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Osteosarcoma (OS), as a typical kind of bone tumors, has a high incidence

among adolescents. Traditional tumor eradication avenues for OS such as

chemotherapy, surgical therapy and radiation therapy usually have their own

drawbacks including recurrence and metastasis. In addition, another serious

issue in the treatment of OS is bone repair because the bone after tumor

invasion usually has difficulty in repairing itself. Hydrogels, as a synthetic or

natural platform with a porous three-dimensional structure, can be applied as

desirable platforms for OS treatment. They can not only be used as carriers for

tumor therapeutic drugs but mimic the extracellular matrix for the growth and

differentiation of mesenchymal stem cells (MSCs), thus providing tumor

treatment and enhancing bone regeneration at the same time. This review

focuses the application of hydrogels in OS suppression and bone regeneration,

and give some suggests on future development.
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Introduction

Osteosarcoma (OS), as a well-known primary bone tumor, involves the invasion

of tumors into bone tissue and often occurs in children and adolescents (Mann et al.,

2022). Reports suggested that OS has become the second leading cause of death

among young cancer patients, especially to the stage of tumor lung metastasis (Siclari

and Qin, 2010; Roessner et al., 2021). OS patients may suffer from disability and even

death, eliciting heavy blows and losses to the society. Although developing quickly,

there are often no obvious clinical signs or severe pain in the early stage of OS.

Therefore, it’s critical but tricky for the diagnosis and treatment of OS. To date,

clinical treatment strategies include allogeneic bone transplantation and

mechanically processed prosthesis (Gianferante et al., 2017; Simpson and Brown,

2018). However, defects such as insufficient allogeneic bone sources and poor

biocompatibility severely limit their applications. Besides, most OS can be clean
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up by surgical intervention, but usually fails to completely

ablate the tumor, thus causing post-surgery recurrence and

metastasis (Lin et al., 2015; Chen et al., 2017; Friesenbichler

et al., 2017; Haghiralsadat et al., 2017; Liu et al., 2021; Wang

et al., 2021; Xu et al., 2022). Thus, to avoid postoperative

recurrence and metastasis as much as possible, chemotherapy

and radiotherapy are combined after surgery. Unfortunately,

radiotherapy is reluctant to exert effect in OS and OS is

susceptible to chemotherapy resistance (Bohnke et al., 2007;

Campbell, 2009; Gianferante et al., 2017; Shoag et al., 2019;

Pattee et al., 2020). What’s more, the patients receiving

chemotherapy often suffer from side effects including hair

loss and vomiting, which will obviously decrease the quality of

life (Bosma et al., 2018). At the same time, patients suffered

from OS and surgical resection will have bone defects, eliciting

acute pain and disability. Thus, implementing the

development of OS therapy is a pretty tough work.

Correspondingly, innovative and effective methods are

urgently needed to guide the therapy of OS in clinical

problems (Liao et al., 2021a).

As discussed above, it’s vital to ensure the complete

resection of OS after surgery but remains difficulty. Besides,

radical resection is dangerous because of the complex

anatomical structure and blood vessels in the bone tissues

(Wang et al., 2018a; Liu et al., 2019; Wang et al., 2019; Zhang

et al., 2019; Yang et al., 2020a; Pan et al., 2020). Along with the

development of biotechnology and nanotechnology, novel

alternative strategies with less side effects are developed.

Specifically, photothermal therapy (PTT) is becoming a

promising method that can covert near-infrared (NIR) light

into thermal damage in tumor tissues (Chu and Dupuy, 2014;

Chen et al., 2016; Liu et al., 2019; Wang et al., 2020; Xu et al.,

2021), rejecting tumor region without damaging other organs

or tissues (Xing et al., 2016; Shan et al., 2018; Pan et al., 2019;

Hou et al., 2020; Jiang et al., 2020). PTT is based on various

nanoparticles such as gold (Li Volsi et al., 2017;

Mahmoodzadeh et al., 2018; Liao et al., 2019), carbon (Du

et al., 2019; Farzin et al., 2019; Guo et al., 2022; Zhang et al.,

2022) and copper nanomaterials (Liu et al., 2018). For

example, PTT using gold nanoparticles has desirable

therapeutic efficacy for prostate cancer in clinical trials

(Rastinehad et al., 2019; Taneja, 2020). However, these

nanomaterials usually have unsatisfactory biocompatibility

and limited bioavailability. Thus, an appropriate carrier is

needed to avoid these defects of nanoparticles and benefit

their biological applications. More importantly, bone

metabolism is becoming unbalanced because of the

invasion of tumors into bone, leading to bone defect that is

difficult to repair itself (Velasco et al., 2015; Wang et al.,

2018b; Khajuria et al., 2018; Zhang et al., 2018). Therefore,

SCHEME 1
The applications of hydrogels-based therapeutics for suppressing the tumors and promoting bone regeneration in osteosarcoma treatment.
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therapeutic drugs, growth factors and/or stem cells are

urgently needed. Benefiting from the continuous

development in biomaterials science, bone tissue

engineering scaffolds become a fascinating material with

great hope to bone regeneration (Gong et al., 2009; Ni

et al., 2014; Li et al., 2018a; Shi et al., 2019). Among

various tissue engineering scaffolds, hydrogels with

excellent bioactivity, biocompatibility and biodegradability

have attracted much attention of researchers. Hydrogels are

three-dimensional porous mesh gel with abundant water

absorbance (Xu et al., 2020). It can not only afford a

vehicle for tumor therapeutic drug but mimic the

extracellular matrix (ECM) for the growth and

differentiation of mesenchymal stem cells (MSCs), thus

providing tumor treatment and enhancing bone

regeneration at the same time (Chen et al., 2020).

Moreover, when integrating hydrogels with other drug

delivery systems such as liposomes and microspheres,

carriers with better performance can be created by synergism.

Herein, we discussed the recent advances in the use of

hydrogels to achieve OS therapy, with emphasis on

suppressing the tumors and Promoting bone regeneration

(Scheme 1). We believe that This review will provide a useful

reference for hydrogels-based OS therapy and the field of

FIGURE 1
(A) Sequential Drug Delivery with Gel-MP Construct, Showing Preparation of Gel/CA4−MP/DTX for Two-Pronged Locally Synergistic
Chemotherapy ofOsteosarcoma. (B) Variations of bodyweight and survival rate. (A)Change of bodyweight and (B) survival rate of K7 osteosarcoma-
grafted mice after treatment of PBS as control, Gel−MP, CA4, DTX, CA4+DTX, Gel/CA4−MP, Gel−MP/DTX, or Gel/CA4−MP/DTX. [Data were
represented as mean ± SD (n = 10; (*) p < 0.05)].
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FIGURE 2
(A) Schematic depiction of nanocomposite hydrogels fabrication that can be injected for drug release in response to stimuli. (B)MOS-Js, live or
dead staining indicated more dead cells upon exposure with free DOX than nanogels and nanocomposites loaded DOX (Scale bar 100 μm).
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complex diseases to combine tumor therapy and tissue

engineering.

Suppressing the tumors by hydrogels

The conventional therapy strategies for OS comprise the

combination of chemotherapy with surgical methods (Dou et al.,

2013). Chemotherapy for OS began in the 1970s, which includes

doxorubicin (DOX), cisplatin et al. Despite great expectations are

expected in chemotherapy, the overall efficacy of which are no

more than 60% (Lai et al., 2007) attributing to the high toxic

effects of chemotherapy and drug resistance in secondary cancer.

Therefore, it’s crucial to construct an artificial implant for the

local administration and controlled-release of chemical drugs

(Wu et al., 2018).

Several researches have demonstrated that hydrogels are

capable of treating tumors due to their porous structure and

versatile biocompatibility. It’s acceptable to administer

therapeutic drugs or functional cells into the resected OS area

with the help of hydrogels (Yang et al., 2020b). With the

advantages of providing continuous drug release for tumor

illumination, hydrogels encapsulated with drugs can afford

localized tumor therapy, replacing systemic chemotherapy

administered intravenously (Zheng et al., 2017; Yang et al.,

2018; Chen et al., 2019; Peng et al., 2022). As an example,

chitosan-based hydrogels are designed for therapeutic agents

and cell delivery for tumor therapy (Pan et al., 2019). Besides,

thermoresponsive hydrogel based on PEG-g-chitosan (PCgel)

can benefit T lymphocyte infiltration into the gel and allow a

sustainable release of cells (Jiang et al., 2020). Further, reports

have suggested the gelatin gel for the release of anti-carcinogenic

drugs (Hu et al., 2018). Wu et al. united gelatin methacryloyl

(GelMA) hydrogel with gemcitabine hydrochloride loaded

liposomes for OS ablation, which exhibited desirable

properties in antitumor and sustained release (Wu et al.,

2018). Specifically, the hydrogel system showed feasible

application in eradicating OS in vivo by MG63-bearing mice.

Because of the complexity and diversity of tumor

pathogenesis, the effect of single chemical drug may be

compromised. Thus, synergistic chemotherapy is needed to

solve the problem. For instance, Combretastatin A-4 (CA4)

are able to bind the tubulin of endothelial cells, disturbing the

formation of blood vessel and ultimately, eliciting tumor necrosis

through inhibiting the supply of oxygen and nutrients (Perez-

Perez et al., 2016). Unfortunately, CA4 can only work on the

internal tumors with rich vascular, but often fail to treat the edge

of the tumor tissues. Nevertheless, the peripheral tumor tissues

are sensitive to traditional drugs like DOX and docetaxel (DTX).

For this issue, Zheng et al. developed an injectable

thermosensitive hydrogel system for the co-encapsulation and

sequential release of CA4 and DTX (Figure 1A) (Zheng et al.,

2017). CA4 was released preferentially, which could damage the

neovascularization system and inhibit the exchange of nutrients.

The followed release of DTX could clean up the surface cells of

tumor tissues and lead to apoptosis of the tumor (Figures 1B,C).

Likewise, Sun et al. co-loaded Oxaliplatin (OXA) and

Alendronate (ALN) onto mPEG45-PLV19 thermosensitive

hydrogel (Sun et al., 2020). OXA is a widely accepted

anticancer drug, which can induce immunogenic death (ICD)

for tumor elimination. ALN have bone affinity as well as the

effect of inhibiting bone destruction. Studies found that the

system could inhibit the progress of OS and prevent tumor

lung metastasis.

Currently, the OS treatment regimen is mostly DOX,

methotrexate (MTX), and cisplatin (CDDP) based. The

clinical efficacy of this regimen was proved by the systemic

administration of the aforementioned drugs (Bielack et al.,

2009). Ma et al. successfully established a system based on

poly (L-lactide-co-glycolide)-poly (ethylene glycol)-poly

(lactide-co-glycolide) (PLGA-PEG-PLGA) for delivering

CDDP, MTX, and DOX (Ma et al., 2015). In the human

osteosarcoma model of nude mice, the triple-delivery system

could induce enhanced tumor apoptosis, displaying high tumor

suppression efficacy. Furthermore, the evaluation of alteration in

mice’s bodies and their organs histological analysis in ex vivo

experiment revealed less toxic effects and obvious organ damage

after localized treatment. Therefore, local co-delivery of CDDP,

MTX, and DOX via thermos-sensitive hydrogels might be a

promising option for better osteosarcoma treatment. “Smart”

hydrogels are novel biomaterials that are influenced by external

stimuli. Thus, multiple investigations have been carried out to

determine the scope of bio-medical implementations, for

instance, regenerative engineering and therapeutic delivery.

Jalili et al. established nano-engineered hydrogel comprising

poly (NIPAM-co-AM)/MNPs, for local and on-demand

injection for delivering drugs (doxorubicin (DOX))

(Figure 2A). In this investigation, shear-thinning hydrogels

capable of self-recovering were engineered by manipulating

gelatin methacrylate (GelMA) network’s crosslinking density.

Prior to this crosslinking GelMA pre-polymer solution was

mixed with DOX-loaded Poly (NIPAM-co-AM)/MNP

nanogels (GelMA/(poly (NIPAM-co-AM)/MNPs)). The

magnetic field and temperature-dependent DOX release from

(GelMA/(poly (NIPAM-co-AM)/MNPs)) were evaluated. Lastly,

the efficacy of this new form of DOX-carrying drug on pre-

osteoblast and osteosarcoma cells was investigated in vivo

(Figure 2B).

Currently, the therapeutic drug’s maximum tolerated dose

(MTD) is not only important for determining the formulation’s

concentration, but also for predicting its success in the clinical

setting (Kim et al., 2010; Ranade et al., 2014). Even though the

MTD of some drugs showed improvement to some extent

through the polymer-regulated delivery mechanism, the MTD

of drugs that are delivered by hydrogel still needs additional

research. For localized OS treatment, Yang et al. used thermo-
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sensitive hydrogel to incorporate DOX into the poly (D,Llactide-

co-glycolide)-poly (ethylene glycol)-poly (D,L-lactide-co-

glycolide) (PLGA-PEG-PLGA) (Yang et al., 2018). The PLGA-

PEG-PLGA triblock copolymer was successfully prepared and

proved by 1HNMR. Furthermore, hydrogel characters, including

rheological evaluation, sol-gel phase transition, and drug release

in the in vitro experiment were studied. The DOX-packed

hydrogel’s cytotoxicity was evaluated in vitro, in K-7 (mouse

osteosarcoma cancer) and Saos-2 (human osteosarcoma cancer)

cells. Lastly, the DOX-loaded hydrogel’s antitumor efficacy was

determined in vivo in the K-7 mice tumor model. DOX-loaded

hydrogel’s systemic toxicity and the safety of its local delivery

were assessed by mice’s organ pathological analysis and their

survival rate. Similarly, Yu et al. suggested a procedure for local

Sun and chlorin e6 (Ce6) delivery by zwitterionic redox-

responsive hydrogels for preventing the relapse of

osteosarcoma (Figure 3A) (Yu et al., 2020). Yu synthesized

hydrogels using a redox-responsive cross-linker (DSDMA), in

which drugs Ce6 and Sun were introduced, a complex called Sun/

Ce6@Gel (Figure 3B). This composite was administered in the

residual cavity instantly post tumor eradication. Ce6 and Sun are

liberated from the zwitterionic hydrogels because of redox

sensitivity post-implantation at the surgery site (Figure 3C).

This should result in reduced anti-apoptotic and increased

FIGURE 3
(A) Schematic depiction of Sun/Ce6@Gel synthesis and Sun and Ce6 synergistic antitumor impact in inhibiting mice tumor recurrence. Sun/
Ce6@gel was generated by fusing Ce6, Sun, DSDMA, and SBMA for 2 h, and was administered in the residual cavity, thereby it inhibited tumor relapse
post osteosarcoma marginal eradication. Casp-3: caspase-3. The degeneration and DSDMA–SBMA hydrogels release data. (B) Hydrated
DSDMA–SBMA hydrogels weight alternations in the solution of PBS supplemented with DTT (100 mM). (C) Individual tumor growth kinetics
during the treatment. (D) Invivo nude mice tumor recurrence bioluminescence images. POD, postoperative days. (E) Survival rates (F) Mice’s body
weights were measured, and the effective doses of Sun and Ce65 were selected as 5mg and 1 mg per kg, respectively.
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pro-apoptotic gene expression. The potency of Ce6-and Sun-

packed hydrogel as a postoperative osteosarcoma therapy was

determined in both in vitro and in vivo conditions

(Figures 3D–F).

Promoting bone regeneration by
hydrogels

Osteosarcoma originates at the epiphyseal end with a rich

blood supply. The osteosarcoma effect on bone is huge, and the

body takes time to repair or heal itself. Therefore, stem cells,

small-molecule, external scaffolds, or growth factor drugs are

required (Velasco et al., 2015; Wang et al., 2018b). Recently,

computer-assisted digital technology, material mechanics, and

bone tissue engineering scaffolds (e.g., 3D printed scaffolds,

microspheres, and hydrogels) have progressed a lot with the

continuous advancement in the field of biomaterials (Li et al.,

2017; Xu et al., 2017). Hydrogels can imitate extracellular

matrix (ECM) and improve bone repair by proliferating and

differentiating MSCs (Liu et al., 2022). Thus, bone regeneration

has widely been studied because of its outstanding

osteoinductivity and bio-compatibility, -activity,

and—degradability (Feng et al., 2019). Yap et al. established

a novel thermoreversible hydrogel scaffold comprising glyoxal

(Gx), PLuronic F127, and carboxymethyl hexanoyl chitosan

FIGURE 4
(A) The diagrammatic GNRs/nHA hybrid hydrogel preparation. (B) The hybrid GNRs/nHA hydrogel application for photothermal treatment and
regeneration of bone tumor. (C) The micro-CT reconstruction in each group of mice after treatment for 2 weeks; (D) The bone volume (BV)
parameter in each mice group (*p < 0.05, **p < 0.01); (E) The tibia bone tumor H&E stained images of different groups.
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FIGURE 5
(A) Schematic illustration of various anchorage-independent osteosarcoma cells and anchorage-dependent osteoblasts responses to adhesive
activity and stiffness of scaffold (B) Respond of osteoblasts and osteosarcoma cell’s mechanisms to stiffness and adhesion ligands of ECM,
respectively. ECM’s stiffness and not thematrix adhesion influences the growth of osteosarcoma cells by regulating the integrin-induced FA signaling
pathway, while osteoblasts are primarily influenced by ECM adhesion ligands via the integrin-induced AJ signaling pathway modulation.

TABLE 1 Recent summary of therapeutic strategies for hydrogel osteosarcoma.

Components Models Strategies References

Chitosan Tumor Therapeutic drug delivery 33

PEG-g-chitosan Tumor Immunotherapy 31

Gelatin methacryloyl OS Therapeutic drug delivery synergy therapy 56

Injectable thermosensitive hydrogel OS Co-encapsulation and sequential release of CA4 and DTX 61

Poly (NIPAM-co-AM)/MNPs OS Local and on-demand injection for delivering drugs [doxorubicin (DOX)] 66

GNRs/nHA Bone regeneration Healing defects after bone tumor surgical resection 80

Poly (ethylene glycol) diacrylate (PEGDA) and GelMA Bone regeneration Modulating the integrin-induced pathway of adherens junction 86
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(CA), injected for encapsulating human osteosarcoma MG-63

cells. These hydrogel encapsulated cells proliferated >400%
during a 5-day incubation period. The results suggest that

F127/CA/Gx hydrogel can envelop cells for tissue

engineering (Yap and Yang, 2020). Prosthodontic-inspired

photopolymerization stimulated by blue light is a gentle

process for initiating the polymerization of monomers (Chen

et al., 2020; Downs et al., 2020; Feng et al., 2022), The blue light

initiator in the hydrogel system commences hydrogel cross-

linking. Human Bone contains 50%–70% inorganic calcium

and phosphorus. Nano hydroxyapatite (Ca10(PO4)6(OH)2,

nHA) has been proven to provide nutrition for bone defects

and also help repair bone (Li et al., 2018b; Tan et al., 2021).

However, nHA can also inhibit tumors (Barbanente et al.,

2021). The hybrid nHA hydrogel is hypothesized to furnish

an ECM mimic post osteosarcoma eradication and stimulate

bone defect restoration. Liao et al. used light-induced

photopolymerization for developing GNRs/nHA hybrid

hydrogel (Figure 4A) (Liao et al., 2021b). To generate a

biocompatible hydrogel, methacrylate gelatin (GelMA) and

methacrylated chondroitin sulfate (CSMA) were used. The

nHA and GNRs dissipated easily in the hydrogel. The

developed GelMA/CSMA hydrogel, GNRs/nHA hybrid were

used for eradicating the residual tumor after surgery via PTT

and for healing defects after bone tumor surgical resection

(Figure 4B). The GelMA/CSMA hydrogel photothermally

treated tumors residues left after surgery and repaired the

bone deformities in a tibia osteosarcoma mice model

(Figures 4C–E).

Osteocytes are crucial for the bone remodeling process,

during which the trapped osteoblasts phenotypically alter to

mature as osteocytes. The underlying osteocyte mechanisms

are still debatable, and it has few study models. E. J. Lee et al.

studied how alterations in the mechanical features of bone matrix

that lack minerals can affect the phenotypic transformation of

osteoblast to osteocyte in a 3D setting via bioprinting-based

technology called Combing Extrusion printing on Cellulose

scaffolds with Lamination (ExCeL) (Lee et al., 2019).

Similarly, Vashisth et al. established a biomimetic 3D hybrid

scaffold after studying the natural bone architecture with nano-

microscale features, favorable porous interconnected structure,

and mechanical strength (Vashisth and Bellare, 2018). The key

hybrid scaffold constituents are core-sheath nanofibers and

hydrogel, which are organized suitably to generate a

microenvironment that resembles bone. The core-sheath

nanofibers are specifically coiled tightly into a ring to imitate

the osteon and reinforced in a hydrogel matrix.

In comparison with traditional biometal scaffolds (like that of

titanium and titanium-based alloys), Young’s

polyetheretherketone (PEEK) model resembles more human

cortical bone, thereby, alleviating osteoporosis and

osteonecrosis risk triggered by stress shielding (Wang et al.,

2014; Torstrick et al., 2018). Based on this, Yin et al.

fabricated a novel and versatile coating made from GelMA

hydrogels and TOB-laden MXene nanosheets on an inert

orthopedic PEEK material, to eliminate remaining cancerous

cells, prevent infection related to bacteria, and guide the

regeneration of bone tissues (Yin et al., 2020).

How cancerous cells and their normal counterparts have

anchorage-dependency and react to the stiffness and adhesion

ligand density of the same ECM is still unclear. Jiang et al.

analyzed the impact of ECM adhesion ligand density and

stiffness on osteosarcoma cells (bone cancerous cells) and

osteoblasts (bone-producing cells) via poly (ethylene glycol)

diacrylate (PEGDA) and GelMA hydrogels (Figure 5A) (Jiang

et al., 2019). When osteosarcoma cells were cultured in 3D

PEGDA/GelMA hydrogel matrix, they showed high

dependence on the stiffness of the matrix by modulating the

integrin-induced pathway of focal adhesion (FA), whereas

osteoblasts showed high sensitivity toward matrix adhesion

ligand density by modulating the integrin-induced pathway of

adherens junction (AJ) (Figure 5B). But in the 2D hydrogels

surface culture, bone cancerous cells presented a different

behavior and showed sensitivity to the matrix adhesion ligand

density due to their “forced” attachment to the substrate, similar

to anchorage-dependent osteoblasts.

Conclusion and prospects

Hydrogels are enormous water meshes that characteristically

resemble extracellular matrix. These are very porous and have

excellent biological compatibility and degradability. They are

capable of introducing growth factors that can repair bone

defects (Torstrick et al., 2018; Zhang et al., 2018). Therefore,

they are good suiters for repairing bone. Literature indicates

potential hydrogels application for regenerating bone tissue. For

potential bone cancer therapy, these should first be capable of

curing tumors. Administering drugs or other molecules directly

at the resected tumor site for treatment is highly advised.

Hydrogels provide sustainable drug release for tumor

eradication (Ali Gumustas et al., 2016; Hu et al., 2020). Some

act by delivering the drug directly to the specific system 126.

Localized hydrogel therapy for cancer treatment can replace

systemic chemotherapy given orally or intravenously (Zheng

et al., 2017; Yang et al., 2018; Chen et al., 2019). With the

discovery of new hydrogel functions, their implementations

are no longer limited to repairing tissues, it has extended to

bone repair and tumor eradication (Table 1).

However, hydrogel’s application in osteosarcoma is limited for

the following reasons, first, despite extensive literature research on

hydrogels, clinical applications have encountered bottlenecks, and

only a few hydrogels have been approved and commercialized (Fan

et al., 2022; Li et al., 2022). Additionally, cytotoxicity is often

stimulated because of the hydrogel’s inorganic nature and the

metal ions involved. Hydrogels are mainly developed from raw
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materials that are non-essential to organisms. With further

investigations solving the aforementioned issues associated with

osteosarcoma therapy-related hydrogels, it is expected that a

promising candidate might be discovered that would contribute

to human health and well-being.
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