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Background: To date, the amount of cartilage loss is graded by means of

discrete scoring systems on artificially divided regions of interest (ROI).

However, optimal statistical comparison between and within populations

requires anatomically standardized cartilage thickness assessment. Providing

anatomical standardization relying on non-rigid registration, we aim to

compare morphotypes of a healthy control cohort and virtual reconstructed

twins of end-stage knee OA subjects to assess the shape-related knee OA risk

and to evaluate possible correlations between phenotype and location of

cartilage loss.

Methods: Out of an anonymized dataset provided by the Medacta company

(Medacta International SA, Castel S. Pietro, CH), 798 end-stage knee OA cases

were extracted. Cartilage wear patterns were observed by computing joint

space width. The three-dimensional joint space width data was translated into a

two-dimensional pixel image, which served as the input for a principal

polynomial autoencoder developed for non-linear encoding of wear

patterns. Virtual healthy twin reconstruction enabled the investigation of the

morphology-related risk for OA requiring joint arthroplasty.

Results: The polynomial autoencoder revealed 4 dominant, orthogonal

components, accounting for 94% of variance in the latent feature space.

This could be interpreted as medial (54.8%), bicompartmental (25.2%) and

lateral (9.1%) wear. Medial wear was subdivided into anteromedial (11.3%)

and posteromedial (10.4%) wear. Pre-diseased limb geometry had a positive

predictive value of 0.80 in the prediction of OA incidence (r 0.58, p < 0.001).

Conclusion: An innovative methodological workflow is presented to correlate

cartilage wear patterns with knee joint phenotype and to assess the distinct

knee OA risk based on pre-diseased lower limb morphology. Confirming

previous research, both alignment and joint geometry are of importance in

knee OA disease onset and progression.
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1 Introduction

Osteoarthritis (OA) globally ranks among the most prevalent

disabling diseases, affecting over 500 million people worldwide,

which accounts for 7% of the world’s population (Vos et al., 2012;

Hunter et al., 2020; Boer et al., 2021). Specifically for an adult

USA population, it is estimated that 1 out of 4 inhabitants have

some form of arthritis. The OA prevalence is rapidly increasing

and is estimated to raise by 50% by the year 2040 [Centers for

Disease Control and Prevention (CDC), 2006]. Of the global

disease burden for OA, knee OA constitutes 83% (Vos et al.,

2012).

However, the precise pathophysiology of OA and drivers for

disease progression remain poorly understood (Grässel et al.,

2021). Recent literature demonstrates OA being a multi-faceted

total joint disease (Boer et al., 2021; Grässel et al., 2021). In the

early stage of OA, the cartilage thickness increases as the water

fraction raises due to a damaged collagen network. Once the

microscopically damaged cartilage fails to counterbalance

extrinsic loading, a catabolic reaction initiates superficial

articular cartilage loss. Degradation products initiate an

inflammatory chain reaction worsening total joint degradation

(Grässel et al., 2021). Yet, improved insight in disease onset and

progression not exclusively depends on the understanding of

these inflammatory pathways. To date, most theoretical

approaches of knee OA development and progression assume

a synergetic effect of mechanical factors and the systemic milieu.

In essences, higher vulnerability in a susceptible environment is

assumed to promote disease onset and progression. Inversely,

this implies a possible presence of at risk joint mechanics with

minimal intra-articular cartilage decay (Sharma et al., 2010).

Recent research strongly emphasizes the link of lower limb

alignment and knee joint morphotype on the one hand with the

development and progression of knee osteoarthritis on the other

hand. Whereas the link between the joint mechanics and OA

disease progression is becoming generally accepted, the impact of

joint morphology and alignment on the risk of incident knee OA

is ambiguously defined. Based on multiple longitudinal

observational investigations, varus alignment contributes to

incident knee OA with a growing risk for worse varus

malalignment. Fewer consensus is observed for valgus

alignment (Sharma et al., 2010; Felson et al., 2013; Sharma

et al., 2013). From a biomechanical point of view, mild to

moderate valgus malalignment is often considered not

damaging, as the ground reaction force extending from the

center of the foot towards the center of mass passes medially

of the center of the knee (Sharma et al., 2010; Sharma et al., 2013;

Dell’Isola and Steultjens, 2018). Nevertheless, findings of Felson

and colleagues suggest mild to moderate valgus malalignment

already promotes incident lateral compartment knee joint OA

(Felson et al., 2013).

Few studies have investigated susceptible phenotypes for

generalized multicompartment OA, as opposed to

unicompartmental disease. In this respect, the most

trustworthy method to observe and analyze risk factors for

disease onset and progression in a cohort and evaluate

mediating factors on the process involves controlled

longitudinal follow-up studies. However, in the case of slow

progressive and chronic diseases such as OA, the time-dependent

character of these experiments limits their discovery power

(Murphy, 2021). Furthermore, this multifaceted interaction of

joint morphotypes, altered loading conditions and systemic

factors results in an extremely heterogenous disease

presentation, complicating conceptualization and radiographic

classification of knee OA (van der Esch et al., 2014).

Taking into account the co-existence of systemic and local

factors, the hypothesis of knee OA being exclusively a

unicompartmental disease is more frequently being

abandoned. Recent findings of van der Esch and colleagues

confirm the combination of a multicompartmental disease

process with radiographic features present in the entire joint,

on one hand, and a more localized compartmental disease

process on the other hand. Based on a bifactor model, joint

space narrowing and osteophyte formation are features of both

the multicompartmental and the compartmental disease process.

As such, osteophyte formation is not useful as a joint overload

localizer. Considering both systemic and mechanical factors are

involved in the etiology of knee OA, this disease model aligns

with the typically observed complex pattern of associations

between radiographic features between and within

compartments (van der Esch et al., 2014). Typically, the

radiographic features describing severity and disease

progression are obtained from ordinary X-ray imaging and

are subsequently translated into discrete grading systems (e.g.,

the Kellgren-Lawrence classification) (Kohn et al., 2016). Doing

so, a complex three-dimensional problem is simplified to a 2D

projection and quantized into a discrete scoring system impeding

profound disease phenotyping and classification (Schiphof et al.,

2008). Furthermore, the inability to visualize the cartilage layer,

negatively impacts the accuracy of the collected data (Favre et al.,

2013).

This can be mitigated using volumetric imaging such as

Computed Tomography (CT) or Magnetic Resonance Imaging

(MRI). Both methods allow for a regional analysis of the joint

space width and the detection and description of local erosion

(Favre et al., 2013). Usually and for the purpose of comparison

between multiple subjects, average cartilage thickness of specific

Regions of Interest (ROI) are then obtained. Although being an
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improvement to standard X-ray measures, this method still fails

to a certain extent to comprehensively describe the location and

severity of erosion (Favre et al., 2017). Recent studies indeed

indicate that the ROI-based methods both under clinical and

experimental conditions poorly reflect mild (or early) phases of

disease, still demonstrate wide interobserver variation and are

very non-linear over the range from mild to advanced disease

status (Altman and Gold, 2007; Favre et al., 2013; Kohn et al.,

2016; Favre et al., 2017).

To tackle the shortcomings of the above described methods

and thus allowing the statistical comparison of groups of knees,

Favre and colleagues described a novel method to establish

anatomical correspondence among the entire articular surface

of the knee joint (i.e., providing an anatomical standardization)

(Favre et al., 2013; Favre et al., 2017). As such, cartilage thickness

can be measured for any given point on the subchondral layer

within a single subject (Favre et al., 2013). Their pattern-based

approach considered overall “thickness maps (images)” therefore

allows for improved characterization of features that are lost

when cartilage thickness is reduced to a few independent mean

thickness measures (Favre et al., 2013; Favre et al., 2017).

Progress in computer vision and image analysis now offers

efficient methods to establish anatomical correspondence

between knee shapes and to describe the joint space to

perform statistical comparison and pattern analysis of sets

of joint space narrowing maps (i.e., convolutional neural

networks following conformal mesh parameterization)

(Audenaert et al., 2019a; Nauwelaers et al., 2021). Whereas

Favre and colleagues aimed for anatomical correspondence

relying on standardized two-dimensional pixel-maps,

anatomical correspondence in 3D can be obtained by non-

rigid surface registration of a reference template thereby

providing a dense set of homologous landmarks amenable

to statistical analysis (Williams et al., 2010; Favre et al., 2013;

Audenaert et al., 2019a; van Houcke et al., 2020; Peiffer et al.,

2022). This permits statistical comparison between and within

populations of skeletal shape and related joint space geometry

(Williams et al., 2010; Audenaert et al., 2019a; Nauwelaers

et al., 2021). Furthermore and by comparison with healthy

data, disease severity and progression can be quantified and

even a virtual healthy twin can be generated (Fuessinger et al.,

2019; Ahmadian et al., 2022).

In the present study, virtual healthy twins are generated from

a large cohort of cases presenting with end-grade knee OA, using

a validated lower limb shape model (SSM). The latter was

constructed, from a healthy cohort of over 600 cases

(Audenaert et al., 2019b). Hence, the aim is to return

backwards by reconstructing the original alignment and joint

morphology prior to OA onset. Doing so, we intend to confirm

existing associations and establish new phenotypes at risk for OA

onset and progression. In addition to improving the description

of cartilage morphology, identifying characteristic wear patterns

could provide new insights into the function and degradation

process of knee cartilage in relation to the limb alignment and

joint morphotype.

2 Materials and methods

2.1 Sample/data

2.1.1 Osteoarthritis group
Digital bony shapes of the proximal and distal femur and the

proximal and distal tibia were extracted from a retrospective

database of 933 patients (460 females and 473 males), provided

in anonymized form by the Medacta company (Medacta

International SA, Castel S. Pietro, CH). The patients reported

localized knee pain associated with mechanical knee instability at

staging time. Diagnostic imaging confirmed different degrees of

cartilage defects, femoral osteophytes, and shape abnormalities,

mainly at the condylar regions of the distal femur and at the

tibial plateau. All patients underwent knee resurfacing or knee

replacement surgery by means of a Patient Specific

Instrumentation (PSI) between July 2012 and April 2020. For

surgical planning purposes, 3D imaging by CT scanning of the

lower limb joints was acquired. The image acquisition protocol

included CT scans of the knee, hip, and ankle regions. A minimum

of 512 × 512 pixels was acquired for each scan. The thickness of a

single slice was 2 mm for the hip and ankle joint and 6 mm for the

FIGURE 1
A three-dimensional lower limb model is developed starting
from the available CT data. Both valgus alignment (left) and varus
alignment (right) are visualized. Typically, valgus alignment (left) is
defined as a hip-knee-ankle (HKA) angle smaller than or
equaling 177° whereas varus alignment (right) involves a HKA angle
equaling or exceeding 183° (Hirschmann et al., 2019). The HKA
angle is formed interconnecting the center of the hip, of the knee
and of the ankle in the coronal plane, visualized in red. The tangent
to the distal femoral bone and to the proximal tibia plateau are
visualized in blue.
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knee joint (Figure 1). All subjects gave written informed consent for

data collection and processing before enrollment in the study

database. Exclusion criteria were defined as the presence of hip,

knee or ankle arthroplasty, the presence of osteosynthesis material,

or osteological evidence of former osteosynthesis for trauma or

osteotomy reasons as defined by cortical interruptions and the

presence of former drilling holes. This study was executed

conform the Helsinki guidelines and was approved by the ethics

committee of the Ghent University Hospital.

2.1.2 Articulated statistical shape model of the
nonarthritic lower limb

For the purpose of reconstruction of a healthy virtual twin, an

articulated statistical shape model (SSM) of nonarthritic lower

limb cases was used. The Ghent lower limb model is the largest

articulated SSM of the lower limb previously reported in the

literature, including 622 samples obtained from 311 lower limb

CT scans of non-arthritic cases. Additional details about model

development and validation are published by Audenaert et al.

(Audenaert et al., 2019a). As the SSM was developed based on

healthy subjects, osteoarthritis-related deformities are unknown

to the model (Sharma et al., 2010; Dell’Isola and Steultjens, 2018).

2.2 Healthy virtual twin reconstruction

The virtual healthy twin can be considered the patient-

specific original lower limb constitution before the onset of

osteoarthritic joint deformation. To generate the healthy

twins, the healthy SSM was fitted to a combined femoral

head, knee joint and distal tibia. In detail, the following

pipeline was used for the reconstruction of the unaffected,

pre-disease configuration for each knee OA case.

FIGURE 2
Representation of the healthy virtual twin reconstruction. Left to right: starting from a diseased sample, healthy femur and tibia were fitted to the
arthritic knee. Outlier detection aided in osteophyte localization. Following, the healthy statistical shape model was fitted to the diseased sample,
excluding disease relatedmorphological changes. The virtual healthy twin was then reassembled based on the healthy, articulated lower limbmodel.

FIGURE 3
Visual representation of the synthetic validation experiment.
Starting from the healthy control subjects, osteophytes are
artificially imposed based on available outlier distance maps.
Following, misalignment of the femur and tibia was enforced.
The virtual twin reconstruction pipeline was then conducted and
the virtual, realigned healthy twin was compared with the original
healthy control input.
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Healthy virtual twin geometries of respectively femur and

tibia were constructed by iteratively fitting the healthy shape

model to the patient geometries. The fitting iteratively defined

correspondences and excluded outlier candidate pairs, which

were assumed to represent local deformations induced by the

disease. Outlier vertices were identified by evaluating the distance

between each pair of points and defined to deviate more than

2 standard deviations from the mean. Dense correspondences

and the deformation are computed in an interleaved fashion until

convergence. Following, the healthy reconstructions of femur

and tibia were aligned according to the healthy articulated model

of the lower limb. The process of reassembly of multiple

components according to a control statistical shape model was

previously validated by Audenaert et al. (Murphy, 2021). The

workflow is illustrated in detail in Figure 2.

The ability of the above described process to reconstruct a

patient’s pre-diseased state was evaluated in a synthetic

validation experiment. Healthy cases, not included in the non-

arthritic lower limb SSM were randomly provided with outlier

deformities around the knee joint, based on distance maps

generated from the OA population. Consecutively,

misalignment in combination with joint space narrowing was

enforced. Following, the reconstruction pipeline was used to

reconstruct the native input geometry. The reconstruction

error was evaluated by means of the overall root mean square

(RMS) reconstruction error and mean absolute angular

reconstruction error in the coronal plane (varus -valgus). This

process is visualized in Figure 3.

2.3 2D Joint space mapping

Allowing statistical comparison of joint space loss between

samples, femorotibial joint distance maps were defined,

benefitting from the anatomical correspondence established by

the shape modelling pipeline. Following, the corresponding

distance maps were unwrapped towards a square boundary

2D mesh using a conformal mapping technique. The distance

information, visualized in the 2D mesh as colored dots, was

subsequently spline-based interpolated to provide a 128 by

128 isotropic pixel image to be used in neural-based learning.

Joints space measures were normalized and inverted in such

way that a value 1 corresponds with complete cartilage erosion or

a joint space width of 0 mm. The workflow is illustrated in

Figure 4.

2.4 Non-linear encoding of wear patterns:
Principal polynomial autoencoder

Principal Component Analysis (PCA) is a widespread

statistical technique for dimensionality reduction. Linearly

transforming the data in a new coordinate system, variation

in the data is captured in multiple principal components. The

previously obtained joint space images, however, are inherently

non-linear and are as such not amenable for analysis by classical

linear techniques including PCA (Nauwelaers et al., 2021).

Nevertheless, this type of data is ideal for use in neural-based

learning. In this domain, autoencoder networks represent the

standard for unsupervised feature learning of nonlinear input

data. Here we present a new extension of the technique: the

principal polynomial autoencoder (PPAE). The PPAE has the

structure of a common AE, except for the bottleneck; i.e. the last

layer of the encoder and the first layer of the decoder, which are

replaced by a low-rank singular value decomposition and

consequent polynomial regression to ensure decorrelated

scores (Figure 5).

AE networks have been introduced as a non-linear

generalizations of PCA. AE are classified as unsupervised

learning methods for pattern identification in complex

FIGURE 4
Representation of the 2D joint space mapping workflow. Starting from an anatomically standardized distance map (left) a 2D parameterization
(center) is developed. Spline-based interpolation provides a pixel image (right). The continuum from intact cartilage towards complete cartilage
erosion is color-coded, ranging respectively from blue = 0 (completely intact cartilage) to red = 1, (complete cartilage erosion).
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biological data. The commonly used AE networks consisted of

two main parts: an encoder and a decoder. The encoder

compresses the data into a small number of variables where

the decoder aims to reconstruct the original data from that

compact representation. One advantage of using an AE over

using popular data compression methods such as PCA, is that

linearity is not assumed. As such, non-linear cartilage wear

patterns can be captured at different stages of OA

progression. An important disadvantage of using AE however,

is the resulting variables not necessarily being uncorrelated,

opposed to the strictly uncorrelated outcome variables

following PCA (Hinton and Salakhutdinov, 1979). Nauwelaers

and colleagues effectively combined the power of PCA with the

flexibility of deep learning for 3D palatal shape modelling

(Nauwelaers et al., 2021). Nonetheless, PCA decomposition is

hampered by enforcing complex data in linear independent

components, while biological features often present non-linear

relations. To overcome the latter, Duquesne et al. introduced

principal polynomial regression (PPSA) on a linear feature space

such as shape analysis. This technique builds further on Principal

Polynomial Analysis (PPA), which itself is an adaptation on PCA

enabling to capture non-linear behavior of data. Being very

computational expensive, Duquesne and colleagues introduced

PCA prior to PPA to reduce the dimensionality in the PPSA

technique. Based on this PPSA technique, we extend the concept

of singular autoencoder analysis to its non-linear upgrade of

principal polynomial analysis on the linear latent feature space to

increase specificity and enhanced interpretability of the

observations (Duquesne et al., 2022).

Considering an unbalanced incidence between medio-lateral

and antero-posterior compartment wear, data augmentation

based on left-right and antero-posterior mirroring was

conducted prior to the encoding of the original distance plots

towards the pixel images, which serve as input for the

autoencoder (step 3). This way, 4 times as much training data

was offered for neural network training. A simple model

architecture was adopted, consisting of two fully connecting

layers to encode the input distance images into a compact

latent space of 15 dimensions. Model and hyperparameter

performance was evaluated by means of the mean squared

error metric with L2 and sparsity regularization.

2.5 Correlation between wear and
morphotype

Following unsupervised feature learning and consequent

polynomial parameterization of wear patterns, Uniform

Manifold Approximation and Projection (UMAP), was

applied to generate a 2-dimensional visual interpretation of

the resulting 15-dimensional feature space (Becht et al., 2019;

Dorrity et al., 2020). Contrary to PCA, a dimensionality

reduction technique based on linear projection of data,

UMAP is a non-linear dimension reduction technique. Proven

to largely preserve the global structure of the data and maintain

high visualization quality, it is often used for data visualization

purposes (Becht et al., 2019; Dorrity et al., 2020). Similarly, the

combined shape space of healthy twin reconstructions and

FIGURE 5
Representation of the principal polynomial autoencoder (PPAE). Anatomically standardized distancemaps are encoded to pixel images, serving
as input for the autoencoder. Singular value decomposition and consequent polynomial regression replace the last layer of the encoder and the first
layer of the decoder.
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healthy controls was visualized by this dimensionality reduction

method. Canonical correlation analysis is a statistical tool to

assess correlation between two sets of variables. Extended from

the multiple regression concept, canonical correlation analysis is

applied in the presence of multiple intercorrelated outcome

variables. Therefore, it was applied to investigate the

correlation with alignment and respectively femoral and tibial

bony phenotypes, avoiding manual measurements of alignment.

Focusing on the presence of correlation, canonical correlation

analysis is unable to perform risk assessment. Therefore, the

morphology related risk for knee OA requiring joint arthroplasty

was evaluated by Linear Discriminant Analysis, benchmarking

the geometry of the healthy twins of the arthritic samples against

the control population. Linear discriminant analysis (LDA) is a

statistical technique that compares to logistic regression. In the

case of normally distributed predictor variables, however, it has

proven to be a more efficient classifier (Efron, 1975). More

specifically, a LDA classifier was trained using the principal

component loadings of the shape entries as predictors,

outputting a binary scoring for OA requiring joint

arthroplasty. The performance of the LDA classifier was than

evaluated in a k-fold leave-one-out cross-validation. Shape

features were normalized in the Mahalanobis space to

decrease the impact of confounding variance of dominant,

unrelated features such as size (Audenaert et al., 2019a;

Audenaert et al., 2020). The LDA classifier was evaluated in

terms of positive predictive value (PPV), sensitivity and

specificity.

A negative control experiment was performed using a cohort

of healthy controls with artificially introduced deformities and

misalignment. The aim of this second validation was to evaluate

to what account the twin reconstruction pipeline impacted on the

prediction accuracy of the so called native geometry on the

associated risk for AO development. As the deformities were

induced randomly, there is no expected correlation with the

underlying morphotypes. and any correlation observed in this

negative control experiment would then be attributable to the

reconstruction pipeline and not the native geometry itself.

3 Results

3.1 Demographics

Out of the 933 subjects from the provided retrospective

database, a total of 798 cases (399 females and 399 males)

were found to fit the inclusion criteria and were therefore

eligible for retrospective assessment. In the female population,

a total of 61 cases were excluded for the presence of hip prosthesis

(n = 40), knee prosthesis (n = 5), osteosynthesis material (n = 2)

or for the existence of segmentation and/or registration errors

(n = 14). Similarly, combining the number of cases presenting

with hip prosthesis (n = 42), knee prosthesis (n = 5),

osteosynthesis material (n = 15) or segmentation and/or

registration errors (n = 12), a total of 74 cases were excluded

in the male population. The mean age of the included subjects

was 70.5 (±8.2) years. The control population, underpinning the

healthy articulated SSM, consisted of 622 non-arthritic limbs

obtained from 311 patients (181 males and 130 females). The

average age was 68.3 (±11.8) years (Audenaert et al., 2019a).

3.2 Synthetic validation experiment

Out of the first validation experiment, the reconstruction

error was estimated at an RMS of 0.56 mm (±0.53 mm). The

respective bone reconstruction error was 0.64 mm (±0.63 mm)

for the femur and 0.53 (±0.47 mm) for the tibia. Errors

introduced by the joint realignment were evaluated by

comparing the predicted versus original geometries and

measured 1.29° (±1.05°) in the coronal plane.

3.3 Cartilage wear pattern analysis

The polynomial autoencoder revealed 4 dominant,

orthogonal components, cumulatively accounting for 94% of

variance in the latent feature space. Clinically, the obtained

modes or cartilage wear patterns could be interpreted as

medial (54.8%), bicompartmental (25.2%) and lateral (9.1%)

wear. Two particular wear patterns were present within the

polynomial components describing respectively a distinct

subtype of medial wear, namely anteromedial (11.3%) versus

FIGURE 6
Visual representation of the projected shape space of OA
cases with RGB coloring according to the observed value of the
first three principal polynomial components.
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posteromedial (10.4%) wear, as well as tibial spine impingement

(4.5%) as observed in coronal tibiofemoral subluxation. A 2D

projection of the polynomial encoder feature space using

UMAPS is presented in Figure 6.

When evaluating the correlation of the wear pattern with

native limb geometry, significant relations were observed, most

prominent with varus valgus-alignment. When visualizing the

shape configurations correlating with the observed wear patterns

the following observations were made. The primary mode of

variation, indicating medial towards bicompartmental wear

accounted for nearly half of the variance within the latent

space (49.5%). This component correlated significantly with

the healthy twin geometry, in particular varus alignment (r =

0.4, p = 1.43E-19). Varus alignment correlating with this wear

type presented with associated lateral bowing, proximal femoral

varus, a decreased femoral version and increased tibial internal

torsion.

The second orthogonal component was found to further

differentiate medial wear into anteromedial and posteromedial

wear (r = 0.29, p = 1.71E-08) (Figure 7). Limb geometry

corresponding with posteromedial wear demonstrated a

neutral to varus alignment, increased tibial slope as well as

increased external tibial torsion, whereas the limb geometry

corresponding with anteromedial wear corresponded mostly

with what is clinically considered as a constitutional varus,

increased femur bowing, decreased femoral torsion and a

neutral tibial slope.

A distinct pattern of lateral wear was captured within the 3rd

mode of variance, correlating with valgus alignment. Within this

component, 9.12% of wear was described as lateral (r = 0.25, p =

2.01 Ee-05). Valgus alignment correlating with this wear pattern

presented with associated medial bowing, proximal femoral

valgus, increased femoral anteversion and increased tibial

external torsion.

Finally, the 4th mode of variation described respectively

lateral and medial spinal wear or impingement, accounting for

4.53% of feature space variance. This pattern of wear correlated

the least with native joint geometry and with the lowest

significance value (r = 0.19, p = 0.013).

3.4 Morphology based osteoarthritis risk
assessment

When benchmarking the geometry of the healthy twins

of the arthritic samples against the control population

there was a relevant and significant correlation between

native geometry and the risk of OA development

requiring joint arthroplasty (r = 0.58, p = 6.31 E-119).

When projecting the shape space in 2D (UMPAS) the

healthy control group and OA healthy twins, representing

the native limb geometry of the currently diseased

cases, delineated as distinct phenotypes (Figure 8). Shape

features were normalized to minimize the impact of

confounding variance of dominant features such as patient

size. Limb alignment and shape demonstrated an overall

positive predicted value of 0.80 for OA requiring joint

arthroplasty development and a negative predictive value of

0.74. The observed sensitivity and specificity equaled

respectively 0.81 and 0.73. The sex specific positive

predictive values was 0.83 and 0.76 for respectively the

male and female sex, whereas the sex specific negative

predictive value was 0.81 and 0.72 for again respectively

male and female cases.

FIGURE 7
Comparison of limb geometry corresponding with posteromedial (left) and anteromedial (right) cartilage wear. Posteromedial wear is
correlated with neutral to varus alignment, increased tibial slope and external tibial torsion. Anteromedial wear is correlated with a constitutional
varus, increased femur bowing, decreased femoral torsion and a neutral tibial slope. For visualization purposes, differences obtained following the
canonical correlation analysis were amplified with a factor 4.
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3.5 Negative control experiment

Benchmarking the geometry of the virtual healthy twins,

reconstructed out of healthy samples that were artificially

deformed and misaligned, against the original healthy control

samples, a negligible and non-significant correlation between

both was detected (r = 0.06, p = 0.72). As shape space was

projected in 2D (UMAPS), largely overlapping phenotypes were

observed (Figure 8).

4 Discussion

The understanding of cartilage wear patterns is important to

improve insight in knee OA disease onset and progression. In this

study, cartilage thickness was assessed in an anatomically

standardized manner. As a consequence, the results aid in the

understanding of spatial variation in cartilage degeneration in

knee OA. Furthermore, assessing the correlation between limb

morphology and the risk for knee OA requiring joint arthroplasty

assists in the identification of morphometric risk factors

potentially affecting the course of the disease.

In the present study, unsupervised learning was applied on a

large cohort of degenerative knee joints to asses distinct patterns

in cartilage wear and establish the relation with limb alignment

and local joint geometry. The polynomial autoencoder revealed

medial and lateral wear to be related to respectively varus and

valgus malalignment, confirming previously published findings

(Sharma et al., 2010; Sharma et al., 2013; Dell’Isola and Steultjens,

2018; Siddiqi et al., 2022). However, Siddiqi and colleagues

assumed coronal plane malalignment being rather a response

than a cause of knee OA. In contrast, we found it to be present

already in a pre-diseased state (Siddiqi et al., 2022). As such, we

consider it to be part of an arthritic phenotype rather than being

uniquely a result of knee OA.

Within the group of medial cartilage wear, the polynomial

autoencoder revealed a further differentiation into

anteromedial and posteromedial wear. Whereas

anteromedial wear appeared to correspond with the classic

description of constitutional varus, posteromedial wear

demonstrated a rather neutral to slight varus alignment in

combination with a more pronounced posterior tibial slope.

Multiple authors linked greater posterior tibial slope to an

increased ACL rupture risk (Lansdown and Ma, 2018; Kim

et al., 2019; Mortazavi and Vosoughi, 2022). As the femoral

condyle translation increases, the ACL is forced to elongate

and the tension placed on the ligament intensifies (Lansdown

and Ma, 2018). For ACL deficient knees, the wear pattern was

suggested to be distinct and posteromedial as opposed to

anteromedial wear in ACL intact varus deformity. Rout and

colleagues confirmed these findings by describing a shift from

anteromedial wear in ACL intact knees towards progressively

FIGURE 8
2D representation of multiple shape spaces using UMAPS The depicted shape spaces represent the healthy control population (blue), the
virtually reconstructed healthy twins from the diseased subjects (yellow) left panel and the virtually reconstructed healthy twins from the artificially
deformed and misaligned healthy control samples (red) right panel. Largely overlapping shape spaces are observed for the heathy control subjects
and their virtual reconstruction following artificial deformation whereas distinct phenotypes are delineated between the healthy control
samples and the virtual healthy twins, reconstructed out of the arthritic samples.
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more posteromedial wear for increasing ACL damage. These

findings suggested ACL deficiency to be a causative factor for

posteromedial cartilage wear as it allows greater

anteroposterior movements in the tibiofemoral joint (Rout

et al., 2013). Having identified a specific phenotype related to

posteromedial cartilage wear, our findings were supportive to

previous clinical observations. However lacking information

about the soft tissue status, we cannot differentiate whether

posteromedial wear is solely based on a specific phenotype that

additionally increases the ACL rupture risk or whether it

develops following ACL rupture, as the specific knee

joint morphology makes the subject susceptible for ACL

rupture.

Observing the correlation between limb morphology and

the risk for knee OA requiring joint arthroplasty, a negative

control experiment revealed largely overlapping shape spaces

of both the virtually reconstructed healthy twins of the

artificially deformed healthy subjects and the healthy

control group. As such, the perceived correlation between

the predicted native joint geometry and the risk for knee

OA requiring arthroplasty is not affected by the

reconstruction pipeline. To our knowledge, we are the first

to enable distinct knee OA risk assessment based on knee joint

morphology in the absence of disease-induced abnormalities.

These findings enable accurate and early identification of

subjects at risk and so enlarges the number of joint

preserving treatment possibilities.

One of the nowadays routinely used preventive treatment

options, is joint preserving knee osteotomy surgery (He et al.,

2021). As coronal plane malalignment impacts knee joint OA

progression, restoring the mechanical axis by joint realignment

positively impacts disease advancement (Sharma et al., 2010;

Sharma et al., 2013; He et al., 2021). Following osteotomy

surgery, knee joint loading is redistributed and knee joint

contact pressures are altered (He et al., 2021). We believe that

the observed correlation between native joint geometry and the

risk for incident knee OA requiring joint arthroplasty enables

identification of young, healthy subjects at risk. As a result, those

with a high risk can then be treated with joint realignment

surgery in a pre-diseased state. Aiming to detect the drivers in

joint development and morphology, the genetic background

becomes of importance. Although rapidly evolving, genetic

research for orthopedic purposes is a relatively recent research

domain. Regarding the hip joint for example, Evangelou et al.

performed a Genome Wide Association Study (GWAS) meta-

analysis on cartilage thickness of the hip joint to detect genetic

polymorphisms (Evangelou et al., 2014; Boer et al., 2021). Similar

research for detection of knee OA drivers is currently lacking.

However, the identification of genetic polymorphisms that lead

to knee OA promoting phenotypes can aid in early detection of at

risk subjects.

Currently, the identification of subjects at risk is hampered

by the inability to detect early changes in cartilage thickness

based on the available OA scoring and classification systems.

The amount of cartilage degeneration is typically graded using

discrete scoring systems in multiple artificially separated

regions of interest (Sharma et al., 2010; Sharma et al., 2013;

Favre et al., 2017). Aiming to avoid both artificial separating

the cartilage layer and grading the amount of degeneration by

means of discrete scoring systems, our data collection relies on

anatomically standardized cartilage thickness measurements.

Similarly, Favre and colleagues described the use of anatomical

cartilage thickness maps (Favre et al., 2017; Favre et al., 2021).

Williams et al., on the other hand, established anatomical

correspondence relying on SSM (Williams et al., 2010). In

general, establishing anatomical correspondence among

knees for the entire articular surface (i.e., providing an

anatomical standardization) allows statistical comparison of

groups of knees. Pattern-based approaches considering

overall “thickness maps (images)” can then allow for

the characterization of features that are lost when

cartilage thickness is reduced to a few independent

mean thickness measures (Favre et al., 2013). Population-

wide analysis allows documenting disease progression

and response to therapy assessments (Williams et al.,

2010). In the present work we leverage this approach

towards unsupervised learning applications and variance

models.

4.1 Strengths

Some of the major strengths of this research lies in the

innovative methodology. First, reconstructing the original

alignment and the joint morphology offers the unique

advantage to return to a pre-diseased state.

Second, we present the concept of converting anatomically

corresponding color-coded distance maps into pixel images

for use in neural-based learning. As biomechanical

information is often represented using colormaps, the

presented workflow on color-based images for use in neural

learning can be extrapolated towards numerous

biomechanical research applications. For example,

estimation of articular joint contact stresses by means of

FEA or DEA typically provides a similar color-coded

output (van Houcke et al., 2020).

Finally, conclusions regarding both the phenotype-based

distinct knee OA risk and the correlation between cartilage

wear patterns and limb morphology were based on a

substantial research population of 1420 cases.

4.2 Limitations

Besides the strengths, we have to admit some limitations. As

we present here a proof of concept for cartilage wear pattern
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recognition built on neural-based unsupervised learning, we

developed a rather straightforward autoencoder consisting of

two fully connecting layers. Extending this approach for other,

possibly more complex, biomechanical problems as described

above, convolutional neural networks might are more

appropriate to handle pixel images.

Furthermore, the main focus of the present work lies on the

assessment of cartilage wear patterns and on finding correlations

between the development of knee OA requiring joint arthroplasty

and knee phenotypes. Although the extraction of information

about osteophyte formation is possible from the available dataset,

this was not evaluated. We opted to focus on joint space

narrowing, especially as osteophyte formation is triggered by

both local and systemic factors according to the hypothesis of

total joint involvement. Thus, osteophyte formation is not

necessarily localized close to cartilage erosion but can be seen

in the complete joint. Osteophyte formation at the intercondylar

notch has been related to increased stress and local wear in case of

malalignment and is considered an early sign of OA (Sasho et al.,

2017). More detailed research regarding variations in

intercondylar notch osteophyte formation is needed, especially

since the polynomial autoencoder revealed the 4th orthogonal

component to describe medial and lateral notch impingement.

Lastly, although our findings are based on a substantial dataset

consisting of both a large number of diseased subjects and a healthy

control group, an important limitation of our findings relates to the

amount of available clinical information of the patients investigated.

For example, information regarding soft tissue status, and in

particular the ACL, is absent. Similar and although known to

contribute to knee OA disease progression data about Body Mass

Index (BMI) and lifestyle-related knee joint loading is lacking (Blazek

et al., 2014). Furthermore, a possible selection bias is introduced by

excluding the cases present with hip and/or ankle arthroplasty,

excluding cases probably suffering OA driven by systemic factors

rather than by knee-specific risk factors. However, aiming to establish

phenotypes at risk for development of end-stage knee OA,

identification of knee-specific risk factors is prioritized in this

study rather than identification of systemic risk factors. Lastly, as

the results are based on a single homogenous population of Western

EuropeanDescent, the extent of which findings can be extrapolated to

other populations is unknown. The complex interaction between

genes, culture and the environment results in a population-based

variation, with several studies showing that the appropriate evaluation

of this variation requires specific standards for each population

(Rissech et al., 2013; San-Millán et al., 2017). Nevertheless, in

general we expect our results to be representative by extension for

a Western European population.

5 Conclusion

In the present study, we developed an innovative

methodological workflow to correlate cartilage wear

patterns with knee joint phenotype and to assess the

distinct knee OA risk based on pre-diseased samples. Our

findings confirm previous studies suggesting that both

alignment and joint geometry are highly and significantly

correlated with the risk of OA onset and progression.

Further, particular morphological phenotypes correlate with

distinct cartilage wear patterns.
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