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Therapeutic bacteria have shown great potential on anti-tumor therapy.

Compared with traditional therapeutic strategy, living bacteria present

unique advantages. Bacteria show high targeting and great colonization

ability in tumor microenvironment with hypoxic and nutritious conditions.

Bacterial-medicated antitumor therapy has been successfully applied on

mouse models, but the low therapeutic effect and biosafe limit its

application on clinical treatment. With the development of material science,

coating living bacteria with suitable materials has receivedwidespread attention

to achieve synergetic therapy on tumor. In this review, we summarize various

materials for coating living bacteria in cancer therapy and envision the

opportunities and challenges of bacteria-medicated antitumor therapy.
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Introduction

With the rapid development of modern medical technology and industry, the

average human lifetime is gradually extended (Vaupel et al., 2021). However, the

treatment of tumor still is a global problem, despite that some mild tumor could be

surgically excised. The improvement of symptoms, survival quality and period are

currently the main purpose of tumor therapy (Wyld et al., 2015). Radiotherapy is the

common therapy strategy for antitumor, while the insufficient tissue penetration and

non-targeting limit its widespread application (Jain, 1998; Minchinton and Tannock,

2006; St-Jean et al., 2008; Grierson et al., 2017). Chemotherapy is an effective way to

suppress the growth and spread of tumor with chemical drugs throughout the whole

body, but its non-specificity on tumor cells could cause damage to normal tissues

(Pérez-Herrero and Fernández-Medarde, 2015). Surgery could not completely clear

metastatic cancer cells with the recurrent risk (Wyld et al., 2015). Chimeric antigen

receptor T (CAR-T) cell therapy is regarded as an effective solution for relapsed or

refractory tumors, due to high tumor targeting (Curran et al., 2012; Sadelain et al.,

2013; Mirzaei et al., 2016). Potential side effects restrict the clinical application of

CAR-T cell therapy, such as B cell abnormalities (Marofi et al., 2021). New therapy

strategy with high tumor targeting, low side effect and good effect is needed for

antitumor treatment.
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Bacteria therapy could be a promising strategy on tumor

treatment (Dang et al., 2001; Silva-Valenzuela et al., 2016). The

hypoxic and nutrient-rich tumor microenvironment is uniquely

attractive to bacteria (Nguyen and Min, 2017). In the early 19th

centuries, Dr. Busch firstly noticed that patients with malignant

tumors improved after being infected with Streptococcus

pyogenes (S. pyogenes). In the mid-19th century, Coley (1910)

found that people with neck cancer recovered from infection of

erysipelas. Then Coley tried to treat tumors with inactivated

bacteria, such as S. pyogenes and Serrati amarcescens and

established the foundation of bacterial therapies on cancer

(Richardson et al., 1999). In recent years, people find various

bacteria with good tumor-targeting property, including

Salmonella (Pawelek et al., 1997), Escherichia, Clostridium

(Malmgren and Flanigan, 1955; Minton, 2003),

Bifidobacterium (Kohwi et al., 1978), Caulobacter, Listeria

(Pan et al., 1999; Kim et al., 2009), Proteus (Arakawa et al.,

1968), and Streptococcus (Maletzki et al., 2008). Caulobacter

crescentus (C. crescentus) as a Gram-negative non-pathogenic

bacterium presented tumor suppressive effects in unmodified

form (Bhatnagar et al., 2006). After non-tumorigenic activity in

mouse models of transplantable tumors, the prolonged survival

and reduced tumor mass of C. crescentus group presented better

antitumorigenic activity in mouse models of lung tumor, breast

tumor and leukemia tumors than saline controls. These results

suggest that C. crescentus may be a safe bacterial

immunomodulator for tumor treatment (Bhatnagar et al., 2006).

The ability to induce and amplify antigen-specific immune

responses has been considered a potentially valuable tool on the

treatment of cancer. Most cancer vaccines induce cytotoxic T

lymphocyte (CTL) responses to tumor-associated antigens (TAA).

An attenuated vaccine against Listeria monocytogenes (L.

monocytogenes) eradicated metastases and the entire primary

tumor of breast cancer in mice by TAA-specific CTL-mediated

cytolysis to kill tumor cells (Kim et al., 2009). The vaccine mode

of action of Listeria provides a new direction in bacterial research in

targeting metastatic breast cancer. Further study found that L.

monocytogenes could serve as an effective vehicle for tumor-

specific antigen targeting (Kim et al., 2009). The engineered L.

monocytogenes expressing tumor-specific antigen induced primary

tumor regression and identified pulmonary metastases by parenteral

immunization in murine model of melanoma B16F10 (Pan et al.,

1999). The non-pathogenic parthenogenic anaerobic bacterium

Salmonella can specifically target tumor sites to regulate immune

response (Pawelek et al., 1997; Lee et al., 2005; Zhao et al., 2005;

Forbes, 2010; Chang and Lee, 2014). Themodulation of the antitumor

effect of Salmonella encapsulated with polyallylamine hydrochloride

not only greatly enhanced antitumor activity but also maintained

tumor targeting (Lee et al., 2017).

In recent years, biomaterials have been used to decorate

bacteria for achieving gastrointestinal protection and

synergetic treatment on tumor based on its

biodegradability, biocompatibility and immunomodulatory

activity (Lee et al., 2013; Zhu et al., 2013). Feng et al. (2020)

found that bacteria can be temporarily inactivated by

confining them individually in an intact polymer coating.

Bacteria are intelligently restored to vital activity after

shedding, thus achieving targeted release of bacterial

drugs. This approach greatly improves the bioavailability

as well as the effectiveness and stability of bacteria during in

vivo delivery, providing an important means to prepare

bacterial-mediated smart biologics for tumor therapy. This

paper reviews biomaterial styles and synergetic strategy for

coating bacteria on tumor therapy in recent years. We hope

this review could enlighten researcher on bacteria-mediated

tumor therapy and guide more biomaterials used on bacterial

coating.

Materials for coating bacteria

Bacteria therapy offers a new perspective on anti-tumor

treatment, but the instability and biosafety of living bacteria

limit its clinical application (Sarotra and Medhi, 2016).

Enteric bacteria can be directly transported to the host via

intravenous injection, oral administration, or anal perfusion

(Wu et al., 2013; West et al., 2020). Gavage and oral

administration are considered as the most convenient and

widely applicated method for bacteria delivery compared

with anal perfusion considering the low patient compliance

and local delivery (Zaloga, 2006).

The low pH environment, proteolytic enzyme, and high

concentration of bile salts in gastrointestinal tract (GI tract)

could significantly reduce the activity and therapeutic effects

of oral bacteria (Evans et al., 1988; Cook et al., 2012; Sohail

et al., 2018). The limitation restricts the use of oral bacteria.

An effective approach of bacteria therapy is coating bacteria

with suitable materials, hence achieving protection and

controlled release of living bacteria (Prakash and Jones,

2005). Obviously, these materials should be acid-proof,

safe, mild, and automatically degraded under certain

conditions. The combination of biomaterials and

encapsulation technologies could raise the efficiency of oral

delivery and decrease the side effects of bacteria.

Bacteria-medicated cancer therapy has made remarkable

progress in recent years. The combination of bacteria with

suitable materials could increase bacterial tumor-

colonization and offset the shortage of drug supply into

intra-tumoral regions, hence reducing side effects and

improving antitumor efficacy (Felfoul et al., 2016; Lou

et al., 2021). Drug-loaded bacteria could preferentially

translocate to tumor stroma after intravenous

administration and selectively release the drugs in

response to the tumor microenvironment (Li et al., 2021).

At present, a variety of biological materials have been used to

encapsulate bacteria for tumor treatment, including natural
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materials, synthetic materials, and cell-based materials

(Figure 1).

Natural materials

Up to now, plenty of studies have demonstrated that a variety

of natural polymers are suitable for coating bacteria, such as

polysaccharides, Eudragit, proteins, poly (amino acids), and

lipids (Wee and Gombotz, 1998; Li et al., 2016; Yeung et al.,

2016; Dafe et al., 2017; Li et al., 2020).

Alginate comprised with a linear polysaccharide consisting of

1,4’- linked β-D-mannuronic acid and α-L-gluconic acid residues
originating frommicrobes (e.g., Pseudomonas) or brown algae, is

particularly suitable to encapsulate bacteria due to its nontoxicity

and mild gelling conditions (Zhou et al., 1998; Rinaudo, 2008).

Alginate can form an “egg box structure” between four G resides

by contacting with divalent metal ions (e.g., Ca2+, Cd2+, Zn2+)

(Stokke et al., 1997;Wahab et al., 1997; Cook et al., 2012), because

of the carboxylic acid groups on both monomer molecules

(Draget et al., 1994). The property of alginate has been

exploited to produce microcapsules by an extrusion process.

The alginate solution is dropped into cationic propyl gallate

(commonly calcium chloride) gelling into a microcapsule. The

size of the microcapsules formed by the external gel depends on

the droplet size formed in an extrusion process, which is typically

between tens of microns and millimetre size (Sun and Griffiths,

2000; Chandramouli et al., 2004; Ding and Shah, 2009).

Therefore, alginate is also a common tool of intestinal

delivery vehicles. Numerous studies have shown that coating

lactobacillus with alginate gel can help them resist gastric acid

and ensure that enough living bacteria into the small intestine

(Adhikari et al., 2000; Sultana et al., 2000; Pan et al., 2013).

Interestingly, Lee and Heo, 2000) found that the survival rate of

living bacteria elevated with increasing the alginate

concentration. In addition, alginate could enhance bacterial

resistance to antibiotics by fabricating biomimetic biofilm to

entrap probiotics crossing-link with calcium ions by electrospray

(Li et al., 2018). The application of alginate is restricted due to its

instability, uncontrollable swelling, and fragility (Kim et al.,

2014). Diffusion-gelled alginate degrades with exposure to

biological buffers for a long time both in vivo and in vitro

(Peirone et al., 1998; De Vos et al., 1999). The main reason

could be the gel dissolution caused by the exchange of calcium

and monovalent sodium ions (LeRoux et al., 1999; Van

Raamsdonk and Chang, 2001). Therefore, many new strategies

are attempted to strengthen the stability of alginate. For example,

the co-coating of alginate and chitosan on the surface of bacteria

remarkably elevated the stability and survival rate of bacteria

(Wee and Gombotz, 1998; Călinoiu et al., 2019). Lin et al. (2008)

have found that alginate-chitosan-alginate (ACA) microcapsules

could entrap living bacteria to achieve ascendant chemical

stability of bacteria in stimulated-gastric fluid in vitro. In-vivo

studies proved that ACAmicrocapsules were more resistant to GI

enzyme degradation than alginate-poly-lysine-alginate

microcapsules.

FIGURE 1
Typical materials for the delivery of bacteria.
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Chitosan as a natural cationic polysaccharide is also

considered as a coating material for bacteria due to its

biodegradability, low toxicity, and biocompatibility (Lai and

Lin, 2009; Netsomboon and Bernkop-Schnurch, 2016). Cook

et al. (2011) found that Bifidobacterium breve coated with

chitosan and alginate showed more tolerant to the GI tract

than that by single alginate coating, because that chitosan

could stable alginate microcapsules and maintain the stability

of probiotics in the stomach. Cationic chitosan and anionic

alginate could repeatedly encapsulate bacteria through

electrostatic interaction (Anselmo et al., 2016). The layer-by-

layer coating technique greatly improved the viability and

stability of oral bacteria in the GI tract (Lin et al., 2008;

Anselmo et al., 2016). In addition to chitosan and alginate,

other materials also are used to encapsulate living bacteria

applicated in the biomedical field, such as poly-L-lysine

(Krasaekoopt et al., 2004), protamine (Mei et al., 2014), starch

(Saberi-Rise and Moradi-Pour, 2020) or gelatin (Tu et al., 2015;

Pour et al., 2019).

Poly-L-lysine (PLL), natural cationic polymers, could

complex with alginate to form microcapsules via electrostatic

attraction. Chen et al. (2005) designed alginate-poly-L-lysine-

alginate (APA) microcapsules for oral administration of

Lactobacillus plantarum. The APA microcapsules could

maintain morphological stability under a simulated stomach

condition, but failed to retain structural integrity after long-

term exposure in a simulated gastro-intestinal medium. To

enhance the stability of coating bacteria in the GI tract,

Ouyang et al. (2004) prepared a novel multilayer APPPA

(alginate-PLL-pectin-PLL-alginate) system to coat intestinal

bacteria and showed better stability than APA microcapsules

in simulated gastrointestinal fluid.

Phospholipids, the main components of cell membranes, are

often used as delivery carriers for drugs or small molecules

because of their biocompatibility, easy modification, low

immune response and biodegradability (Matthay et al., 1984).

Chowdhuri et al. (2016) used liposomes encapsulating

Escherichia coli (E. coli) by the inverse-emulsion way and

assessed the effect of liposomes on bacteria activity and

viability. The inverse-emulsion method has been reported to

coat efficiently biological macromolecules, such as proteins and

living cells (Zhu H. et al., 2018). Cao et al. (2019b) utilized lipids

to generate a myriad of super gut microbes by bio-interfacial

supramolecular self-assembly, which not only improved the

bioavailability of oral bacteria but also maintained the

bioactivity (Figure 2).

Proteins are another important group of polymers for the

encapsulation of bacteria due to their amphiphilic nature (Kim

et al., 2016). The most common proteins used for encapsulation of

probiotics include gelatin (Paula et al., 2019), whey protein (Yoda

et al., 2015), and so on. Silk fibroin from a natural protein of silk-

worm cocoon has great biocompatibility, biodegradability, non-

immunogenicity, and mechanical robustness (Keten et al., 2010;

Rockwood et al., 2011; Zhu Y. et al., 2018; Shi et al., 2019). Silk

fibroin nanoparticles could specifically target inflammation sites and

damaged intestinal tract, hence assisting with delivering drugs to

inflamed tissues (Lamprecht et al., 2001; Gobin et al., 2006; Fathi

et al., 2019). Silk fibroin could self-assemble on the surface of

bacteria by transforming beta-sheet conformation from a random

coil to form the core-shell structure for bacteria delivery (Figure 3)

(Hou et al., 2021).

Synthetic materials

With the development of encapsulation technology and

materials science, synthetic materials also are used for coating

living bacteria based on their tumor targeting, tumor tissue

FIGURE 2
Schematic diagram of lipid membrane-coated bacteria via bio-interfacial self-assembly.
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penetration, and anti-tumor effects. Chen et al. (2019)

prepared indocyanine green-loaded nanoparticles and

attached them to the surface of a genetically modified

Salmonella Typhimurium YB1 through amide bonds to

create a biotic/abiotic cross-linked system for large solid

tumor precision therapy (Figure 4). This system showed

stable and efficient photothermal killing ability after

intravenous injection and completely eliminated large solid

tumors. Taherkhani et al. (2014) proposed that combining

carboxyl-modified drug-carrying nanoliposomes with amino

groups on the surface of magnetotactic bacteria MC-1 could

deeply penetrate hypoxic tumor sites by the external magnetic

field. Doxorubicin (DOX) conjugated to E. coli Nissle 1917

(EcN) by acid-labile linkers of cis-Aconitum anhydride can

FIGURE 3
Schematic diagram of decorating bacteria with medicative silk fibroin by self-assembly.

FIGURE 4
Encapsulation of indocyanine green-loaded nanoparticles on the surface of bacteria for tumor therapy.
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release under an acidic environment and achieve directly

anticancer drug accumulation (Xie et al., 2017).

Zhang et al. (2018) reported a heat-sensitive drug oral-

delivery system in which thermally-sensitive programmable

bacteria expressing therapeutic protein TNF-α were decorated

with bio-mineralized gold nanoparticles. The engineered bacteria

could reach the tumor regions through the GI tract after oral

administration. Irradiating tumor sites with near-infrared light,

gold nanoparticles could induce the expression of TNF-α from

the engineered bacteria, hence inhibiting the growth of tumor

cells.

Spore, the dormant life forms of bacteria, could enclose drugs

and improve the bioavailability due to the resistance to the acidic

enzyme-rich digestive tract. Spore loading with a chemotherapy

drug DOX was modified with deoxycholic acid to create anti-

tumor nanoparticles. The nanoparticles could effectually protect

DOX in the GI tract and enhance the accumulation of DOX in

tumor regions (Song et al., 2019).

Cell-based materials

Except for natural materials and synthetic materials, cell-

based materials have been applied in the field of nano and micro

motors considering their attractive properties such as

biocompatibility and low immunogenicity. Red cell

membrane-coated nanoparticles could prolong the circulation

time of particles in vivo (Hu et al., 2011), and (Kulkarni et al.,

2011) platelet membrane-coated nanoparticles could target

specific tumor tissues and enhance the ability of injured sites

colonization (Wang et al., 2019). The cell membrane is usually

stripped from cells as the materials to decorate bacteria. For red

blood cells, cells were first separated from the whole blood and

the intracellular components were removed by hypotonic

treatment. The hollowed-out red blood cells are then washed

and extruded from the porous membrane to form small vesicles

derived from the erythrocyte membrane (Luk and Zhang, 2015).

Cao et al. (2019a) extruded erythrocyte membrane with EcN to

obtain cell membrane-coated bacteria (CMCB). The CMCB

achieved lower immunogenicity, inherent bioactivities and

blood reservation up to 48 h after injection (Figure 5). Alapan

et al. (2018) combined E. coli MG1655 with red blood cells to

wrap doxorubicin and superparamagnetic iron oxide

nanoparticles via biotin-avidin affinity, hence facilitating the

delivery of drugs.

Except for drug delivery, cell membrane coating could also be

applied to detoxification of pathogenic virulence factors (Hu

et al., 2013a) and anti-virulence vaccination (Hu et al., 2013b) to

treat bacterial infections led by Staphylococcus aureus,

Enterobacteriaceae, and others. Cell membrane coating shows

great potential for targeted delivery of therapeutic agents and

bacteria to reduce undesirable off-target effects, since that a

variety of targeting ligands and cell membranes can achieve

cell-specific binding and uptake. The encapsulation of living

bacteria by materials maximizes the survival rate and

bioavailability of oral administration in the GI tract, and

provides low immunogenicity of bacteria in the blood.

However, bacteria-mediated bio-therapy is mainly based on

animal models and the potential challenges should be solved

before clinical application.

In brief, it is difficult for natural materials to be modified

simultaneously while maintaining great bioavailability.

Reversely, synthetic materials are very versatile. Synthetic

materials can be designed with different functions according

to the requirement of drug administration. However, most

FIGURE 5
Schematic illustration of extruding bacteria with cell
membranes.

FIGURE 6
Bacteria mediate antitumor therapy.
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synthetic materials could be low bioavailability to the delivering

bacteria or the delivered animals, which limits their application

in clinic (Pan et al., 2021). Cell-based materials present high

safety and long systemic circulation in vivo, while the specifical

source of each cell membrane could impact on the commonality

of cell-based materials. Therefore, natural materials or cell-based

materials modified with synthetic materials could endow

synergetic therapy with high bioavailability and low

immunogenicity, which will accelerate the application of

bacteria-mediated therapy in clinic.

Bacteria-mediated antitumor therapy

Bacterial therapy in oncology could date back at least

150 years, because of the unique ability and easily

manipulated genes of bacteria (Kulp and Kuehn, 2010). Some

bacteria have well tumor colonization as facultative or strict

anaerobes due to the hypoxic microenvironment on tumor, such

as E. coli and Salmonella typhimurium. Tumor targeting bacteria

have been applied on various tumors for diagnosis, imaging and

treatment with or without functional decoration (Figure 6).

Bacteria therapy on breast cancer

Breast cancer is the most common cancer among women

worldwide with low survival rate (Alberg and Singh, 2001;

Althuis et al., 2005). Current treatment options for metastatic

cancer include surgery followed by chemotherapy or radiation

therapy and/or adjuvant therapy (Scart et al., 2002). Tumor

targeting bacteria could assist in the delivery of chemotherapy

or radiation drugs to improve antitumor therapy. Zhang et al.

(2018) constructed nanoscale microcells by genetically

engineered ECN as a carrier for the targeted delivery of

chemotherapeutic drugs to tumor hypoxic zone. The drug-

carrying microcells showed significant inhibition on the

growth of breast cancer without any significant toxicity.

Raman et al. (2021) developed a Salmonella vector with

controlled drug synthesis and cellular invasion and achieved

effectively reduced tumor growth and metastasis. Salmonella-

based protein delivery shows a safe and effective treatment for

tumors to provide new therapy for untreatable cancers.

Bacteria therapy on melanoma

The facultative anaerobe Salmonella strain

VNP20009 prefers to colonize hypoxic areas of tumor core

(Chen et al., 2017) and necrotic tumor tissue (Chang and Lee,

2014). The attenuated strain VNP20009 can carry exogenous

gene expression plasmids to target tumors and express exogenous

proteins specifically in tumor tissues. Study showed that

VNP20009 combined with photothermal therapy can achieve

higher specificity and anti-tumor effects. The photothermal agent

converts the incident light into heat in the irradiated target tissue

to kill the surrounding tumor cells (Liu et al., 2013; Fan et al.,

2018; Jung et al., 2018; Vankayala and Hwang, 2018). Chen et al.

(2018) encapsulated polydopamine on the outer layer of

VNP20009 to induce apoptosis and necrosis of melanoma

cells in mouse model, thereby inhibiting tumor growth

(Figure 7). The antitumor of different Salmonella strains was

investigated (Avogadri et al., 2008; Crull et al., 2011; Kocijancic

et al., 2017). A nutrient-deficient Salmonella enterica with aroA

mutant was identified to possess immunostimulatory potential

and hence achieved the inhibition of melanoma cells growth and

the improved survival rate of mice (Johnson et al., 2021).

Based on the metabolic characteristics of bacteria, Shi et al.

(2022) showed that the metabolism of oncolytic bacteria with

synthetic photosensitizer-label could specifically clear anaerobic

regions of tumors in concert with photodynamic therapy. The

new functionalized lysing bacterium combined with the bio-

photodynamic-immunotherapy promised minimally invasive

removal of malignant melanoma, hence providing a new tool

for post-operative recurrence prevention. These studies have

shown great potential of bacterial therapy on the treatment of

melanoma to provide a more effective and safe treatment

strategy.

Bacteria therapy on colorectal tumor

Colorectal cancer (CRC) is the third most common cancer

and the second leading cause of cancer deaths in the

United States (Goldberg et al., 2007; Jemal et al., 2008).

Except for traditional radiotherapy and chemotherapy,

bacterial therapy was used on the CRC treatment long ago

and is booming with the development of biomedical

technology and nano materials science. Back in the late 1800s,

Coley firstly treated sarcomas with a mixture of Serratia

marcescens and Streptococcus pyogenes to reduce tumors and

prolong survival of CRC patients (Ebrahimzadeh et al., 2021).

Chiang and Huang (2021) developed a bacterial treatment for

colorectal cancer using ECN to deliver therapeutic proteins and

inhibits tumor growth. Kefayat et al. (2018) used alive attenuated

Salmonella Typhi Ty21a as a vehicle for smart delivery of gold

nanoparticles to the hypoxic regions of tumor and achieved high

accumulation of folic acid functionalized gold nanoparticles.

Unique coating strategy of living bacteria could be need for

special tumors on anti-tumor therapy. Intravenous injection

could be the mainly delivery strategy of living bacteria on

therapy of breast cancer. Coating materials should endow

bacteria low immunogenicity to escape from immune attack

rapidly into tumor sites for killing tumor cells. In-situ

injection or subcutaneous injection adjacent to tumor is

commonly used on bacteria-mediated anti-tumor on the solid
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melanoma. Synergistic antitumor materials with chemotherapy

drug or photothermal therapy adjuvant could be suitable to coat

living bacteria for efficient tumor cytotoxicity. Oral

administration is an excellent strategy to deliver bacteria

directly reach colorectal tumor through the GI tract.

Therefore, the gastrointestinal protection, intestinal adhesion

and inflammation targeting are key considerations for

choosing coating materials of living bacteria on anti-tumor

therapy.

Conclusion and future perspectives

Bacterial therapy is a promising strategy for anti-tumor

therapy due to its inherent tumor-targeting properties. Based

on the natural tendency of tumor-targeted bacteria, various

materials can be grafted onto the surface of bacteria by

physical, chemical or biological methods to achieve a

highly efficient and stable anti-tumor system by enhancing

gastrointestinal stability, tumor tissue targeting, and tumor

inhibition response. In this review, we have briefly

summarized three kinds of materials used to coat bacteria

in cancer therapy. Natural polymers could be easily acquired

without a complex synthesis process. Synthetic materials

could link with functionalized decoration on the surface of

bacteria, hence achieving synergetic therapy on cancer. Cell-

based materials show well biocompatibility and low

immunogenicity to implement targeted delivery of bacteria

on in vivo tumor. Tumor targeting bacteria has been applied

on various tumors for diagnosis, imaging and treatment. The

effective combination of bacterial therapy by functionalized

encapsulation with other approaches is the current research

hotspot, particularly immunotherapy and photothermal

therapy. The intelligent application of bacterial tumor

targeting could facilitate the development of sustainable

bacteria-mediated therapies for routine clinical use.

Despite the attractive and promising therapeutic prospects,

there are still many limitations and challenges restricting the

development and application of bacteria-based delivery system.

Safety is a major concern due to the immunogenicity of living

bacteria. Higher microbe concentrations potentially could induce

systemic toxicity (Din et al., 2016). The trial of Bacillus Calmette-

Guérin or modified Salmonella typhimurium as medication in

anti-tumor therapy is firstly carried out to validate their safety

not therapeutic efficacy (Liang et al., 2019; Mukherjee et al.,

2021). Therefore, the appropriate number of bacteria is essential

to carry enough drugs ensuring both therapeutic effects and

safety.

FIGURE 7
Bacteria combined with polydopamine-mediated photothermal therapy on melanoma.
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The manufacturing process of bacteria-based delivery system

is more complex than that of small molecule anticancer drugs,

which are different from traditional pharmaceutical processes.

Therefore, a new methodology is needed for large-scale

production, sterilization technology, storage and

transportation of bacteria-based delivery products. Developing

more effective and rational designs, bacteria-mediated therapies

could be one of the most powerful tools against cancer in the

future.
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