5

{ (1)

where X1, j and Fj are the locations of the leader and the food source,

respectively, c2 is a random vector, c3 is a random value, all taking

values between the interval [0,1], and c1 is the key parameter that

regulates the transformation of the algorithm from the exploration

in the initial iteration to the exploitation in the later search stages,

which is calculated according to the following equation.

c1 � 2 × e−
4 × l
L( )2 (2)

where l and L denote the current iteration and the maximum

iteration, respectively.

The mathematical equation used to change the followers’

positions is as follows:

Xi,j � 1
2
× Xi,j +Xi−1,j( ) (3)

where Xi,j indicates the location of the i-th follower in the jth

dimensional search landscape.

Algorithm 1 outlines the pseudo code of the basic SSA.

Algorithm 1. Q-Pseudocode of SSA.

The SSA approach begins the search with a reservation

number of randomly generated search agents, and

subsequently continuously updates the population position

according to the objective value of the optimized function.

The fitness of the population is evaluated after each iteration

and the best individual is assigned as the current food source,

which is the desired goal pursued by the leader, and the

followers intuitively or implicitly follow the leading salp,

the salp chain thus continuously approaching the food

source. Notably, the value of the control parameter c1
decreases nonlinearly after the lapse of iterations, and the

salp chain accordingly switches from moving in large steps to

explore the search space to traveling gradually to exploit the

already discovered potential areas. The salp swarm repeatedly

searches following the aforementioned pattern until the

cessation criterion is encountered, at which point the food

source is the expected optimal solution.

FIGURE 3
The inertia weight ω curve.

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Wang et al. 10.3389/fbioe.2022.1018895

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1018895


FIGURE 4
The flow chart of OPLSSA.

TABLE 2 The characteristics of the classical benchmark functions.

Function type Function formulation Search range fmin

Unimodal f1(x) � ∑D
i�1x2i [−100,100] 0

f2(x) � ∑D
i�1ix2

i
[−10,10] 0

f3(x) � ∑D
i�1(∑i

j�1xj)2 [−100,100] 0

f4(x) � max i |xi|, 1≤xi ≤D{ } [−100,100] 0

f5(x) � ∑D
i�1(�xi + 0.5�)2 [−100,100] 0

f6(x) � ∑D
i�1ix4

i
[−1.28,1.28] 0

f7(x) � ∑D
i�1ix4

i + random[0, 1) [−1.28,1.28] 0

f8(x) � ∑D
i�1|xi |(i+1) [−1,1] 0

f9(x) � ∑D
i�1(106)(i−1)/(D−1)x2

i
[−100,100] 0

f10(x) � x2
1 + 106 ·∑D

i�2x6
i

[−100,100] 0

f11(x) � 10 · x21 +∑D
i�2x6

i
[−1,1] 0

Multimodal f12(x) � ∑D
i�1[x2i − 10 cos(2πxi) + 10] [−5.12,5.12] 0

f13(x) � −20 exp(−0.2
�������
1
D∑D

i�1x2
i

√
) − exp( 1

D∑D
i�1 cos(2πxi)) + 20 + e [−32,32] 0

f14(x) � 1
4000∑D

i�1x2i −∏D
i�1 cos( xi�

i
√ ) + 1 [−600,600] 0

f15(x) � ∑D
i�1|xi · sin(xi) + 0.1xi| [−10,10] 0

f16(x) � sin 2(πx1) +∑D−1
i�1 [x2i · (1 + 10 sin 2(πx1)) + (xi − 1)2 − sin 2(2πxi)] [−10,10] 0

f17(x) � 0.1D − (0.1∑D
i�1 cos(5πxi) −∑D

i�1x2
i ) [−1,1] 0

f18(x) � ∑D
i�1x2

i + (∑D
i�10.5xi)2 + (∑D

i�10.5xi)4 [−-5,10] 0

f19(x) � ∑D
i�1(0.2x2i + 0.1x2i · sin(2xi)) [−10,10] 0

f20(x) � [ 1
D−1∑D

i�1( ��
xi

√ (sin(50.0x0.2i ) + 1))]2 [−100,100] 0

f21(x) � ∑D−1
i�1 [x2i + 2x2i+1 − 0.3 cos(3πxi) − 0.4 cos(4πxi+1) + 0.7] [−15,15] 0

f21(x) � ∑D−1
i�1 (x2i + 2x2i+1)0.25 · ((sin 50(x2i + x2i+1)0.1)2 + 1) [−10,10] 0

f23(x) � ∑D−1
i�1 x6

i · (2 + sin 1
xi
) [−1,1] 0
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TABLE 3 Comparisons of nine algorithms on 23 test functions with 100 dimensions.

Function Results SSA LSSA ASSA GSSA OBSSA ASSO RDSSA IWOSSA OPLSSA

f1 Mean 1.29E+03 2.50E-03 5.11E-02 1.23E-15 3.92E-32 2.02E-26 3.93E-65 1.75E-06 0

Std 3.17E+02 2.20E-03 3.97E-02 4.22E-15 4.65E-32 3.11E-27 1.75E-64 1.61E-06 0

f-rank 9 7 8 5 3 4 2 6 1

f2 Mean 8.71E+02 2.00E-01 2.01E-02 7.11E-16 3.00E-32 9.87E-27 8.16E-39 4.69E-07 0

Std 2.42E+02 1.74E-01 8.20E-03 2.86E-15 3.50E-32 1.48E-27 4.47E-38 4.08E-07 0

f-rank 9 8 7 5 3 4 2 6 1

f3 Mean 5.02E+04 8.39E+03 1.79E+04 1.43E+04 4.77E-30 1.92E-25 5.28E-34 1.01E+05 0

Std 2.29E+04 5.89E+03 9.86E+03 8.51E+03 8.26E-30 7.04E-26 2.89E-33 3.21E+04 0

f-rank 8 5 7 6 3 4 2 9 1

f4 Mean 2.73E+01 2.25E+01 9.3313 2.39E+01 5.52E-17 3.45E-14 5.53E-30 4.47E+01 0

Std 2.8509 5.2878 2.6632 3.2136 3.56E-17 3.08E-15 2.40E-29 7.0144 0

f-rank 8 6 5 7 3 4 2 9 1

f5 Mean 2.83E+03 8.1000 1.46E+01 0 0 0 0 1.0667 0

Std 8.76E+02 5.0402 7.0392 0 0 0 0 1.7991 0

f-rank 9 7 8 1 1 1 1 6 1

f6 Mean 2.97E-01 1.17E-02 1.06E-07 1.86E-02 3.97E-70 1.44E-59 1.95E-95 3.67E-12 0

Std 1.91E-01 1.70E-02 1.14E-07 2.55E-02 7.31E-70 4.82E-60 1.07E-94 8.94E-12 0

f-rank 9 7 6 8 3 4 2 5 1

f7 Mean 2.6326 6.81E-01 8.53E-02 1.13E-01 7.85E-05 1.14E-04 7.41E-04 8.06E-02 8.96E-05

Std 4.78E-01 2.71E-01 2.09E-02 1.45E-01 9.21E-05 1.03E-04 5.22E-04 4.73E-02 9.53E-05

f-rank 9 8 6 7 1 3 4 5 2

f8 Mean 3.36E-06 2.59E-10 1.98E-26 7.00E-50 9.10E-39 1.17E-35 2.74E-74 1.33E-17 0

Std 2.60E-06 1.21E-09 7.55E-26 3.83E-49 2.83E-38 2.33E-35 1.50E-73 4.51E-17 0

f-rank 9 8 6 3 4 5 2 7 1

f9 Mean 7.14E+07 1.2397 1.26E+02 1.20E-14 2.88E-27 1.36E-21 6.63E-33 9.80E-03 0

Std 2.67E+07 9.42E-01 5.88E+01 4.08E-14 4.05E-27 5.33E-22 3.63E-32 6.50E-03 0

f-rank 9 7 8 5 3 4 2 6 1

f10 Mean 6.72E+13 1.36E+09 9.78E+05 1.53E+13 5.34E-35 5.37E-32 2.55E-82 1.69E+05 0

Std 4.72E+13 3.58E+09 1.12E+06 1.27E+13 1.55E-34 7.22E-32 1.39E-81 5.07E+05 0

f-rank 9 7 6 8 3 4 2 5 1

f11 Mean 1.7951 1.47E-04 2.78E-10 5.71E-17 7.60E-33 5.19E-30 5.47E-76 5.77E-09 0

Std 1.5770 3.60E-04 7.29E-10 2.49E-16 2.92E-32 1.15E-29 2.99E-75 2.62E-08 0

f-rank 9 8 6 5 3 4 2 7 1

f12 Mean 2.36E+02 1.95E+02 2.38E+02 2.88E-11 0 0 0 3.22E+02 0

Std 3.42E+01 1.13E+02 1.31E+02 1.27E-10 0 0 0 1.14E+02 0

f-rank 7 6 8 5 1 1 1 9 1

f13 Mean 1.03E+01 8.47E-02 2.93E-02 1.32E-09 8.88E-16 1.96E-14 4.20E-15 6.63E-01 8.88E-16

Std 1.4847 3.05E-01 1.03E-02 1.80E-09 0 2.27E-15 9.01E-16 3.6301 0

f-rank 9 7 6 5 1 4 3 8 1

f14 Mean 1.35E+01 2.74E-02 5.33E-02 1.29E-14 0 0 0 3.60E-03 0

Std 4.7887 4.76E-02 3.61E-02 6.18E-14 0 0 0 8.60E-03 0

f-rank 9 7 8 5 1 1 1 6 1

f15 Mean 2.86E+01 1.35E+01 1.04E+01 4.42E-14 1.49E-17 1.14E-14 1.65E-26 1.88E+01 0

Std 6.1418 1.29E+01 6.2120 1.40E-13 5.88E-18 7.75E-16 6.69E-26 1.56E+01 0

f-rank 9 7 6 5 3 4 2 8 1

f16 Mean 3.51E+02 1.77E+02 4.31E+01 4.73E-08 1.99E-32 7.97E-27 6.69E-47 8.3098 0

Std 6.68E+02 1.38E+02 2.49E+01 1.69E-07 1.96E-32 1.22E-27 3.63E-46 2.21E+01 0

f-rank 9 8 7 5 3 4 2 6 1

(Continued on following page)
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2.2 Analysis of the shortcomings of salp
swarm algorithm

In this subsection, we analyze the key limitations of the basic

SSA, which is the inference and motivation behind the current

work. The details are as follows:

1) First of all, there is only one parameter c1 to be updated in the

basic SSA, which is used to control the movement of the

leader and thus maintain a more stable balance between

exploration and exploitation. However, strong stochastic

factors break this expectation. The food source could not

guide the leader salp to the more promising search region as

expected, resulting in the algorithm not being able to switch

search modes smoothly during the search process, which also

reduced the convergence speed.

2) Second, the position update equation of the followers in SSA

does not have any control parameters, and although this can

reduce the computational cost, it will make this movement

mechanism sluggish and the algorithm is thus prone to fall

into local optimum.

3) In addition, adaptive is a novel and effective technique that

helps the algorithm to adjust the movement pattern

autonomously during the search process, however, such

operator is lacking in SSA.

4) Finally, maintaining a desirable balance between exploitation and

exploration is the goal pursued by all swarm-based intelligence

techniques, and a lot of research has focused on enhancing the

capability of SSA algorithms in this regard to strengthen its

overall performance, but there is still a gap in this context.

The above analyzed weak points of SSA have promoted the

authors to discern that the algorithm has some drawbacks to be

rectified, and this is the motivation behind proposing a novel

version of SSA. Each of the embedded adjustments will be

described in detail in the next section.

3 Essentials of the OPLSSA

As discussed previously, the swarm intelligent algorithm

covers two phases, namely exploration and exploitation.

TABLE 3 (Continued) Comparisons of nine algorithms on 23 test functions with 100 dimensions.

Function Results SSA LSSA ASSA GSSA OBSSA ASSO RDSSA IWOSSA OPLSSA

f17 Mean 4.9384 1.3822 1.36E-04 0 0 0 0 1.99E-09 0
Std 6.59E-01 7.74E-01 1.69E-04 0 0 0 0 9.33E-10 0

f-rank 9 8 7 1 1 1 1 6 1

f18 Mean 7.16E+01 1.78E-02 8.50E-03 9.29E-09 2.09E+02 1.75E-28 4.35E-47 2.16E-02 2.92E-44

Std 1.95E+01 1.08E-02 4.90E-03 2.12E-08 3.03E+01 3.42E-29 2.38E-46 2.77E-02 8.67E-45

f-rank 8 6 5 4 9 3 1 7 2

f19 Mean 1.89E+01 3.40E-03 1.48E-04 4.36E-17 8.03E-35 4.02E-29 1.48E-43 2.55E-09 0

Std 5.7632 4.70E-03 7.83E-05 1.00E-16 9.15E-35 5.04E-30 8.13E-43 1.80E-09 0

f-rank 9 8 7 5 3 4 2 6 1

f20 Mean 5.0612 2.83E-01 1.8212 5.69E-10 4.79E-09 1.28E-07 6.21E-15 7.26E-02 0

Std 2.18E-01 238E-01 5.49E-01 5.11E-10 1.36E-09 4.05E-09 2.58E-14 2.26E-01 0

f-rank 9 7 8 5 4 3 2 6 1

f21 Mean 1.90E+02 1.34E+01 3.94E-01 1.22E-16 0 0 0 1.34E-06 0

Std 2.88E+01 6.4554 5.12E-01 3.94E-16 0 0 0 7.37E-07 0

f-rank 9 8 7 5 1 1 1 6 1

f22 Mean 4.1930 4.1724 4.1941 9.39E-01 4.65E-09 1.19E-07 1.86E-02 3.5709 0

Std 1.88E-01 3.04E-01 1.61E-01 4.69E-01 1.36E-09 4.29E-09 2.18E-02 1.1627 0

f-rank 8 7 9 5 2 3 4 6 1

f23 Mean 2.59E-04 1.16E-05 5.96E-11 8.13E-05 5.24E-108 1.64E-92 6.43E-209 2.79E-10 0

Std 1.65E-04 9.04E-06 9.92E-11 1.08E-04 1.72E-107 8.86E-93 0 7.19E-10 0

f-rank 9 7 5 8 3 4 2 6 1

Average f-rank 8.7391 7.1304 6.7826 5.1739 2.6956 3.2174 1.9565 6.5652 1.0869

Overall f-rank 9 8 7 5 3 4 2 6 1
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Exploration maintains a superiority in global search, and the

strong exploration capability is conductive to improving the

convergence speed. On the other hand, the domain nature of

exploitation is shown in the local search, and the powerful

development capability is beneficial to boost the convergence

accuracy. Maintaining a proper equilibrium between

exploration and exploitation holds a key position in the

performance of swarm intelligent approaches, which is also

TABLE 4 Statistical conclusions based on Wilcoxon signed-rank test on 100-dimensional benchmark problems.

Function SSA
p-value

LSSA
p-value

ASSA
p-value

GSSA
p-value

OBSSA
p-value

ASSO
p-value

RDSSA
p-value

IWOSSA
p-value

f1 1.2118E-12 1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-12

f2 1.2118E-12 1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-12

f3 1.2118E-12 1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-12

f4 1.2118E-12 1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-12

f5 1.2118E-12 1.1808E-
12

1.1941E-
12

N/A N/A N/A N/A 1.4306E-04

f6 1.2118E-12 1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-12

f7 3.0199E-11 3.0199E-
11

3.0199E-
11

3.0199E-
11

0.6952 0.2062 1.2870E-
09

3.0199E-11

f8 1.2118E-12 1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

4.5736E-
12

1.2118E-12

f9 1.2118E-12 1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-12

f10 1.2118E-12 1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-12

f11 1.2118E-12 1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-12

f12 1.2118E-12 1.2118E-
12

1.2118E-
12

1.4545E-
04

N/A N/A N/A 1.2118E-12

f13 1.2118E-12 1.2118E-
12

1.2118E-
12

1.2118E-
12

N/A 5.6687E-
13

7.1518E-
13

1.2118E-12

f14 1.2118E-12 1.2118E-
12

1.2118E-
12

6.6067E-
05

N/A N/A N/A 1.2118E-12

f15 1.2118E-12 1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-12

f16 1.2118E-12 1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-12

f17 1.2118E-12 1.2118E-
12

1.2118E-
12

N/A N/A N/A N/A 1.2118E-12

f18 3.0199E-11 3.0199E-
11

3.0199E-
11

3.0199E-
11

3.0199E-
11

3.0199E-
11

3.0199E-
11

3.0199E-11

f19 1.2118E-12 1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-12

f20 1.2118E-12 1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-12

f21 1.2118E-12 1.2118E-
12

1.2118E-
12

8.1523E-
02

N/A N/A N/A 1.2118E-12

f22 8.6253E-13 1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2078E-
12

1.2098E-12

f23 1.2118E-12 1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-
12

1.2118E-12

+/ = /- 23/0/0 23/0/0 23/0/0 21/2/0 17/6/0 17/6/0 17/5/1 23/0/0
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a research gap that the current community tries to bridge. In

this study, two straightforward but applicable mechanisms are

integrated into SSA to produce an enhanced balanced SSA

variants with better performance. This section provides an in-

depth discussion of the designed components and the OPLSSA

algorithm.

3.1 Orthogonal pinhole-imaging-based
learning

In standard SSA, according to the location changing

pattern of the leading salp, a prospective candidate search

agent location is gained by directing the leader to the food

source. Followers chase the leader explicitly or indirectly,

gathering near the perceived global optimum in the later

phase of the search. As a result, the standard SSA is

inclined to converge prematurely. Therefore, improving the

ability of the approach to avoid local optima has been

considered as the most critical and necessary research goal

in SSA improvement. To enhance the global exploration

ability of swarm intelligent metaheuristic techniques, the

most common method used in the published literatures is

opposition-based learning (OBL). For example, Abualigah

et al. (2021) revised the search pattern of the slime mould

algorithm (SMA) (Li et al., 2020) by incorporating the OBL

mechanism. Dinkar et al. (2021) used the OBL technique to

accelerate the convergence rate of equilibrium optimizer

(EO) (Faramarzi et al., 2020b), and the reported OBL-

based EO approach was used for multilevel threshold

image segmentation. Yu et al. (2021) included an

additional OBL phase in the GWO algorithm to help the

wolves jump to reverse individuals to enhance the

exploration of the search space. Yildiz et al. (2021) mixed

OBL with GOA algorithm to improve the ability of the

algorithm to exploit unknown regions. In the proposed

algorithm, elite individuals generate corresponding elite

reverse individuals through the OBL strategy and retain

well-quality individuals for the next iteration. Chen et al.

(2020) employed quasi-opposition-based learning (QOBL),

an OBL variant, to create dynamic jumps during the location

update of the WOA algorithm to prevent the algorithm from

falling into local optima.

Pinhole imaging is a general physical phenomenon in which a

light source passes through a small hole in a plate and an inverted

real image is formed on the other side of the plate. Motivated by the

discovery that there are close similarities between the pinhole

imaging phenomenon and the OBL mechanism, this paper

proposes a pinhole-imaging-based learning (PIBL) mechanism

and applies it to the current leader to augment the exploration

capability of SSA for unknown areas. Figure 1 plots the schematic

diagram of the PIBL.

In Figure 1, p is a light source of height h, and its projection

on the x-axis is L. Place a pinhole screen on the base point o, and

the real image p′ formed by the light source through the pinhole

screen will fall on the receiving screen on the other side. It is

worth noting that p′ is the inverted image of p, and the height of

p′ from the x-axis is h′. At this point, L jumps to L′ based on

pinhole imaging principle. Therefore, from the pinhole imaging

principle, it can be derived that

FIGURE 5
Radar plot for consolidated ranks of 23 benchmarkproblems with the SSA variants.
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TABLE 5 Comparisons of nine algorithms on 23 test functions with 100 dimensions.

Function Results TSA MPA HGS AOA IGWO WEMFO DMMFO OGWO OPLSSA

f1 Mean 3.01E-10 1.80E-19 2.23E-152 9.49E-79 2.21E-12 3.59E-22 3.29E+04 4.59E-15 0

Std 3.25E-10 1.27E-19 1.22E-151 5.09E-78 1.32E-12 1.93E-21 7.03E+03 5.59E-15 0

f-rank 8 5 2 3 7 4 9 6 1

f2 Mean 1.41E-10 7.00E-20 8.26E-149 8.91E-78 1.09E-12 1.68E-22 1.48E+04 9.72E-16 0

Std 1.57E-10 6.87E-20 4.52E-148 4.59E-77 1.41E-12 8.42E-22 2.65E+03 1.36E-15 0

f-rank 8 5 2 3 7 4 9 6 1

f3 Mean 1.28E+04 9.6728 3.73E-18 1.14E-62 5.69E+03 4.63E-07 2.37E+05 8.28E+02 0

Std 7.98E+03 1.22E+01 2.04E-17 5.34E-62 3.15E+03 2.53E-06 4.31E+04 1.01E+03 0

f-rank 8 5 3 2 7 4 9 6 1

f4 Mean 5.59E+01 1.87E-07 4.79E-62 3.47E-38 5.0967 2.04E-10 8.89E+01 1.8357 0

Std 1.34E+01 8.76E-08 2.62E-61 1.09E-37 3.2803 4.26E-10 2.6732 1.9532 0

f-rank 7 5 2 3 8 4 9 6 1

f5 Mean 1.34E+01 0 0 0 0 0 3.53E+04 0 0

Std 9.6264 0 0 0 0 0 6.17E+03 0 0

f-rank 8 1 1 1 1 1 9 1 1

f6 Mean 4.99E-18 8.77E-41 8.25E-261 4.89E-164 1.72E-22 7.39E-46 1.02E+20 3.51E-28 0

Std 2.62E-17 1.44E-40 0 0 2.97E-22 4.03E-45 2.86E+01 7.99E-28 0

f-rank 8 5 2 3 7 4 9 6 1

f7 Mean 5.22E-02 2.00E-03 1.90E-03 7.68E-04 1.44E-02 1.60E-03 9.24E+01 2.10E-03 4.87E-05

Std 1.70E-02 1.00E-03 2.50E-03 5.45E-04 5.40E-03 1.10E-03 2.96E+01 1.90E-03 5.19E-05

f-rank 8 5 4 2 7 3 9 6 1

f8 Mean 1.83E-42 4.25E-60 1.52E-77 7.57E-187 2.57E-57 1.66E-82 1.40E-03 1.26E-61 0

Std 9.92E-42 1.12E-59 8.29E-77 0 1.31E-56 6.92E-82 1.60E-03 6.84E-51 0

f-rank 8 5 4 2 6 3 9 7 1

f9 Mean 7.98E-07 9.23E-16 3.30E-160 4.07E-74 3.60E-09 6.95E-19 2.07E+08 4.56E-12 0

Std 1.30E-06 9.36E-16 1.81E-159 1.87E-73 2.68E-09 2.24E-18 9.88E+07 4.89E-12 0

f-rank 8 5 2 3 7 4 9 6 1

f10 Mean 4.28E-02 8.66E-39 1.95E-54 5.97E-170 4.60E-10 2.88E-48 2.86E+17 5.41E-21 0

Std 1.11E-01 1.67E-38 1.03E-53 0 1.69E-09 8.27E-48 1.19E+17 1.21E-20 0

f-rank 8 5 3 2 7 4 9 6 1

f11 Mean 7.21E-20 3.89E-53 1.62E-43 4.26E-183 6.04E-28 8.17E-63 9.86E-01 2.85E-38 0

Std 2.95E-19 7.53E-53 8.76E-43 0 1.43E-27 4.09E-62 3.91E-01 9.84E-38 0

f-rank 8 4 5 2 7 3 6 9 1

f12 Mean 9.86E+02 0 0 0 1.46E+02 2.85E+02 8.14E+02 1.1484 0

Std 1.04E+02 0 0 0 4.72E+01 3.14E+02 6.94E+01 2.7139 0

f-rank 9 1 1 1 6 7 8 5 1

f13 Mean 1.25E-05 5.03E-11 8.88E-16 1.86E+01 1.53E-07 6.67E-01 1.97E+01 4.91E-09 8.88E-16

Std 2.86E-05 3.14E-11 0 5.0657 6.66E-08 3.6445 3.34E-01 1.57E-09 0

f-rank 6 3 1 8 5 7 9 4 1

f14 Mean 1.63E-02 0 0 0 4.70E-03 0 3.02E+02 1.80E-03 0

Std 1.80E-02 0 0 0 7.10E-03 0 5.85E+01 7.00E-03 0

f-rank 8 1 1 1 7 1 9 6 1

f15 Mean 1.51E+02 3.83E-12 9.59E-72 6.71E-42 3.70E-03 5.58E+01 5.79E+01 2.05E-04 0

Std 2.16E+01 3.34E-12 5.25E-71 2.71E-41 1.90E-03 2.67E+01 1.01E+01 4.99E-04 0

f-rank 9 4 2 3 6 7 8 5 1

f16 Mean 1.38E+02 1.83E-16 5.31E-123 3.44E-61 8.2595 5.44E-21 1.56E+03 2.97E-23 0

Std 9.02E+01 4.55E-16 2.91E-122 1.88E-60 4.4488 2.95E-20 2.13E+02 1.37E-22 0

f-rank 8 6 2 3 7 5 9 4 1

(Continued on following page)
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a + b( )/2 − L

L′ − a + b( )/2 � h

h′ (4)

Let h/h’ = n, Eq. 9 can be rewritten as

L′ � a + b( )
2

+ a + b( )
2n

− L

n
(5)

Equation 5 is the formula of PIBL on the leading salp. When

n = 1, the above equation is simplified to

L′ � a + b − L (6)

Equation 6 is the original OBL strategy on the leading

salp. Clearly, OBL is very similar to PIBL. In other words,

PIBL can be treated as a dynamic version of OBL.

Generalizing Eq. 5 to the D-dimensional spatial, it can be

obtained

L′
j � aj + bj( )/2 + aj + bj( )/2k − Lj/n (7)

where Lj and L′ j are the jth dimensional values of the leader and

the PIBL leader, respectively.

In this paper, we use the proposed PIBL mechanism to help

the leader search for unknown regions, thus improving the global

search ability of the algorithm and avoiding the premature

convergence due to the lack of exploration capability.

However, similar to OBL, PIBL also suffers from the problem

of “dimensional degradation”, i. t., the current leader improves

only in some dimensions after jumping to the PIBL leader, while

some other dimensions are even farther from the global

optimum. To solve this problem, we introduce orthogonal

experimental design (OED) and combine it with the PIBL

strategy to design the orthogonal pinhole-imaging-based

learning (OPIBL) mechanism.

The OED is an auxiliary tool that can find the optimal

combination of experiments by a reasonable number of

trials. For example, for an experiment with 3 levels and

4 factors, it would take 81 attempts using a trial-and-error

approach. In contrast, by adopting an OED, only 9 sets of

representative combinations need to be evaluated to

determine the optimal combination of the experiment. L9
(34) is shown in Table 1.

In each iteration, the OPIBL mechanism is used for the

TABLE 5 (Continued) Comparisons of nine algorithms on 23 test functions with 100 dimensions.

Function Results TSA MPA HGS AOA IGWO WEMFO DMMFO OGWO OPLSSA

f17 Mean 3.2947 0 0 0 2.63E-14 0 1.26E+01 5.39E-15 0
Std 2.8236 0 0 0 8.78E-15 0 1.6209 2.58E-15 0

f-rank 8 1 1 1 7 1 9 6 1

f18 Mean 9.89E-12 2.99E-19 1.49E-109 2.08E-69 1.72E-12 7.12E-23 5.07E+02 6.62E-16 2.38E-44

Std 1.45E-11 3.67E-19 8.17E-109 1.14E-68 1.89E-12 3.85E-22 7.89E+01 5.22E-16 4.48E-15

f-rank 8 5 1 2 7 4 9 6 3

f19 Mean 1.09E+01 7.27E-22 4.13E-136 7.49E-81 1.61E-14 4.56E-27 1.62E+02 5.65E-27 0

Std 5.97E+01 1.00E-21 2.26E-135 3.45E-80 1.43E-14 1.28E-26 3.67E+01 2.26E-26 0

f-rank 8 6 2 3 7 4 9 5 1

f20 Mean 2.8523 4.58E-07 2.19E-39 8.39E-22 1.02E-02 2.04E-08 8.4517 7.17E-05 0

Std 1.4825 4.09E-07 8.26E-39 2.07E-21 3.10E-03 4.15E-08 3.23E-01 4.19E-05 0

f-rank 8 5 2 3 7 4 9 6 1

f21 Mean 4.3276 0 0 0 2.16E-12 0 2.19E+03 2.95E-15 0

Std 1.21E+01 0 0 0 1.55E-12 0 4.97E+02 3.28E-15 0

f-rank 8 1 1 1 7 1 9 6 1

f22 Mean 7.2165 6.13E-01 3.63E-38 1.71E-02 3.0308 4.60E-03 7.4324 8.31E-01 0

Std 5.16E-01 7.47E-02 1.99E-37 1.78E-02 4.72E-01 6.80E-03 2.66E-01 2.58E-01 0

f-rank 8 5 2 4 7 3 9 6 1

f23 Mean 8.46E-14 3.86E-55 6.3951 6.12E-235 6.93E-25 1.58E-70 6.23E-01 3.89E-64 0

Std 2.86E-13 1.06E-54 8.6601 0 2.46E-24 8.54E-70 2.75E-01 2.12E-63 0

f-rank 7 5 9 2 6 3 8 4 1

Average f-rank 7.9130 4.0435 2.3913 2.5217 6.5217 3.6956 8.7391 5.5612 1.0869

Overall f-rank 8 5 2 3 7 4 9 6 1
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leader, the dimension of the problem to be solved is

considered as the factor of the OED, and the leader and

the PIBL leader are regarded as the two levels of the OED.

The designed OPIBL mechanism considers the information of

the current leader and the PIBL leader, and retains the

respective dominant dimensions to combine as a promising

partial PIBL individual, called OPIBL leader. In this way, the

OPIBL mechanism can effectively avoid the “dimensional

TABLE 6 Statistical conclusions based on Wilcoxon signed-rank test on 100-dimensional benchmark problems.

Function TSA
p-value

MPA
p-value

HGS
p-value

AOA
p-value

IGWO
p-value

WEMFO
p-value

DMMFO
p-value

OGWO
p-value

f1 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-
12

1.2118E-12 1.2118E-12 1.2118E-12

f2 1.2118E-12 1.2118E-12 6.6167E-04 4.5736E-12 1.2118E-
12

1.2118E-12 1.2118E-12 1.9346E-10

f3 1.2118E-12 1.2118E-12 8.8658E-07 1.2118E-12 1.2118E-
12

1.2118E-12 1.2118E-12 1.2118E-12

f4 1.2118E-12 1.2118E-12 3.4526E-07 1.2118E-12 1.2118E-
12

1.2118E-12 1.2118E-12 1.2118E-12

f5 4.5342E-12 N/A N/A N/A N/A N/A 1.2118E-12 N/A

f6 3.0199E-11 3.0199E-11 1.0702E-09 3.0199E-11 3.0199E-
11

3.0199E-11 3.0199E-11 2.3715E-10

f7 3.0199E-11 3.3384E-11 2.1947E-08 2.3715E-10 3.0199E-
11

4.9752E-11 3.0199E-11 1.7769E-10

f8 1.2118E-12 1.2118E-12 8.87E-07 1.2118E-12 1.2118E-
12

1.2118E-12 1.2118E-12 1.2118E-12

f9 1.2118E-12 1.2118E-12 6.6167E-04 1.2118E-12 1.2118E-
12

1.2118E-12 1.2118E-12 1.2118E-12

f10 1.2118E-12 1.2118E-12 5.3750E-06 1.2118E-12 1.2118E-
12

1.2118E-12 1.2118E-12 1.2118E-12

f11 1.2118E-12 1.2118E-12 5.3750E-06 1.2118E-12 1.2118E-
12

1.2118E-12 1.2118E-12 1.2118E-12

f12 1.2118E-12 N/A N/A N/A 1.2118E-
12

2.2130E-06 1.2118E-12 1.2108E-12

f13 1.2118E-12 1.2118E-12 N/A 1.6572E-11 1.2118E-
12

4.5736E-12 1.2118E-12 1.2118E-12

f14 1.2118E-12 N/A N/A N/A 1.2118E-
12

N/A 1.2118E-12 1.2118E-12

f15 1.2118E-12 1.2118E-12 3.3149E-04 1.2118E-12 1.2118E-
12

1.2118E-12 1.2118E-12 1.2118E-12

f16 1.2118E-12 1.2118E-12 5.3750E-06 1.2118E-12 1.2118E-
12

1.2118E-12 1.2118E-12 1.2118E-12

f17 1.2118E-12 N/A N/A N/A 1.1010E-
12

N/A 1.2118E-12 4.4162E-11

f18 3.0199E-11 3.0199E-11 2.3982E-11 3.0199E-11 3.0199E-
11

3.0199E-11 3.0199E-11 3.0199E-11

f19 1.2118E-12 1.2118E-12 1.2717E-05 1.2118E-12 1.2118E-
12

1.2118E-12 1.2118E-12 1.2118E-12

f20 1.2118E-12 1.2118E-12 5.5843E-03 1.2118E-12 1.2118E-
12

1.2118E-12 1.2118E-12 1.2118E-12

f21 1.2118E-12 N/A N/A N/A 1.2118E-
12

N/A 1.2118E-12 1.2029E-12

f22 1.2118E-12 1.1037E-12 1.4552E-04 1.2118E-12 1.2118E-
12

1.2000E-12 6.4999E-13 1.2118E-12

f23 1.2118E-12 1.2118E-12 1.2118E-12 4.5736E-12 1.2118E-
12

1.2118E-12 1.2118E-12 1.2118E-12

+/ = /- 23/0/0 18/5/0 16/6/1 18/5/0 22/1/0 19/4/0 23/0/0 22/1/0

King, OPLSSA gets the highest rank, followed by HGS, AOA, WEMFO, MPA, OGWO, IGWO, TSA, DMMFO, which further indicates that the performance of OPLSSA is better than its

competitors.
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degradation” problem caused by PIBL and significantly help

the leader to quickly approach the global optimal solution. To

visualize the process of the leader jumps to OPIBL leader, we

consider a 7-dimensional problem and draw the schematic

diagram of the leader jumps to the OPIBL leader according to

L8 (27), as shown in Figure 2.

In order not to increase the computational complexity of the

algorithm, only the leader executes the OPIBL operation. Then,

evaluate both the current leader and the OPIBL leader, and

reserve the high-quality search agent.

3.2 Adaptive conversion parameter
strategy

For nature-inspired swarm intelligent algorithms, strong

exploration capability is beneficial to improve the convergence

speed, while powerful exploitation ability is conductive to refine

the convergence accuracy. Maintaining a proper balance between

exploration and exploitation can effectively boost the overall

performance of the algorithm, which is a research difficulty that

the metaheuristic community has been trying to conquer with

great effort. In the basic SSA, the follower updates its position

according to Eq. 3. This equation is control parameter-free, the

current follower salp only considers its own position and the

position of neighboring individual to calculate the next location.

Although this mechanism makes SSA more consistent with the

advocated minimalism, this rigid position update pattern tends

to deviate the population from the global optimum.

Furthermore, it is unreasonable that the followers move

without utilizing the current global optimal position. To

address this issue, many studies have focused on modifying

the follower position update equation to enhance the dynamic

nature.

Based on the above analysis, this paper proposes an adaptive

position update mechanism for follower salps to replace the

original formula, namely

Xi,j � 1
2
× ωXi,j +Xi−1,j( ) (8)

where ω is an inertia weight factor.

In PSO, the inertia weight coefficient factor changes

dynamically during the search process to help the

algorithm switch between exploitation and exploration

operations. With the progress of the research on

metaheuristic techniques, the inertia weight has been

introduced into many swarm intelligence-based approaches

to improve their performance. For example, GU et al. (2022)

implemented the inertia weight to tune the particle’s search

behavior in chicken swarm algorithm (CSA) (Meng et al.,

et al.). Jena et al. (Jena and Satapathy, 2021) used a Sigmoid

adaptive inertia weight to intensify the performance of the

social group optimization (SGO) (Naik et al., 2018). Inspired

by the above studies, a novel inertia weight coefficient is

proposed in this work with the following mathematical

expression:

ω � ω max − ω min( ) · e
10−λt − 2
e10−λt + 2

+ ω max (9)

FIGURE 6
Radar plot for consolidated ranks of 23 benchmark problems with OPLSSA and the Frontier algorithms.
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where λ is a constant number, ωmax and ωmin are the maximum

and minimum values of the inertia weight coefficient, respectively.

Figure 3 plots the schematic diagram of the nonlinear

decrease of the inertia weight during the iterative process.

From the figure, in the initial stage, the value of ω is larger, and

the particle accordingly moves in larger steps in the search

space, which is beneficial to the global search. After the lapse

of iterations, ω nonlinearly decreases and the particle moves in

shorter steps correspondingly, which is advantageous for fine

exploit the already explored promising area to improve the

convergence accuracy.

3.3 The flowchart of OPLSSA

In summary, Figure 4 shows the flow chart of the developed

OPLSSA algorithm.

4 Simulations and comparisons

In this section, 23 classical benchmark test functions are

solved using the OPLSSA algorithm to synthetically verify its

effectiveness and applicability. The results obtained by the

proposed approach on the test cases are recorded and

compared with some well-established metaheuristic

techniques, including the basic SSA, the forefront swarm

intelligent algorithms, and the popular SSA variants. All

experiments were implemented under MATLAB 2016b

software, operating system used is Microsoft WINDOWS

10 64-bit Home, and simulations supported by Intel (R) Core

(TM) i7-7700 CPU at 3.60 GHz with 8.00 GB RAM.

4.1 Experiments on well-known
benchmark functions

In this subsection, the selected 23 benchmark functions

that include both multimodal and unimodal functions are

reported, as shown in Table 2, where Search range represents

the boundary of the function search space, and fmin is the best

value. Among them, f1-f11 are unimodal functions, and they

are mainly complex spherical or valley value problems. They

have only one global optimal solution in the search range but

are difficult to find. Therefore, it can be used to test the

convergence efficiency and exploration ability of each

algorithm. Different from the unimodal functions, the

multimodal functions (f12-f23) have multiple local extremes

in the search space. Moreover, the scale of this type of problem

will increase exponentially as the dimensionality increases.

Therefore, the multimodal problem can effectively test the

abilities of each algorithm to search globally and to jump out

of local optima (Long et al., 2021).

4.1.1 Compared against salp swarm algorithm
and salp swarm algorithm variants

To test the performance of the advocated OPLSSA algorithm,

23 classical benchmark functions reported in Table 2 were

employed. The dimensions of the involved problems were set

to 100. The obtained results were compared with the standard

SSA and seven representative SSA variants, including the self-

adaptive SSA (ASSA) (Salgotra et al., 2021), adaptive SSA with

random replacement strategy (RDSSA) (Ren et al., 2021), lifetime

tactic enhanced SSA (LSSA) (Braik et al., 2020), the Gaussian

perturbed SSA (GSSA) (Nautiyal et al., 2021), the intensified

OBL-based SSA.

(OBSSA) (Hussien, 2021), inertia weight enhanced SSA

(ASSO) (Ozbay and Alatas, 2021), and WOA improved SSA

(IWOSSA) (Saafan and El-Gendy, 2021). The general parameters

of the involved methods were set as recommended in the

respective original literature. In OPLSSA, k = 100, λ = 0.04,

ωmax = 0.55, ωmin = 0.2. The maximum number of iterations of

TABLE 7 Results obtained by OPLSSA on 10000-dimensional
functions.

Function OPLSSA

Best Worst Mean Std SR%

f1 0 0 0 0 100

f2 0 0 0 0 100

f3 0 0 0 0 100

f4 0 0 0 0 100

f5 0 0 0 0 100

f6 0 0 0 0 100

f7 4.63E-07 2.95E-04 8.56E-05 8.48E-05 70

f8 0 0 0 0 100

f9 0 0 0 0 100

f10 0 0 0 0 100

f11 0 0 0 0 100

f12 0 0 0 0 100

f13 8.88E-16 8.88E-16 8.88E-16 0 100

f14 0 0 0 0 100

f15 0 0 0 0 100

f16 0 0 0 0 100

f17 0 0 0 0 100

f18 3.49E-43 6.13E-43 4.71E-43 7.40E-44 100

f19 0 0 0 0 100

f20 0 0 0 0 100

f21 0 0 0 0 100

f22 0 0 0 0 100

f23 0 0 0 0 100

Me representative test functions were plotted. In experiment 2, the convergence graphs

of the OPLSSA algorithm and eight cutting-edge approaches on some representative

benchmark functions were illustrated.

Frontiers in Bioengineering and Biotechnology frontiersin.org15

Wang et al. 10.3389/fbioe.2022.1018895

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1018895


each algorithm for each benchmark was 500, the population size

was set to 30, and the number of independent runs was set to

30 to eliminate random errors. The mean value and standard

variance of the results obtained from 30 runs were recorded as

metrics to evaluate the performance of the algorithms. In

addition, Friedman test was utilized to evaluate the average

performance of the algorithms. Wilcoxon signed ranks was

used as an auxiliary tool to investigate the differences between

OPLSSA and its competitors from a statistical point of view. The

results of the nine algorithms on the 23 tested problems are

FIGURE 7
Convergence curves of OPLSSA and other SSA-based algorithms on 15 representative benchmarks.

Frontiers in Bioengineering and Biotechnology frontiersin.org16

Wang et al. 10.3389/fbioe.2022.1018895

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1018895


shown in Table 3, and the results of the Wilcoxon signed ranks

test are reported in Table 4.

From Table 3, the developed OPLSSA is superior to SSA,

LSSA, ASSA and IWOSSA on all test functions. Compared to

GSSA, OPLSSA presents similar and better performance on

two and 21 test cases, respectively. OPLSSA plays a tie with

OBSSA on six benchmarks, it beats OBSSA on six functions,

and on another function (i.e. f7), it is inferior to OBSSA.

OPLSSAS defeats ASSO on 18 benchmarks, and on the

remaining five problems, both algorithms find the

theoretical optimal solution. With respect to RDSSA,

OPLSSA wins on 17 test functions, ties with it on five test

FIGURE 8
Convergence curves of OPLSSA and other Frontier algorithms on 15 representative benchmarks.
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functions, and is defeated by RDSSA on one (i.e. f18) test

function. According to the Friedman ranking achieved by the

different approaches for 23 test problems, OPLSSA obtained

the top rank, followed by RDSSA, OBSSA, ASSO, GSSA,

IWOSSA, ASSA, LSSA and SSA. Furthermore, according to the

comparison results of Wilcoxon signed ranks approach, the

p-values are less than 0.05 except for two pairwise comparisons

(i.e. OPLSSA versus OBSSA, OPLSSA versus ASSO), which

demonstrates that OPLSSA has a significant advantage over the

comparison algorithms.

Figure 5 plots the radar diagram showing the ranking of the

nine SSA-based algorithms on the 23 tested functions as

counted in Table 4. From the figure, OPLSSA received

competitive rankings on all cases, which proves that the

overall performance of the OPLSSA algorithm outperforms

its competitors.

4.1.2 Comparison against other swarm
intelligent algorithms

In this subsection, the developed OPLSSA algorithm was

compared with marine predators algorithm (MPA) (Faramarzi

et al., 2020a), hunger game search (HGS) algorithm (Yang et al.,

2021), Improved grey wolf optimization (IGWO) algorithm

(Nadimi-Shahraki et al., 2021), tunicate swarm algorithm

(TSA) (Kaur et al., 2020), adaptive moth flame optimizer

(WEMFO) (Shan et al., 2021), Archimedes optimization

algorithm (AOA) (Hashim et al., 2021), OBL-based grey wolf

optimization (OGWO) algorithm (Yu et al., 2021), diversity and

mutation mechanisms enhanced moth-flame optimization

(DMMFO) algorithm (Ma et al., 2021). In this comparison

experiment, the 23 benchmark problems in Table 2 were

employed, and the dimensions of the problems were set to

100. The parameters of the methods were set identically as in

TABLE 8 Summary of the 30 CEC 2017 benchmark problems.

Class No. Description Search Range Optimal

Unimodal 1 Shifted and Rotated Bent Cigar Function [−100, 100] 100

2 Shifted and Rotated Sum of Different Power Function [−100, 100] 200

3 Shifted and Rotated Zakharov Function [−100, 100] 300

Multimodal 4 Shifted and Rotated Rosenbrock’s Function [−100, 100] 400

5 Shifted and Rotated Rastrigin’s Function [−100, 100] 500

6 Shifted and Rotated Expanded Scaffer’s Function [−100, 100] 600

7 Shifted and Rotated Lunacek Bi-Rastrigin Function [−100, 100] 700

8 Shifted and Rotated Non-Continuous Rastrigin’s Function [−100, 100] 800

9 Shifted and Rotated Levy Function [−100, 100] 900

10 Shifted and Rotated Schwefel’s Function [−100, 100] 1000

Hybrid 11 Hybrid Function 1 (N = 3) [−100, 100] 1100

12 Hybrid Function 2 (N = 3) [−100, 100] 1200

13 Hybrid Function 3 (N = 3) [−100, 100] 1300

14 Hybrid Function 4 (N = 4) [−100, 100] 1400

15 Hybrid Function 5 (N = 4) [−100, 100] 1500

16 Hybrid Function 6 (N = 4) [−100, 100] 1600

17 Hybrid Function 6 (N = 5) [−100, 100] 1700

18 Hybrid Function 6 (N = 5) [−100, 100] 1800

19 Hybrid Function 6 (N = 5) [−100, 100] 1900

20 Hybrid Function 6 (N = 6) [−100, 100] 2000

Composition 21 Composition Function 1 (N = 3) [−100, 100] 2100

22 Composition Function 2 (N = 3) [−100, 100] 2200

23 Composition Function 3 (N = 4) [−100, 100] 2300

24 Composition Function 4 (N = 4) [−100, 100] 2400

25 Composition Function 5 (N = 5) [−100, 100] 2500

26 Composition Function 6 (N = 5) [−100, 100] 2600

27 Composition Function 7 (N = 6) [−100, 100] 2700

28 Composition Function 8 (N = 6) [−100, 100] 2800

29 Composition Function 9 (N = 3) [−100, 100] 2900

30 Composition Function 10 (N = 3) [−100, 100] 3000
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Subsection 4.1.1. Each algorithm was run 30 times independently

on each function to make the obtained results more reliable.

Table 5 shows the average and standard deviation of the optimal

objective values obtained from the 30 executions. At the bottom

of Table 5, the average ranking of the algorithms involved is

presented. Table 6 reports the results gained from the Wilcoxon

signed ranks test.

From Table 5, OPLSSA beats TSA and DMMFO on all

cases. Compared to MPA, OPLSSA finds similar and better

values on five and 18 test functions, respectively. HGS and

OPLSSA reach the theoretical optimal solution on six

benchmarks (i.e. f5, f12, f13, f14, f17, f21); OPLSSA shows

better performance on 16 cases; on the remaining one

function (i.e. f18), the OPLSSA algorithm is inferior to HGS.

According to the pairwise comparison between OPLSSA and

AOA, they are tied on five test functions; OPLSSA wins on

17 test cases; AOA gains advantage on only one function (i.e.

f18). OPLSSA beats IGWO and OGWO on almost all

benchmark functions; for f5, all three methods find the

theoretical optimal solution. With respect to WEMFO,

OPLSSA obtains similar and better results on four and

19 problems, respectively. According to the average ran-

Finally, from the results generated by the Wilcoxon signed

ranks test, the p-values derived from all available comparisons are

less than 0.05, which reveals that all differences between the

performance of OPLSSA and its competitors on the utilized

functions are statistically significant.

Figure 6 provides a graphical depiction in the form of a radar

chart that emphasizes the average ranking of the OPLSSA

approach and the eight involved Frontier swarm intelligent

algorithms on the 23 tested functions. From the figure,

OPLSSA achieved the highest ranking on almost all tested

functions, which represents that this algorithm can be

considered as a promising optimization tool.

TABLE 9 Results of CEC 2017 at 30-dimensional achieved by the developed algorithm and its competitors.

Function DA GOA TSA SOA EGWO PBO SSA OPLSSA

F1 2.04E+08 1.03E+09 1.60E+10 7.37E+09 5.85E+09 1.36E+04 6.34E+02 1.06E+02

F2 NA NA NA NA NA NA NA NA

F3 5.43E+04 3.09E+04 4.92E+04 2.98E+04 5.28E+04 1.08E+04 1.55E+04 3.00E+02

F4 7.76E+02 4.89E+02 3.36E+03 7.15E+02 1.33E+04 5.46E+02 5.15E+02 4.69E+02

F5 7.67E+02 7.17E+02 8.14E+02 6.90E+02 9.43E+02 6.80E+02 6.15E+02 5.66E+02

F6 6.65E+02 6.32E+02 6.63E+02 6.35E+02 7.04E+02 6.63E+02 6.24E+02 6.03E+02

F7 1.01E+03 8.20E+02 1.23E+03 1.08E+03 1.43E+03 1.79E+03 8.37E+02 8.05E+02

F8 1.04E+03 1.04E+03 1.05E+03 9.48E+02 1.20E+03 9.48E+02 9.14E+02 8.47E+02

F9 9.31E+03 4.44E+03 8.69E+03 3.63E+03 1.58E+04 3.92E+03 3.00E+03 9.19E+02

F10 6.54E+03 5.07E+03 6.64E+03 6.44E+03 9.83E+03 4.21E+03 3.83E+03 2.98E+03

F11 4.34E+03 9.21E+03 4.35E+03 1.88E+03 9.16E+03 1.26E+03 1.21E+03 1.14E+03

F12 8.31E+07 4.87E+06 2.10E+09 2.20E+08 1.67E+09 6.52E+06 1.44E+06 3.85E+05

F13 3.73E+05 2.82E+04 1.13E+09 1.48E+08 3.65E+09 1.80E+05 5.05E+04 1.30E+04

F14 1.46E+05 8.32E+03 1.45E+06 1.17E+05 4.16E+05 1.91E+04 3.92E+03 1.92E+03

F15 4.98E+04 1.86E+05 2.52E+07 1.51E+05 8.07E+07 3.45E+04 1.01E+04 8.98E+03

F16 3.39E+03 3.42E+03 2.94E+03 2.65E+03 7.26E+03 2.72E+03 2.46E+03 1.96E+03

F17 2.80E+03 2.13E+03 2.42E+03 2.06E+03 5.42E+03 2.26E+03 1.97E+03 1.80E+03

F18 2.81E+06 8.82E+04 1.34E+06 4.42E+05 1.19E+07 1.52E+05 1.91E+05 2.95E+04

F19 8.46E+06 4.35E+06 7.80E+06 5.04E+06 3.09E+08 4.82E+05 1.27E+05 9.51E+03

F20 3.02E+03 2.91E+03 2.61E+03 2.63E+03 3.55E+03 2.32E+03 2.32E+03 2.11E+03

F21 2.60E+03 2.51E+03 2.59E+03 2.45E+03 2.77E+03 2.59E+03 2.39E+03 2.36E+03

F22 3.13E+03 2.49E+03 7.68E+03 2.66E+03 7.66E+03 6.24E+03 2.30E+03 2.30E+03

F23 3.37E+03 2.90E+03 3.16E+03 2.82E+03 3.82E+03 3.31E+03 2.74E+03 2.69E+03

F24 3.56E+03 3.01E+03 3.31E+03 2.93E+03 4.09E+03 3.42E+03 2.89E+03 2.90E+03

F25 2.98E+03 2.89E+03 3.42E+03 3.23E+03 5.56E+03 2.88E+03 2.89E+03 2.88E+03

F26 8.75E+03 4.21E+03 7.70E+03 5.09E+03 1.22E+04 7.88E+03 5.42E+03 4.11E+03

F27 3.32E+03 3.29E+02 3.43E+03 3.25E+03 6.03E+03 3.20E+03 3.24E+03 3.19E+03

F28 3.53E+03 4.43E+03 4.49E+03 5.29E+03 7.35E+03 3.30E+03 3.22E+03 3.10E+03

F29 4.85E+03 4.22E+03 4.73E+03 4.01E+03 7.75E+03 4.81E+03 3.83E+03 3.48E+03

F30 1.63E+07 1.93E+06 1.89E+07 1.09E+07 2.48E+09 1.28E+06 3.24E+06 3.02E+05
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4.1.3 Scalability test
The performance of well-established metaheuristic

algorithms will not deteriorate drastically as the

dimensionality of the to-be-solved problem increases. The

proposed OPLSSA algorithm aims to improve the overall

performance of the basic SSA, and scalability is a key point

that must be considered. In this experiment, OPLSSA was

applied to address 23 benchmark functions with large scales

(i.e. 10000 dimensions) in Table 2. The parameters of the

algorithms were set to the same as those used in Subsection

4.1.1. To evaluate the performance of the OPLSSA method in

solving challenging optimization problems with high

dimensions, a novel metric called success rate (SR%) was

introduced, which can be defined as

fA − fT

∣∣∣∣ ∣∣∣∣/fT ≤ 10−5, fT � 0
fA − fT

∣∣∣∣ ∣∣∣∣≤ 10−5 ≤ 10−5, fT ≠ 0
{ (10)

where fA is the results achieved by OPLSSA for the test function,

fT stand for the theoretical optimal value of the function.

If the result obtained by the algorithm on the benchmark

function satisfies Eq. 10, it means that this solution is successful

and vice versa. The OPLSSA algorithm is run 30 times

independently on each case and the ratio of the number of

successes to the total number of runs is the SR%. Table 7 reports

the optimal value, worst value, average value, standard deviation,

and SR% for the 30 independent runs.

From Table 7, OPLSSA shows competitive performance in

solving high-dimensional optimization problems. In terms of

solution accuracy, OPLSSA is able to find the theoretical optimal

solution on 20 test functions; for f7 and f13, the solutions obtained

are similar to those achieved on 100-dimensioanl problems; for f18,

the value derived is inferior to that found on 100-dimensional

benchmark. This proves that the dramatic increase in the problem’s

dimensionality does not deteriorate the performance of the

OPLSSA algorithm, i.e., OPLSSA has superior stability. On the

other hand, in terms of SR%, OPLSSA attains a 100% success rate

on 22 high-dimensional optimization problems, representing that

the developed approach has been successful in all 30 independent

tests. The SR% on another function (i.e. f7) is 70%, meaning that

21 out of 30 runs achieved success. Based on the above discussion,

the developed OPLSSA algorithm gets remarkable performance on

large scale optimization problems.

4.1.4 Convergence analysis
A well-established swarm intelligent algorithm moves in

large steps in the search space in the early iterations to locate

the rough position of the global optimal solution. After the lapse

of few iterations, the step size is shortened to precisely search the

already explored region, thus improving the convergence

accuracy. Rapid convergence rate often leads to premature

convergence of the algorithm, making the solution accuracy

insufficient. Improving the solution precision of the method

requires performing more iterations, which will degrade the

convergence speed of the algorithm. The unbalanced

convergence speed and convergence precision is a weak open

point that destroys the performance of the algorithm. One of the

main goals of the improvements to SSA in this work is to enhance

the above-mentioned balance of the basic algorithm. To

investigate the performance of the OPLSSA algorithm in this

regard, two additional sets of experiments were performed. For

experimental purpose, some of the representative benchmarks

with 100-dimensional in Table 2 were applied. The parameter

settings of the employed algorithms were the same as those used

in Subsection 4.1.1. In experiment 1, the convergence curves of

the standard SSA algorithm and eight SSA variants on so-

By observing Figure 7, the OPLSSA algorithm is able to find

more accurate solutions quickly for all functions, while the

comparison algorithms are inferior to OPLSSA in terms of

convergence rate and convergence accuracy. Similar

phenomena can be observed on Figure 8. Overall, the

OPLSSA algorithm outperforms the popular SSA variants and

the cutting-edge algorithms in terms of convergence rate and

convergence accuracy.

4.2 Experiments on CEC 2017 benchmark
functions

In this subsection, the effectiveness of OPLSSA algorithm is

tested on the IEEE CEC 2017 benchmark functions. This

benchmark suite contains 30 test problems. For each function,

the search region in each dimension is defined as [-100, 100]. All

selected functions are initiated in [-100, 100]D, where D is the

problem’s dimension which is taken as 30 for all functions. All the

30 benchmarks can be classified into four species according to the

function character, in which unimodal functions contain F1, F2, and

F3, from F4 to F10 belongs to multimodal functions, hybrid

functions include from F11 to F20, from F21 to F30 belongs to

composition functions. The details of all the 30 benchmark functions

are shown in Table 8. Since the mentioned functions are from

distinct classes and each has its own characteristic properties, the

utilized OPLSSA is challenged from different aspects. The obtained

results are compared with other well-established swarm intelligent

approaches, including DA (Mirjalili, 2016), TSA (Kaur et al., 2020),

EGWO (Long et al., 2018), GOA (Abualigah and Diabat, 2020),

SOA (Wang et al., 2022b), PBO (Polap andWoźniak, 2017), and the

standard SSA (Mirjalili et al., 2017). The specific parameters of the

comparison approaches are set the same as recommended in the

respective original literature, and the number of function evaluations

is set to 104×D, whereD is the dimension of the tested problem. The

results obtained at CEC 2017 test functions for the involved

approaches are reported in Table 9. Note that F2 has been

removed due to the erratic behavior it exhibits.

By observing Table 9, OPLSSA outperformed DA, GOA, TSA,

SOA, EGWO and PBO on all test cases. OPLSSA can beat PBO on
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almost all test functions, while on F22 and F24, the two algorithms

obtain similar performance. With respect to SSA, OPLSSA provides

better results on 27 test functions and similar values on one case.

However, for F24, marginally better results are achieved by SSA.

Overall, OPLSSA shows better or at least competitive performance

than its peers on all CEC 2017 test functions, which proves that

OPLSSA has superior performance. Moreover, according to the

pairwise comparisons between SSA and DA, GOA, TSA, SOA,

EGWO and PBO, SSA beats all competitors on 20 test functions (i.e.

F1, F5, F6, F8, F9, F10, F11, F12, F14, F15, F16, F17, F19, F20, F21,

F22, F23, F24, F28, F29), which proves that the SSA algorithms is a

competitive swarm intelligence-based approach.

5 Conclusion

This paper proposes an extended version of salp swarm

algorithm termed as OPLSSA. Two modifications to SSA have

been introduced which make it competitive with other well-

established swarm intelligent algorithms: First, the algorithm

applied the PIBL mechanism to help the leading salp to jump

out of the local optimal. Second, the algorithm uses the concept

of adaptive-based mechanism to generate diversity among the

followers. Both these modifications helping in boosting the

balance between exploration and exploitation. The

performance of the proposed algorithm has been tested on

23 classical benchmark functions and 30 IEEE CEC

2017 benchmark suite and compared with several

metaheuristic techniques, including SSA-based algorithms

and state-of-the-art swarm intelligent algorithms. The

experimental results show that OPLSSA performs better or

at least comparable to the competitor methods. Therefore, the

developed OPLSSA algorithm can be regarded as a promising

method for global optimization problems.

In the future works, we have planned to further extend the

research on this paper on the following points: for one direction,

the two proposed mechanisms will be combined with other

swarm intelligence based algorithms with the hope of

improving their performance; for another, the proposed

OPLSSA algorithm will be employed to resolve real-world

problems such as feature selection, PV parameter extraction,

mobile robot path planning, multi-threshold image

segmentation, and video coding optimization.
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