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Chronic osteomyelitis is one of the most challenging diseases in orthopedic

treatment. It is usually treated with intravenous antibiotics and debridement in

clinical practice, which also brings systemic drug side effects and bone defects.

The local drug delivery system of antibiotics has the characteristics of targeted

slow release to the lesion site, replacing systemic antibiotics and reducing the

toxic and side effects of drugs. It can also increase the local drug concentration,

achieve sound bacteriostatic effects, and promote bone healing and formation.

Currently, PMMA beads are used in treating chronic osteomyelitis at home and

abroad, but the chain beads need to be removed after a second operation,

inconveniences patients. Biodegradable materials have been extensively

studied as optimal options for antibiotic encapsulation and delivery, bringing

new hope for treating chronic osteomyelitis. This article reviews the research

progress of local drug delivery systems based on biodegradable polymers,

including natural and synthetic ones, in treating chronic osteomyelitis.
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1 Introduction

Chronic osteomyelitis is a severe infectious disease in bone tissue that easily occurs in

vertebrae, feet of diabetes patients, and penetrating bone injury caused by trauma or surgery. It

is usually caused by aerobic or anaerobic bacteria, mycobacterium, and fungi. After entering

the human body,most bacteria adhere to the surface of necrotic soft tissue and bone tissue and

form a biofilm that protects bacteria, significantly enhancing bacterial resistance andmaking it

difficult for bacteria to be removed entirely. Therefore, chronic osteomyelitis is difficult to cure

and becomes a major challenge for orthopedic surgery (Lew and Waldvogel, 2004). The

incidence of chronic osteomyelitis has increased significantly with improved diagnosis and an

aging population (Pollard et al., 2006; Trampuz and Zimmerli, 2006). The cost of treating

implant-related chronic osteomyelitis in US hospitals is estimated to reach 1.62 billion US

dollars by 2020 (Kurtz et al., 2012), bringing a heavy economic burden to patients and society.

In addition, infection in ulcers of the chronic diabetic foot may lead to diabetic foot

osteomyelitis, increasing mortality and amputation risk (Demetriou et al., 2013;
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Panagopoulos et al., 2015), which has been challenging for

physicians and patients due to the limitation of recurrent and

persistent infections.

The primary treatment of chronic osteomyelitis is complete

debridement followed by long-term antimicrobial therapy (Walter

et al., 2012; Zimmerli and Sendi, 2017). Debridement is a functional

and practical approach to eradicating the infection in complicated

chronic osteomyelitis (Inzana et al., 2016); it can reduce most

bacteria in the infected area and optimize the soft tissues and

vascular function in the surroundings. It is well known that

systemic and local delivery of antibiotics could eradicate

remaining bacteria. However, voids created during the deep

debridement in bone tissue require bone grafts to fill, possibly

causing further infection (Zhou et al., 2018a). In addition, long-

term systemic administration of antibiotics is expensive and often

causes systemic adverse effects such as nephrotoxicity and

gastrointestinal discomfort (Huang et al., 2019). Oral or

intravenous antibiotic therapy under ischemia is difficult to

achieve adequate local antibiotic concentrations due to vascular

damage to the infected bone; limited biofilm penetration makes

managing chronic osteomyelitis more complex (Cobb et al., 2020).

Therefore, antibiotic therapy focuses on utilizing topical delivery

systems to achieve high concentrations of antibiotics at the infection

site while avoiding side effects from systemic administration (Zhang

et al., 2010), which plays an essential role in symptom relief and

treating chronic osteomyelitis (Ahluwalia et al., 2021).

The application of bone cement loaded with antibiotics has

been demonstrated as an efficient and commonly used strategy

for treating infectious osteomyelitis due to the following

advantages: 1) effective infection suppression in the early

stage, 2) noticeable reduction in the incidence of recurrent

infection, 3) decreasing the occurrence of pathological fracture

caused by internal reinforcement, 4) suitable for bone

regeneration (Dzyuba et al., 2016; Mauffrey et al., 2016; Wang

et al., 2021). The most widely used bone cement material is

poly(methyl methacrylate) (PMMA) beads with mixed

antibiotics before surgery (Gogia et al., 2009), it offers high

concentrations of antibiotics at the lesion site without causing

hypersensitivity reactions (Lalidou et al., 2014) and is the gold

standard of local delivery therapy for osteomyelitis (Mohanty

et al., 2003). However, PMMA is non-biodegradable and requires

removal via a second surgery (Mills et al., 2018); the stability of

mixed antibiotics would be affected by the heat released during

the preparation of PMMA beads (Nandi et al., 2009). Therefore,

significant efforts have been devoted to developing biodegradable

materials to prepare the local antibiotic delivery system for

treating osteomyelitis (Nandi et al., 2009; Wassif et al., 2021).

2 Biodegradable polymers

As an essential branch of biodegradable materials,

biodegradable polymers, including natural and synthetic

polymers (Englert et al., 2018; Samadian et al., 2020; Guo

et al., 2021; Jung et al., 2022), are of great importance in drug

delivery and tissue engineering due to their excellent

biocompatibility or low toxicity and biodegradation. Natural

biodegradable polymers (collagen, chitosan, and silk protein),

and synthetic polymers, such as poly-lactic acid (PLA),

poly(lactic-co-glycolic) acid (PLGA), poly(ε-caprolactone)
(PCL), and poly(trimethylene carbonate) (PTMC), offer great

potential in designing delivery systems for local delivery of

antimicrobial agents to the infected sites.

2.1 Natural biodegradable polymers

Natural polymers from nature are often used in biomedical

applications because of their biodegradability, high

biocompatibility, and low non-toxicity (Bhatia, 2016; Kaur

et al., 2018; George et al., 2019). Among them, collagen,

chitosan, and silk protein appear as sensible biomaterials for

treating osteomyelitis (Dorati et al., 2017; Zhang et al., 2021;

Zhang et al., 2022) due to their ability to promote cell adhesion

and growth (O’brien, 2011).

2.1.1 Collagen
Collagen, a natural protein in the extracellular matrix of

bone, has become an ideal biomaterial for scaffolding material

due to its high biocompatibility (Meyer, 2019). The antibiotics-

loaded collagen has been extensively investigated in treating

osteomyelitis, including acute and chronic ones. No removal

of the resulting systems was required compared to PMMA (Atan

et al., 2018) due to the excellent biodegradation behaviors.

Promising progress has been made in using collagen as an

antibiotic delivery matrix to treat osteomyelitis. The

commercially available antibiotic-loaded collagen sponge

products have been developed (Table 1). The collagen matrix

is processed into a sponge-like shape to increase the rate of

collagen degradation and the level of antibiotic release, resulting

in a better therapeutic effect. Some researchers have investigated

the efficacy, evidence quality, and the in vivo pharmacokinetics of

commercially available antibiotic-loaded collagen sponges in the

clinical management of chronic osteomyelitis (Van Vugt et al.,

2018). The results showed inadequate evidence quality and level

of the included studies and high bias risk in these studies, making

it challenging to guide any clinical decision. Hence, more

convincing evidence is required for applying antibiotic-loaded

collagen sponges in treating chronic osteomyelitis.

In addition, more mature delivery systems include

gentamicin-containing collagen implants (GCCI), which have

also progressed in preventing bone infections, and clinical

research results have been reported one after another.

Zawadzki et al. (2017) evaluated the efficacy of the GCCI in

treating 103 patients with craniofacial and osteomyelitis,

54 patients received GCCI intraoperatively, and 49 were
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treated according to standard procedures as a control group. The

study found that the course of postoperative antibiotic treatment

and hospitalization was shorter, and the incidence of local

complications was lower in GCCI patients, indicating a

promotion for applying GCCI in treating osteomyelitis. In

addition, Collatamp G, as one kind of GCCI, is a collagen-

based sponge consisting of 280 mg collagen and 200 mg

gentamicin, showing high treatment efficiency in post-

traumatic bone infections (Deshmukh et al., 2016). Lupescu

et al. (2016) described the clinical results after using

Collatamp G, and the results are shown in Figure 1. The

positive outcome for bone healing and infection control

suggests that Collatamp G is a biomaterial that can address

the abovementioned issues in treating bone infections.

TABLE 1 Commercially available antibiotic-loaded collagen sponges.

Brand name Antibiotics Concentration (mg per
1 × 1 × 0.5 cm)

Collagen; origin

Septocoll Gentamicin-sulfate/gentamicin-crobefate 1.2 mg gentamicin, 1.5 mg sulfate, 4.4 mg crobefate Type I; equine

Sulmycin Gentamicin-sulfate 1.43 mg gentamicin, 2.0 mg sulfate Type I; equine or bovine

FIGURE 1
Open fracture of the proximal tibial metaphysis (A), massive soft tissue injuries, periosteal stripping (B), external fixator with knee spanning, bone
defect visible (C), Collatamp G filling the bone defect (D), remaining skin defect, secondary epitelisation (E). Reproduced with permission from
Lupescu et al. (2016). Copyright Trans Tech Publications Ltd.
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A practical clinical case recently reported by Nilforoushzadeh

et al. (2021). A type 2 diabetic patient with diabetic foot ulcer

(DFU)-associated osteomyelitis were treated with a combination

therapy of trichloroacetic acid, calcium alginate and foam

dressings, human autologous fibroblast injection, and a

fibroblast cell-seeded collagen scaffold. After treatment, the

wound area was reduced by 90% (Figure 2), showing that the

combination therapy positively affected DFU-induced

osteomyelitis and could significantly reduce the risk of

amputation in DFU patients. Although combination therapy

is effective on DFU, some limitations must be solved: 1) the

high cost of this combination therapy leads to difficulty in large-

scale clinical promotion 2) an excellent cell bank is required on a

large scale. 3) The preparation of the dressing was also tricky.

Recently, a new strategy has been developed to treat

osteomyelitis by combining topical antibiotic delivery with a

heparinized nano-hydroxyapatite/collagen bone substitute

(Padrão et al., 2021). This work prepared particles of

heparinized nano-hydroxyapatite/collagen biocomposites to

load with vancomycin for treating osteomyelitis. After

administration, the infection would be eradicated by the high

concentrations of vancomycin provided by this system, and bone

regeneration would be induced due to the regenerative scaffold

role of the particles after antibiotic release. The study showed that

the nano-hydroxyapatite/collagen particles could release high

concentrations of vancomycin for 19 days above the MIC,

which could completely inhibit the growth of MRSA and thus

did not produce biofilm formation. Adjusting the sintering

temperature enables the material to have a larger actual

surface area with more binding sites, thus increasing

vancomycin adsorption and further release. Moreover, the

nano-hydroxyapatite/collagen biocomposites have good

biocompatibility and no cytotoxic effect. Considering these

results, the vancomycin-loaded nano-hydroxyapatite/collagen

biocomposite was shown to be sufficient to resist bone

infection and create a suitable environment for forming new

bone in the defect area, offering a promising solution for the

treatment of osteomyelitis. Sheehy et al. (2018) also explored the

anti-infective effect of the collagen/hydroxyapatite antibiotic

delivery system, using the commercially available antibiotic-

eluting fleece Septocoll as the control group to evaluate the

therapeutic effect on an animal model of chronic

osteomyelitis. After 8 weeks of treatment, most of the rabbits

in the blank group were still infected, while the infection rate was

lower in both the antibiotic-eluting stent and the control groups.

The results demonstrate that implantation of an antibiotic-

loaded collagen-based material after debridement could

enhance the bacterial clearance at the lesion site and improves

the therapeutic effect of chronic osteomyelitis.

2.1.2 Chitosan
Chitosan (CS) is a natural polymer from chitin. In addition to

its biological properties (Li et al., 2020; Wang et al., 2020; Aranaz

et al., 2021), such as biodegradability, biocompatibility, tissue

engineering ability, and antibacterial activity, it also possesses

chemical properties. It has been widely studied as a topical drug

delivery vehicle for treating osteomyelitis in vitro and animal

models (Wells et al., 2018; Sarwar et al., 2020).

The drug delivery systems based on CS present essential

potential in treating infectious injuries. (Boles et al., 2018). The

FIGURE 2
The patient before treatment (A), 1 month (B), 2 months (C), 3 months (D), 4 months (E), 5 months (F), 6 months (G), and 7 months (H) after
treatment. Reproduced with permission from Nilforoushzadeh et al. (2021). Copyright © 2020 The Authors.
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CS-polycaprolactone blend sponge can also be prepared to treat

chronic osteomyelitis as a drug delivery system. The composite

sponge can simultaneously load and adjust ciprofloxacin

hydrochloride and ibuprofen release behavior, presenting a

dual antimicrobial and anti-inflammatory activity to enhance

the treatment therapy of chronic osteomyelitis. (Wei et al., 2019).

The treatment effect of calcium sulfate-based drug delivery

systems for chronic osteomyelitis could be improved by CS

coating, which can affect the cell affinity and antibiotic elution

via its deacetylation degree. Therefore, CS/calcium sulfate

composite can release high concentrations of antibiotics and

promote osteoblast adhesion, proliferation, and bone

mineralization (Beenken et al., 2014).

In addition, some studies on chitosan and its derivative-based

delivery systems have made some progress in repairing bone

defects and promoting bone healing. These delivery systems can

potentially be used in treating osteomyelitis when supplemented

with antibiotic delivery. It has been reported that CS derivatives

FIGURE 3
The antibacterial activity of VCM-PTMC and VCM/TMC-loaded PTMC nanoparticles. (A) The appearance of the rabbit legs at the fourth week
after infection with Staphylococcus aureus. (B) A typical photograph of bacterial colonies forming on sheep blood agar plates and the number of
bacterial colonies in the tibia marrow counted following overnight incubation. (C) Typical photographs of the tibia underwent 8 weeks of treatment
with VCM-PTMC and VCM/TMC-loaded PTMC. (D) The results of WBC and CRP estimations in the rabbit serum at the time before modeling,
fourth week after infection, fourth week after treatment, and eighth week after treatment. *p < 0.05. Reproduced with permission from Zhang et al.
(2017). Copyright © 2017 The Authors.
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have unique biological properties that can improve the

therapeutic effect of osteomyelitis and promote bone

regeneration. CS derivatives have been found to have excellent

efficiency in drug delivery for osteomyelitis treatment, as

reported in various studies (Tao et al., 2021). N-trimethyl

chitosan (TMC) is a derivative of CS, which is water-soluble

and can be used to prepare highly efficient delivery systems of

antibiotics. Zhang et al. (2017) reported that vancomycin-loaded

N-trimethyl chitosan nanoparticles exhibited good

biodegradability, cytocompatibility, and antibacterial

properties. Vancomycin (VCM) showed smooth and sustained

release kinetics, and no initial burst was observed, which

benefited from polytrimethylene carbonate (PTMC) in the

nano-drug delivery system. The surface erosion degradation

mechanism of PTMC provided a sound sustained-release

barrier to achieve long-acting sustained-release of antibiotics.

In this drug delivery system, the active regulatory proteins, which

are primarily adsorbed on the scaffold by positive charges, can

promote the adhesion and proliferation of osteoblasts (Figure 3).

The above advantages are crucial for promoting bone healing and

repair, making this system a promising candidate for treating

chronic osteomyelitis.

The release and delivery of bone morphogenetic protein 2

(BMP-2) are critical for improving the clinical efficacy of bone

healing and repair. To transfer BMP-2 to the target area, Yi et al.

(2022) constructed a novel nano-delivery system (Chi-MSN)

composed of mesoporous silica nanoparticles (MSN) and

chitosan. The study reported that the Chi-MSN system could

effectively reduce drug loss and deliver BMP-2 to the lesion site

due to its stable and pH-responsive properties. In addition, Chi-

MSN can better penetrate cells, thus better enhancing cell

viability and reducing apoptosis. In the in vivo experiments,

the defect in bone tissue was better repaired in the Chi-MSN

group, as indicated by the increased number and thickness of

trabecular bone in this group (Figure 4). Therefore, the Chi-MSN

delivery system may be a promising candidate for future bone

repair in chronic osteomyelitis.

The lack of effective delivery methods limits the high-

concentration release of VCM in irregular bone tissue,

resulting in suboptimal infection therapy. Recently, chitosan-

based thermosensitive hydrogel loading VCM nanoparticles

(VCM-NPs/Gel) have been designed and prepared to

simultaneously prevent infection and repair fractures, showing

activity against Staphylococcus aureus due to the sustained release

of VCM for more than 26 days, promoting osteoblast

proliferation. Furthermore, the release mechanism of VCM-

NPs/Gel was the diffusion and degradation of the hydrogel

matrix, which together maintained the stable release of VCM.

FIGURE 4
Mesoporous Silica Nanoparticle-Chitosan-Loaded BMP-2 in the Repair of Bone Defect in Chronic Osteomyelitis. Reproduced with permission
from Yi et al. (2022). Copyright © 2022 The Authors.
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The results in vivo showed that the investigated system had

prominent anti-infective properties and accelerated bone repair

and regeneration during osteomyelitis treatment, showing great

potential as an effective strategy for treating osteomyelitis (Tao

et al., 2020).

2.1.3 Silk protein
Like chitosan and collagen, silk protein such as that produced

by silkworms and spiders also has a comprehensive source. It also

has more robust mechanical properties, excellent

biocompatibility, and low immunogenic response (Zapata

et al., 2022). Furthermore, it can be processed into various

structures, such as hydrogels, fibers, membranes,

microspheres, and nanospheres (Altman et al., 2003; Koh

et al., 2015; Mottaghitalab et al., 2015), making it more

suitable for orthopedic applications. For example, the

vancomycin-loaded silk nanospheres could effectively clear the

bacteria from the infection site (Hassani Besheli et al., 2017;

Mulinti et al., 2021). Silk protein incorporated with HA has also

been demonstrated to be a strategy for cell proliferation and

adhesion to enhance the growth of bone (Saleem et al., 2020).

2.2 Synthetic biodegradable polymers

The properties of synthetic biodegradable polymers can be

precisely tailored to the needs of the application, including

physical and mechanical properties, as well as

biodegradability, which facilitates adjustment of the release

rate of therapeutic agents such as antibiotics for better

therapeutic effects. In addition, the performance of different

synthetic batches of polymers is also more stable and reliable,

suitable for mass production and clinical applications. Among

the synthetic biodegradable polymers, polylactic acid (PLA),

poly(lactic-co-glycolic acid) acid (PLGA), poly(ε-caprolactone)
(PCL), and poly(trimethylene carbonate) (PTMC), and drug

delivery systems constructed with them as carrier materials

play an essential role in the treatment of chronic osteomyelitis.

2.2.1 Polylactic acid
Polylactic acid (PLA) has good biocompatibility,

biodegradability, a wide range of mechanical and physical

properties, and low immunogenicity and has been approved

by the Food and Drug Administration. Therefore, PLA has

been the focus of numerous preclinical and clinical trials,

especially in drug delivery and bone tissue engineering (Tyler

et al., 2016; Liu et al., 2020).

The acidic products generated in the degradation process of

PLA can easily induce an inflammatory response. To overcome

the problems caused by acidic degradation products, PLA is

usually combined with hydroxyapatite (HA) to form a composite

material. Lv et al. (2022) prepared a nanodevice based on nHA-

PLA to deliver vancomycin (VAN) in treating chronic

osteomyelitis (Figure 5). This study found that nHA-PLA

showed good biocompatibility and degradability. It could

effectively release VAN into the lesion and deliver it to the

bone marrow tissue, thereby better inhibiting bacteria and

inflammatory reactions. Meanwhile, the sound

osteoconductive and osteoinductive effects of nHA-PLA-VAN

help promote osteoblasts’ adhesion and proliferation, thereby

achieving a better repair of bone defects. In a model of chronic

osteomyelitis, nHA-PLA-VAN was found to be effective in

FIGURE 5
nHA-PLA-VAN system assembling and study strategy. Reproduced with permission from Lv et al. (2022). Copyright © 2022 The Authors.
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reducing inflammatory reactions, promoting the construction of

medullary cancellous bone, and helping restore the

biomechanical properties of bone. Therefore, nHA-PLA

nanodevice loading vancomycin has great potential in treating

chronic osteomyelitis. A similar observation was also found in

the work of Zhao (Zhao et al., 2019). They developed local drug

delivery beads of ofloxacin, consisting of poly(sebacic anhydride)

(PSA) and poly-D, L-lactide (PDLLA), for treating chronic

osteomyelitis. The delivery system with 90 wt% PDLLA

produced a prominent inhibition effect against bacteria

Staphylococcus aureus, Escherichia coli, and Pseudomonas

aeruginosa within 89 days. Drug release in the local bone of

rabbits showed that the mean concentration of ofloxacin was

20.1 ± 10.3 μg/g over 8 weeks, and the mean concentration in

plasma was 35.6 ± 18.8 ng/ml. Radiography, bacterial culture,

and histology showed an excellent therapy of osteomyelitis in

rabbits, suggesting that PSA/PLA mixtures as antibiotic carriers

may help treat chronic osteomyelitis and prevent bone infections

(Chen et al., 2007).

Recently, PLA and PCL (PLC) copolymers have been

investigated for bone repair and drug delivery (Sang et al.,

2018; Mendibil et al., 2019). Biodegradable scaffolds of PLC

composited with calcium phosphate (CaP) were prepared for

delivery of the antibiotic moxifloxacin hydrochloride (MOX)

(Radwan et al., 2021). The resulting scaffolds showed sustained

release of MOX for 6 weeks andmaintained cell proliferation and

differentiation, thereby reducing inflammation and sequestrum

formation in the bones caused by chronic osteomyelitis. The

results indicate that PLC/CaP scaffolds are favorable candidates

for chronic osteomyelitis therapy and suggest further clinical

trials.

2.2.2 Poly-(lactic-co-glycolic acid)
Poly-(lactic-co-glycolic acid) (PLGA) is the copolymer of

lactic acid (LA) and glycolic acid (GA), which is one of the most

accepted materials for controlled drug delivery and bone tissue

engineering (Lagreca et al., 2020; Jin et al., 2021) and has been

approved by Food and Drug Administration (FDA) in the clinic

because of its excellent biodegradability and biocompatibility.

Currently, treating chronic osteomyelitis presents a

significant challenge to clinical orthopedics. Combining PLGA

and antibiotics provides a new option for treating chronic

FIGURE 6
X-rays of chronic-osteomyelitis-model rats after 4 weeks of treatments: (A)Ciprofloxacin-PLGC system, (B) pure ciprofloxacin, (C) blank PLGC,
and (D) no treatment. Reproduced with permission from Liu et al. (2020). Copyright © 2020 The Authors.
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osteomyelitis. PLGA microspheres can improve the

encapsulation rate of antibiotics, alleviate the initial burst

release, reduce the cumulative release of drugs, prolong the

action time of drugs (Yang et al., 2017; Li et al., 2022), and

improve the antibacterial activity in vitro and in vivo (Cevher

et al., 2007; Posadowska et al., 2015).

Novel inorganic-organic composites are potential materials

for treating chronic osteomyelitis or infected bone defects. Mistry

et al. (2022) reported the efficacy of antibiotic-loaded PLGA/

biphasic calcium phosphate composite bone cement in treating

experimental osteomyelitis. Compared with PMMA cement,

PLGA composite cement showed superior cytocompatibility

and coagulation activity, enabling faster and better sepsis

control and promoting bone regeneration, indicating that

PLGA cement is a promising carrier of the antibiotic-loaded

delivery system for treating chronic osteomyelitis without the

removal of cement. Cheng’s group prepared vancomycin-loaded

bioactive glass (MBG)/PLGA scaffolds for bone tissue

engineering (Cheng et al., 2018). Compared with pure PLGA

scaffolds, MBG/PLGA scaffolds exhibited better

cytocompatibility and osteoblast differentiation properties.

Vancomycin-loaded MBG/PLGA scaffolds exhibited good

release properties and biocompatibility, which can sustainably

release vancomycin for more than 8 weeks in vitro, inhibiting

biofilm formation without adversely affecting cells. Gatifloxacin-

loaded PLGA and β-tricalcium phosphate composite also

demonstrated sufficient in vitro bactericidal activity and could

significantly reduce inflammation within the debridement area,

accompanied by osteoconduction and vascularization

(Tamazawa et al., 2011; Kimishima et al., 2016). Likewise, the

composites of gatifloxacin (GLFX)-loaded PLGA and

hydroxyapatite (HA) (Makiishi et al., 2017) could maintain

sufficient bactericidal activities from 3 h to 10 days. After 4-

week implantation in bone defects of osteomyelitis, the

inflammation was significantly reduced (p < 0.05), and the

formation of new bone can be found (Makiishi et al., 2017),

as compared to the debridement group. These findings show that

PLGA composites could control bacterial infection and support

bone regeneration for osteomyelitis treatment.

In addition to the above, to avoid the side effects caused by

systemic antibiotic therapy for treating osteomyelitis, a novel sol-

gel drug delivery system was developed consisting of

polyethylene glycol monomethyl ether (mPEG) and PLGA,

which offered several advantages, such as easy preparation,

high encapsulation efficiency, zero-order release, injectable

and in situ gelling in lesion sits. The implantation of

teicoplanin-containing mPEG-PLGA hydrogel is effective in

treating rabbit osteomyelitis and may have great promise as a

therapeutic strategy for chronic osteomyelitis (Peng et al., 2010).

2.2.3 Poly(ε-caprolactone)
Poly(ε-caprolactone) (PCL) is a well-known biodegradable

polymer with good biocompatibility. Research on PCL and its

applications in drug delivery and other medical fields have

recently received extensive attention.

While treating chronic osteomyelitis, insufficient antibiotics

concentration at the infected lesions discounted the treatment

therapy, so significant effort has been devoted to novel delivery

systems to achieve sustained high concentrations without

accompanying systemic side effects; for example, a rifampicin-

loaded 3D-printed PCL scaffold was developed to treat

osteomyelitis (Lee et al., 2020). The growth inhibitory activity

against the representative pathogenic bacteria of osteomyelitis

confirmed the excellent therapeutic effect. Maiti et al. (2018)

developed a vancomycin-loaded PCL chip to treat MRSA-

infected osteomyelitis, which can eliminate and recover bone,

suggesting the efficacy of sustained release. The findings reported

by Wei et al. (2018) also suggested that vancomycin-loaded PCL

membranes have great potential in effectively controlling bone

infection and promoting bone regeneration.

Blending can improve the properties of the parent materials

and is an effective strategy to achieve desired target properties.

PCL has the advantages of low toxicity, good mechanical

strength, and controlled release properties. However, it lacks

cellular recognition signals, while natural polymers possess cell-

affinity sites, which can compensate for PCL’s lack of cell-affinity.

Therefore, blending natural polymers and PCL will provide a

better biomaterial for treating chronic osteomyelitis. Pawar and

Srivastava (2019) prepared mixed sponges of PCL and chitosan

to control ciprofloxacin hydrochloride and ibuprofen to treat

chronic osteomyelitis, concluding that sponges are promising

candidates for chronic osteomyelitis management after surgical

debridement due to the ideal release profiles and potential

antibacterial and anti-inflammatory activities. The 3D-printed

PCL/alginate scaffolds containing antibiotics (Lee et al., 2022)

were also demonstrated as a novel osteomyelitis treatment

inhibiting biofilm formation and bacterial activity.

PLGC-based delivery systems loaded with ciprofloxacin are

capable of maintaining sustained release of antibiotics for up to

30 days with sufficient concentrations to sustain long-term

antimicrobial activity.

The PLGC-based and ciprofloxacin-loaded delivery system

maintained sustained release of antibiotics for up to 30 days with

sufficient concentrations to maintain long-term antibacterial

activity.

Although PLGA-based antibiotic delivery systems are

promising candidates for treating chronic osteomyelitis, the

higher glass-transition temperature hinders the implantation

of matrix PLGA-based delivery systems into the bone marrow

cavity. The introduction of PCL structure into the PLGA chain

endows better flexibility to the resulting copolymer poly(d,

l-lactide-co-glycolide-co-ε-caprolactone) (PLGC). PLGC-based

delivery systems loaded with ciprofloxacin are capable of

maintaining sustained release of antibiotics for up to 30 days

with sufficient concentrations to sustain long-term antimicrobial

activity (Liu and Bai, 2020). In a rat model of chronic
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osteomyelitis, the significant antibacterial effect of the PLGC/

ciprofloxacin system was confirmed by the returned normal

structure of proximal and middle tibiae (Figure 6), indicating

that the PLGC-based local antibiotic delivery system is a suitable

candidate for treating chronic osteomyelitis.

In a study, three-dimensional (3D)-printed antibiotic-loaded

biodegradable scaffolds made of PCL/PLGA/tobramycin were

reported for the first time for the treatment of chronic

osteomyelitis (Shim et al., 2015), which was shown to be

effective in antibacterial activity against S. aureus and E. coli

and non-toxic to the proliferation of MG63 cells. The anti-

inflammatory effect of PCL/PLGA/tobramycin scaffolds was

further confirmed by gene expression (TNF-α, IL-6) in RAW

264.7 cells. In a rat model of chronic osteomyelitis, the

tobramycin-loaded PCL/PLGA scaffold significantly reduced

the infection-induced edema and inflammation. It promoted

new bone formation after 8 weeks of implantation. The above

findings suggest that 3D printed PCL/PLGA/tobramycin

scaffolds can eradicate osteomyelitis and promote bone

regeneration, showing great potential as local antibiotics

delivery system in treating osteomyelitis. Moreover, the drug

delivery systems are prepared from the composites of PCL with

inorganics, such as calcium sulfate (Gupta et al., 2009; Yaprakci

et al., 2013; Zhou et al., 2018b; Kyriacou et al., 2020) and calcium

phosphate (Miyai et al., 2008; Kundu et al., 2012; Makarov et al.,

2014; Kamboj et al., 2019) have modified drug release behavior

that can continuously release sufficient concentrations of

antibiotics and simultaneously promote bone regeneration,

also demonstrating an efficient strategy in treating chronic

osteomyelitis.

2.2.4 Poly(trimethylene carbonate)
The above reports have confirmed that aliphatic polyesters,

such as PLA, PLGA, PCL and their copolymers, or composites

formed by blending with inorganic materials have great potential

as a matrix for delivery systems in the field of bone tissue repair.

However, studies have shown that aliphatic polyesters produce

acidic degradation products during the degradation process,

which can lead to sterile inflammation, bacterial growth at

bone lesions, and bone resorption or bone loss (Gunatillake

et al., 2003; Böstman et al., 2005; Reich et al., 2020). Hence,

further investigation of alternative materials without acidic

degradation products is required. Poly(trimethylene carbonate)

(PTMC) is a possible candidate material with good

biocompatibility and controllable degradation rate without

acidic degradation products (Yang et al., 2015; Yang et al.,

2016; Hou et al., 2017; Hou et al., 2019; Wuyuntana et al.,

2019; Hou et al., 2020; Cai et al., 2021; Hou et al., 2021; Hou

et al., 2022), which may provide sustained high antibiotic release

rates. As expected, gentamicin-loaded PTMC discs (Neut et al.,

2009), ciprofloxacin-loaded PTMC implants (Liu et al., 2022),

and vancomycin-loaded PTMC nanoparticles (Zhang et al.,

2017) show characteristics of antibiotic-controlled release and

biofilm inhibition (Figure 7). Hence, PTMC is also a promising

potential carrier for local antibiotic delivery systems in treating

osteomyelitis.

The synthetic polymers above include aliphatic polyesters

and aliphatic polycarbonates, and their excellent

biocompatibility and low toxicity have been confirmed in

previous reports (Dubois et al., 1999; Suriano et al., 2011;

Tempelaar et al., 2013; Mespouille et al., 2014; Ghosh et al.,

FIGURE 7
X-rays of chronic-osteomyelitis-mode. Treatment group (treated with ciprofloxacin-loaded PTMC implants) (A), control group (treated with
PTMC implants without ciprofloxacin) (B), and blank group (no treatment) (C) after 28 days of treatments. Reproducedwith permission from Liu et al.
(2022). Copyright © 2022 The Authors.
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2019). And their degradation products, after being degraded in

vivo are non-toxic and can be absorbed by the body or excreted

with metabolism (Brannigan and Dove, 2017; Xu et al., 2020).

However, the degradation products of polyester materials can

cause a decrease in the pH of the local microenvironment and are

prone to cause sterile inflammation (Srivastava et al., 2020). This

problem also needs to be considered and solved in practical

applications.

3 Future perspectives

In summary, the local drug delivery system based on the

degradable polymer has potential clinical applications in treating

osteomyelitis. Despite this, much work is still desired in the

properties of the biodegradable polymeric carriers, the kinetics of

antibiotic release, and the further development of current

systems. For example, in terms of the composition of the

carrier, composite materials have more advantages, which can

make up for the deficiencies of various materials and exert their

respective advantages. Since about 65% nano-HA and 35%

collagen in human bone tissue, researchers tend to use

inorganic-organic combinations such as adding calcium

phosphate to polymers and using Ca2+ to promote bone defect

repair; In terms of material selection, since the acidic degradation

products produced by polyester are harmful to local tissue

growth, the reduction of local pH may also affect the

biological activity of antibiotics, and drug delivery systems

based on biodegradable polycarbonate may be more suitable

for the chronic osteomyelitis treatment; The shape of local drug

delivery systems is often composed of microspheres and

nanoparticles, which can provide larger surface area to

increase the drug loading capacity. In addition to ensuring

sufficient effective concentration, another research focus is to

match the degradation rate of biodegradable polymers with the

growth rate of bone tissue to realize bone tissue regeneration. The

local antibiotic delivery system based on biodegradable polymers

is a promising strategy for treating osteomyelitis. Good results

have been achieved in many animal models and a small number

of clinical trials.

The future development direction will combine different

biomaterials to complement their advantages and

disadvantages. The developed new composite material carrier

should have biodegradability, good biocompatibility, and low

toxicity and be able to tune the release kinetics of antibiotics by

tailoring the performance parameters of the carrier materials to

achieve a long-lasting and stable release process. Furthermore,

the focus should be placed on studying the pharmacokinetics and

pharmacodynamics of novel antibiotic delivery systems in vivo.

Moreover, fluorescence technology for antibiotic labeling could

be attempted for visualization study. The final development

direction is to reduce the cost of treatment of osteomyelitis,

enhance treatment efficacy, and improve patient compliance.

4 Conclusion

This review discusses the research progress of biodegradable

polymer-based drug delivery systems for treating chronic

osteomyelitis. In conclusion, it is imperative to design new

antibiotic-loaded local delivery systems with desirable properties

for treating chronic osteomyelitis early and after debridement. The

biodegradability, biocompatibility, and drug release properties of the

polymer-carriers are essential to ensure that the drug delivery system

can provide a microenvironment and mechanical support for the

regeneration of new bone tissue during healing while at the same

time avoiding long-term systemic therapy. Other biodegradable

polymer-based antibiotic delivery systems are still in primary or

preclinical research, except for collagen-based antibiotic delivery

systems. There is a long distance to achieve actual practice in the

clinic. The joint efforts of the multidisciplinary integration of

biomedical polymer science, orthopedics, pharmacy, and clinical

medicine are urgently required to accelerate this process.
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