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Exposure of the skin to an external stimulus may lead to a series of irreversible

dysfunctions, such as skin aging, refractory wounds, and pigmented dermatosis.

Nowadays, many cutaneous treatments have failed to strike a balance between

cosmetic needs and medical recovery. Extracellular vesicles (EVs) are one of

the most promising therapeutic tools. EVs are cell-derived nanoparticles

that can carry a variety of cargoes, such as nucleic acids, lipids, and proteins.

They also have the ability to communicate with neighboring or distant cells.

A growing body of evidence suggests that EVs play a significant role in skin

repair. We summarize the current findings of EV therapy in skin aging,

refractory wound, and pigmented dermatosis and also describe the

novel engineering strategies for optimizing EV function and therapeutic

outcomes.
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Introduction

As the largest barrier organ, which is constantly exposed to the external environment,

skin has a relatively high risk of suffering injuries due to genetic make-up, lifestyle,

nutrition, solar radiation, and other environmental factors (Hong et al., 2021; Meccariello

and D’Angelo, 2021). Aging and diseases of skin pose a multidimensional burden that

includes mental, social, and financial consequences for patients, families, and society.

Although skin abnormalities have attracted considerable attention worldwide for decades,

available treatments have not achieved desirable effects and need to be further studied

(Ogawa, 2017; Heidari Beigvand et al., 2020).

EVs are nanosized vesicles with phospholipid bilayer membranes. They can carry

important gene information to recipient cells, such as lipids, proteins, carbohydrates, and

nucleic acids (e.g., DNA, mRNA, miRNA and lncRNA, etc.) (Hong et al., 2019a). They

can generally regulate biological events (e.g., cell proliferation, differentiation, apoptosis,
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TABLE 1 Features of EVs in promoting wound healing, anti-aging, and anti-pigmentation.

Cell type Effect Source of
EVs/
exosomes

Evidence and
clues

Features References

Advantages Disadvantages

Stem cells Improving
skin aging

BM-MSCs-EVs ↓P16, P21, IL-6 and IL-1β High safety, low risk of
rejection, better
biocompatibility, being
readily storage, and few
tumorigenic and functional
diversification

High costs and tedious
sample preparation, and
potential ethical issues

(Oh et al. (2018); Hu et al.
(2019); Wang et al.
(2021a); Shi et al. (2021b);
Wang et al. (2021b); Wu
et al. (2021b);
Dorronsoro et al. (2021);
Hu et al. (2021)

↑health span

Improving
skin aging

GMSC-EVs ↓β-gal, P53, P21, γH2AX
& mTOR/P53

↑ cell proliferation

Improving
skin aging

hucMSC-exo ↑autophagy
↓DNA damage,
inflammation and
oxidative stress

Improving
skin aging

iPSC-exos ↑Col-1
↓β-gal, MMP-1 and
MMP-3

Anti-
pigmentation

hASCs-evs ↓melanin synthesis

↑autophagy-based
melanosome degradation

Improving
wound healing

ADSCs-exo ↑proliferation, collagen
metabolism and migration

↑healing rate and quality
of diabetic wound

Improving
wound healing

PGZ-Exos activating the PI3K/AKT/
eNOS pathway

↑cell viability,
proliferation, and
angiogenesis ability

↑ECM remodeling and
diabetic wound healing

Adult cells Improving
skin aging

3D HDF-XOs ↓TNF-α, MMP-1 High safety, low risk of
rejection, better
biocompatibility, and easy
accessibility

Single function and low
yield

Hu et al. (2019); Deng
et al. (2020); Wäster et al.
(2020)

↑TGF-β & pro-Col-1

Improving
skin aging

Fb-EVs ↑GPX-1, Col-1
&antioxidant activity

↓MMP-1

Anti-
pigmentation

Ultraviolet
Radiation A
(UVA)
irradiation-
stimulated
keratinocyte EVs

↑cell renewal, epidermis
thickening and anti-
apoptosis response

Others Improving
wound healing

USC-Exos transferring DMBT1 Useful for noninvasive early
diagnosis, easy accessibility,
and more closely related to
disease and lesion tissue

Samples prone to
contamination and
relatively large risk for
the operators

Chen et al. (2018); Mi
et al. (2020); Shi et al.
(2021a)

↑angiogenesis
↑diabetic wound healing

Improving
wound healing

saliva-Exos ↓SMAD6

↑ BMP2, angiogenesis and
wound healing

Improving
wound healing

platelets exosomes ↑angiogenesis
↑wound healing

Hydrogels Improving
wound healing

FHE hydrogel ↑proliferation, migration
and tube formation ability
of HUVECs, wound
closure rates,
angiogenesis, collagen
deposition and re-
epithelization

Controlled cost and easy to
prepare beforehand

Single function, poor
biocompatibility, and
heterogeneity in material
property

(Wang et al. (2019a);
Shiekh et al. (2020); You
et al. (2021); Zhao et al.
(2021); Xiong et al. (2022)

(Continued on following page)
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migration, and immunomodulatory reactions) in recipient cells

by conveying their inclusions. According to their diameter, EVs

can be classified into six subpopulations: exomeres, with a

diameter of less than 50 nm; exosomes, with a diameter of

30–150 nm; Ectosomes or shedding microvesicles, with a

diameter of 100–1000 nm; apoptotic bodies, with a diameter

of 1000–5000 nm; migrasomes, with a diameter of 500–3000 nm;

and large oncosomes, with a diameter of 1000–10,000 nm

(Anand et al., 2021).

EVs are secreted from almost all cell types as vehicles of

intercellular communication and information transfer (Hong

et al., 2019b). The vital role of EVs in tissue homeostasis and

repair has recently been demonstrated (Kalluri and LeBleu, 2020;

Sun et al., 2021), but our understanding of their function and

mechanism in skin dysfunction and diseases is still in its infancy

(Wang et al., 2019b; Guo et al., 2021).

In this review, we summarize the recent work on the

functions of EVs in severe skin problems (i.e., aging,

refractory wounds, and pigmented dermatosis) and outline the

strategy of engineered modifications of EVs in skin therapy.

Based on these advances, we discuss the current challenges and

future perspectives.

EVs improve skin aging

Exogenous factors (e.g., sunlight, ionizing radiation,

pollution, toxins, and other factors) can cause the appearance

of skin discoloration, sagging and dullness, roughness, deep

wrinkles, and even loss of skin elasticity, of which photoaging

is the most common (Meccariello and D’Angelo, 2021).

Endogenous senescence is also called inherent aging and is

affected by endocrine and genetic factors and reflects a

degradation process of the entire organism (Del Bino et al.,

2018). Stem cells have the capacity for excellent regeneration

and growth and have gained great interest in the scientific

TABLE 1 (Continued) Features of EVs in promoting wound healing, anti-aging, and anti-pigmentation.

Cell type Effect Source of
EVs/
exosomes

Evidence and
clues

Features References

Advantages Disadvantages

Improving
wound healing

The manganese
dioxide (MnO2)
nanosheets

↑ the survival and function
of human skin fibroblast
and HUVEC & the healing
of diabetic wounds

Improving
wound healing

OxOBand ↑wound closure, collagen
deposition, epithelial
regeneration and
angiogenesis

↓oxidative stress in
diabetic wounds

Improving
wound healing

CS ↑ the proliferation of aged
cells and the synthesis of
ECM proteins

↓ the upregulation of
MMPs

Improving
wound healing

HA-Gels ↑the proliferation of
fibroblasts and the
collagen synthesis

↓wrinkles

Nanoparticles Improving
wound healing

mag-MSC-Exos ↑wound closure and
angiogenesis

Controlled targeting, easy
synthesis, strong function,
and personalized
modification

Poor biocompatibility,
poor safety, and uneven
distribution

Wu et al. (2020; Wu et al.
(2021a)

Improving
wound healing

Exosomes derived
from NPs-loaded
MSCs

↑wound closure and
angiogenesis

Abbreviations: bonemarrow-derivedmesenchymal stem cell-extracellular vesicles, BM-MSCs; gingiva-derivedmesenchymal stem cell-extracellular vesicles, GMSC-EVs; exosomes derived

from human umbilical cord MSCs, hucMSC-exo; human pluripotent stem cell-derived exosomes, iPSC-exos; extracellular vesicles derived from human amniotic stem cells, hASCs-evs;

Exosomes of adipose stem cells, ADSCs-exo; exosomes derived from three-dimensional spheroids, 3D HDF-XOs; extracellular vesicles derived from fibroblasts, Fb-EVs; Ultraviolet

Radiation A, UVA; exosomes derived from MSCs, pretreated with pioglitazone, PGZ-Exos; exosomes from human urine-derived stem cells, USC-Exos; saliva-derived exosomes, saliva-

exos; composition of pluronic F127, oxidative hyaluronic acid, and Poly-ε-L-lysine (EPL), FHE, hydrogel; material combining antioxidant polyurethane with ADSCs-EVs, OxOBand;

chitosan hydrogels, CS; hyaluronic acid hydrogels, HA-Gels; exosomes are derived from bone MSCs, precultured with Fe3O4 NPs, and a static magnetic field, mag-MSC-exos;

nanoparticles,NPs; interleukin-6, IL-6; metalloproteinase 1, MMP-1; metalloproteinase 3, MMP-3; ß-galactosidase, ß-gal; mammalian target of rapamycin, mTOR; collagen type I, Col-1;

tumor necrosis factor-alpha, TNF-α; transforming growth factor beta, TGF-β; glutathione peroxidase 1, GPX-1; deleted in malignant brain tumors 1, DMBT1; SMAD, family member 6,

SMAD6; bone morphogenetic protein 2, BMP2; extracellular matrix, ECM.
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community since their discovery by Till and McCulloch in 1961.

They are widely used in the treatment of various diseases because

of their capacity to differentiate into various cell types of the

body, including limb ischemia, organ failure, skin wound, and

cartilage defects (Goradel et al., 2018; Alessandrini et al., 2019;

Ryu et al., 2020; Nammian et al., 2021). However, potential risks

and technical challenges continue to trouble the clinical

application of stem cells, including tumorigenicity, transplant

rejection, differentiation and storage efficacy, and ethical issues

(Gonzalez Villarreal et al., 2018; Volarevic et al., 2018). Recently,

stem cell-secreted EVs, carrying a wide variety of RNA and

proteins, have been considered one of the most attractive cell-free

treatment modalities in the regenerative medicine field

(Whiteside, 2018; Wu et al., 2018).

The effects of stem cell-derived EVs on skin aging and aging-

related disorders have been proven (Saxena and Kumar, 2020).

Dorronsoro et al. (2021) Akaitz et al. investigated the anti-aging

property of EVs driven from mesenchymal stem cells (MSCs).

They found that EVs released by MSCs, which derived from

human embryonic stem cells and bone marrow, significantly

decrease the expression of senescence markers (p16, p21, IL-6

and IL-1β) and improve health span in senescent fibroblasts,

naturally aged wild-type and Ercc1−/Δ mice (a model of

premature aging) in vivo. Shi et al. (2021b) found that gingiva

MSC-derived EVs downregulate the expression of senescence-

related genes including ß-galactosidase, p53, p21, and γH2AX

and the mammalian target of rapamycin (mTOR)/pS6 signaling

pathway in aging human skin fibroblasts and endothelial cells

and aged mice (84 weeks old). Therapeutic effects of MSC-

derived EVs were also found in cutaneous photoaging. Wu

et al. (2021b) found that exosomes derived from human

umbilical cord MSCs (hucMSC-ex) relieve ultraviolet (UV)

radiation-induced DNA damage, inflammation, and apoptosis

in HaCaT cells by trafficking 14-3-3ζ protein and upregulating

the sirtuin 1 (SIRT1) levels. Cao et al. (2021) found that EVs from

adipose-derived stem cells (ADSCs-EVs) ameliorate photoaging

efficiently and safely. The topical treatment of ADSC-EVs

reduces wrinkles, improves the collagen structure and density,

and contributes to the clearance of inflammation.

Human pluripotent stem cell-derived exosomes (iPSC-exos)

have been studied in the treatment of skin aging (Wu et al.,

2021c). Oh et al. (2018) found that iPSC-exos ameliorated

genotypic and phenotypic variations of photoaging human

dermal fibroblasts. They also found that iPSC-exos reduces

the expression of senescence marker (β-gal, matrix

metalloproteinase 1 and 3) (MMP1 and MMP-3) and restores

the secretion of collagen type I (Col-1) in both UV-induced and

natural senescent dermal fibroblasts (Figure 1). In addition to

stem cells, other EV sources have also been studied to optimizing

the treatment of skin aging (Lee et al., 2021), such as skin

fibroblast (Kim et al., 2017). Human dermal fibroblasts

(HDFs) are one of the major cell types in the dermis, and

their capacity in matrix regeneration gradually declines with

age (Krebs et al., 2018). It has been reported that the exosomes

derived from 3D-cultured HDF significantly improve the

senescent phonotypes of dermal fibroblasts and nude mice

(Hu et al., 2019). They regulate the expressions of tumor

necrosis factor-alpha (TNF-α), MMP-1, transforming growth

factor beta (TGF-β), and pro-Col-1 and thus promote

collagen synthesis and improve aging phonotype.

Furthermore, Deng et al. (2020) have shown that dermal

fibroblast-derived EVs improve photoaging induced by

ultraviolet radiation B (UVB) radiation. Pretreatment with

these EVs significantly increased the expressions of

glutathione peroxidase 1 (GPX-1) and extracellular matrix

protein Col-1 and decreased the expression of MMP-1,

FIGURE 1
EVs derived from stem cells alleviate cellular aging. These EVs
regulate the expression of aging/senescent markers, including
p53, p21, γH2AX, ß-gal, and other senescence-associated
secretory phenotype (SASP) factors, and efficiently improve
the function of senescent cells through multiple mechanisms.

FIGURE 2
EVs derived from fibroblasts protect against UVB-induced
senescence. After injection, EVs stimulate antioxidant activity
(GPX-1), promote extracellular matrix reconstruction (TGF-β, Col-
1, MMP1), improve cellular necrosis (TNF-α), and thus protect
against UVB-induced aging.
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thereby upregulating antioxidant activity and protecting dermal

fibroblasts (Figure 2).

EVs improve wound healing

About 2% of the populations of industrialized nations sustain

non-healing wounds every year (Welt et al., 2009). For example,

skin chronic wounds affect more than 6.5 million people in the

United States (Sen et al., 2009). The incidence rate of chronic

wounds significantly increases in aging populations, especially

those who suffer from diabetes and obesity (Rodrigues et al.,

2019).

EVs, as a cell-free regenerative platform, show a strong

potential in trauma treatment and wound management (Ji

et al., 2021). Exosomes derived from hypoxic adipose stem

cells regulate proliferation, migration, and extracellular matrix

(ECM) metabolism of human skin fibroblasts by activating the

PI3K/Akt pathway and thus improve the healing rate and quality

of diabetic wounds (Wang et al., 2021a). Hu et al. (2021) reported

that exosomes derived from pioglitazone-pretreated MSCs

improve cell viability, proliferation, and angiogenesis ability of

human umbilical vein vascular endothelial cells (HUVECs)

injured by high glucose through activating the PI3K/AKT/

eNOS pathway, thereby promoting ECM remodeling,

angiogenesis, and diabetic wound healing in rodents. Chen

et al. (2018) noted that exosomes from human urine-derived

stem cells (USC-Exos) may provide a potential therapeutic

strategy for diabetic wound healing by promoting angiogenesis

via transferring deleted in malignant brain tumors 1 (DMBT1)

protein. Human saliva contains numerous proteins and growth

factors, which make it an effective tool promoting tissue

regeneration (Torres et al., 2017; Scott and Munkley, 2019).

Mi et al. (2020) noted that saliva-EVs promote HUVEC

migration, proliferation, and angiogenesis by regulating the

expression level of ubiquitin-conjugating enzyme E2O

(UBE2O), SMAD family member 6 (SMAD6), and bone

morphogenetic protein 2 (BMP2) and further enhance wound

healing via promotion of angiogenesis. Platelets are newfound

secretory cells and are an important EV source (Eisinger et al.,

2018). Shi et al. (2021a) found that platelet exosomes accelerate

wound healing by delivering bioactive TGF-β to the wound bed

(Figure 3).

EVs in medical cosmetics

Medical cosmetics are drawing increasing attention thanks

to the development of human aesthetics. For example, EVs are a

powerful ingredient for the management of skin tone in

cosmetology (Yamaguchi et al., 2006; Cardinali et al., 2008).

When skin is irradiated, melanin production is highly increased

in melanocytes. Biosynthesis of melanin pigments is the first

line of cutaneous defense after ultraviolet light irradiation

(Maddodi et al., 2012; Sun et al., 2020). However, after

excessive and long UV irradiation, excessive melanin

production inopportune metabolism and irregular

accumulation in skin cells will induce skin burning, tanning,

and pigmentation (Jeon et al., 2016). Among these, close

attention has been given to skin pigmentation (Romano

et al., 2021).

Improving pigmentation in the skin has been a long-term

goal for cosmetic and medical applications. Wang et al. (2021b)

demonstrated that human amniotic MSC-derived conditional

medium and exosomal microRNA (miR-181a-5p and miR-199a)

significantly suppress microphthalmia-associated transcription

factor-dependent melanin synthesis and promote autophagy-

based melanosome degradation in multiple aged models,

including a-melanocyte-stimulating hormone-irritated

B16F10 cells, UVB-treated human skin, and photo-aged

mouse ears. Wäster et al. (2020) reported that Ultraviolet

Radiation A (UVA) irradiation-stimulated keratinocyte EVs

promote cell renewal and epidermis thickening, strengthening

the function of skin barrier against sunlight exposure through a

complex gene regulatory circuit. These genes involve

FIGURE 3
Therapeutic effects of EVs derived from multiple sources on
skin wound healing. EV sources include pretreatment
mesenchymal stem cells (hypoxia and pioglitazone) and body
fluids (urine, saliva, and platelets). These EVs may promote
viability, proliferation, and angiogenesis in cells and accelerate
wound healing in vivo.
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extracellular regulated protein kinases (ERK), c-Jun N-terminal

kinase (JNK), programmed cell death factor 4 (PDCD4),

phosphatase and tensin homology deleted on chromosome 10

(PTEN), TGF-β, interleukin-6 (IL-6)/signal transducer and

activator of transcription 3 (STAT3), and microRNA 21

(Figure 4).

Engineered EVs for skin repairs

While EVs are used in a therapeutic role for various diseases

and injuries, they are far from realizing their full potential in drug

delivery or regenerative treatment (Burgos-Ravanal et al., 2021).

As research continues, a number of modifications have been

adopted to optimize the targeting and efficiency of EV therapy

(Ural et al., 2021). Here, we summarize the recent advances of

engineered and combination therapy of EVs for skin repairs.

Hydrogels
Hydrogels are three-dimensional nanofiber materials that are

made up of physically or chemically cross-linked hydrophilic

polymer networks in structure. They are special materials that

swell and retain a substantial quantity of water and keep their

constrained integrity in structure and dimension (Chai et al.,

2017).

Hydrogels have been widely used in many biomedical areas,

including cell therapy, drug delivery, biosensing, and tissue

engineering (Shah et al., 2019). Encapsulating EVs in

hydrogels can keep their biological activity and give a

controlled release. Wang et al. (2019a) developed a self-

healing multifunctional FHE hydrogel, which is composed of

Pluronic F127, oxidative hyaluronic acid, and Poly-ε-L-lysine
(EPL). The FHE hydrogel performs excellently in the delivery

and release of bioactive substance (Tan et al., 2013). The authors

demonstrated that when compared with single treatment using

exosomes or FHE hydrogel alone, the combined therapy

(hydrogel-encapsulated exosomes) stimulated the proliferation,

migration, and tube formation ability of HUVECs and

significantly enhanced wound closure rates, angiogenesis,

collagen deposition, and re-epithelization of diabetic wounds.

Hypoxia, ischemia, oxidative stress, and infection are critical

clinical hallmarks of non-healing chronic diabetic wounds.

Manganese dioxide (MnO2) nanosheets are capable of

detoxification of endogenous ROS (He et al., 2018). To

accelerate diabetic wound repair, Xiong et al. (2022)

introduced a self-healing, injectable, and adhesive hydrogel,

which is mixed with MnO2, fibroblast growth factor 2 (FGF-

2) and exosomes. They demonstrated that this “All-in-One”

hydrogel is able to form an antibacterial layer that covers the

wound, improves the survival and function of human skin

fibroblast and HUVEC, and facilitates the healing of diabetic

wounds. Antibacterial activity, alleviating oxidative stress,

restoring O2 supply, and releasing exosomal miR-223 and

FGF-2 were considered to be the underlying mechanisms.

Shiekh et al. (2020) introduced an oxygen-releasing material

combining antioxidant polyurethane with ADSCs-EVs

(OxOBand). Their results indicated that OxOBand promoted

wound closure, collagen deposition, epithelial regeneration, and

angiogenesis and decreased oxidative stress in diabetic wounds.

Chitosan hydrogels (CSs) have good thermal sensitivity and

loose porous structural properties. Zhao et al. (2021) suggested

that CS hydrogel-encapsulated EVs improved skin aging by

enhancing the function of aged dermal fibroblasts. They found

that CS hydrogel-incorporated EVs (CS-EVs) target the dermal

fibroblasts with replicative senescence, promote the proliferation

of aged cells, enhance the synthesis of ECM proteins, and inhibit

FIGURE 4
Potential effects of EVs on pigmentation: hAMSC-derived exosome and UVA-driven keratinocyte EVs remarkably suppress melanin synthesis,
respectively, through multiple signaling pathways. hAMSC, human adipose mesenchymal stem cells; UVA, Ultraviolet Radiation A.
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the upregulation of MMPs in vitro. After multi-site subcutaneous

injection of CS-EVs, the treated skin of agedmice is manifested as

the reduced expression of SASP-related factors, the increased

expression of collagen, and the restoration of tissue structures.

Hyaluronic acid hydrogels (HA-Gels) have the potential to

reduce wrinkles by physically filling but not biologically

stimulating collagen generation. Recently, You et al. (2021)

published a potential dermal filler using stem cell-derived EV-

bearing HA-Gels (EV-HA-Gels). They demonstrated that EV-

HA-Gels induced the overexpression of CD301b on

macrophages. Some miRNAs, such as let-7b-5p and miR-24-

3p, participated in the effects of EV-HA-Gels by improving the

proliferation of fibroblasts in the dermis region. In vivo

experiments indicated that EV-HA-Gels significantly

stimulated collagen synthesis in treated dermis, which is 2.4-

fold higher than that in HA-Gel-treated dermis. These increased

collagens were maintained for at least 24 weeks in the dermis

(Figure 5).

Nanoparticles
Magnetic nanoparticles (NPs) are a kind of nanomaterial that

are characterized by controlled targeting, easy synthesis, low

toxicity, and good biocompatibility (Hohnholt et al., 2011).

Recent studies have reported several strategies of target

delivery that combine EVs with magnetic NPs (Qi et al., 2016;

Jia et al., 2018). Wu et al. (2020) fabricated novel exosomes

named as mag-MSC-Exos. These exosomes are derived from

bone MSCs precultured with Fe3O4 NPs and a static magnetic

field. The authors found that when compared with cells treated

with control MSC-Exo, other cells treated with mag-MSC-Exo

FIGURE 5
Engineered EVs for skin repairs. Combining EVs with hydrogels or nanoparticles significantly optimizes their therapeutic effects. Comparedwith
natural EVs, engineered EVs have stronger effects in promoting cell proliferation, accelerating DNA repair, enhancing angiogenesis, modulating
inflammation, and suppressing the secretion of SASP factors, and therefore they have better performance in the therapy of chronic wounds.
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showed better performance in proliferation, migration, and

angiogenesis in vitro, and mag-MSC-Exos transplanted locally

into rat skin wounds can accelerate wound closure, reduce scar

area, and enhance angiogenesis in vivo. In addition, Li et al.

(2020) demonstrated that the exosomes that are derived from

NPs-loaded MSCs have strong potential in the therapy of

cutaneous wound in vivo by increasing the targeting delivery

efficiency of MSC-Exos (Figure 5).

Other modifications
Liposomes are a kind of tiny lipid vesicles that are surrounded

by a membrane bilayer that is mainly composed of phospholipids

and cholesterol, which can entrap drugs and be used as valuable

drug delivery systems (Hu and Zhang, 2012). However, their

characteristics of non-targeted, low efficacy and short half-life

have prevented the translational application of liposomes (Gibis

et al., 2013; Pattni et al., 2015). Evers et al. (2022) proposed a kind

of EV-liposome hybrid NPs. They demonstrated that hybrid NPs

containing target genes and EV-surface makers enable the targeted

delivery of genes to specific cells.

Several approaches have been used to enrich specific

inclusions in EV cargo (Banerjee, 2011). Li et al. (2018)

demonstrated that when compared to standard MSC-EVs,

EVs derived from nuclear factor-E2-related factor 2 (NRF2)

overexpressing MSCs packaged more NRF2 and showed

enhanced improvement in inflammation and oxidative stress

and wound healing. Inducing the direct link between target gene

and EV membrane component is another direction that has been

exploited (Lan et al., 2018). A light-based reversible linker has

been used to attach a specific protein to CD9, which is a

membrane protein on the surface of EVs (Zou et al., 2018).

Recently, Kojima et al. (2018) reported a novel and feasible

method for packaging specific mRNA into EVs, the EXOsomal

transfer into cells (EXOtic) system (Ausländer et al., 2012). In

this system, the archaeal ribosomal peptide L7Ae is fused to EV

marker protein CD63, which allows for recruitment and

encapsulation of those mRNAs containing C/Dbox to budding

exosomes. The C/Dbox sequence was cloned at the 3′end to

express mRNA containing the C/Dbox RNA domain.

Limitations and perspectives

While significant advances have been made in recent years,

there are still some limitations that have suppressed the

translational application of EVs. First, variations in EV

isolation methods complicate reproducibility and comparative

study. Although a growing number of techniques and methods

have been developed based on the minimal requirements

initiated by the International Society for Extracellular Vesicles

(MISEV 2018), it is worth noting that different isolation

techniques or even different parameters will cause great

diversity in the characteristic and package contents of EVs

(Gurunathan et al., 2019). Without a well-accepted and

golden standard protocol to standardize the procedure of EV

isolation and quality control, each laboratory or company will

naturally establish its own “EVs” (Théry et al., 2018). A series of

field-consensus, rigorous, and type-specific protocols for

isolation and quality control of EVs are urgently required.

Second, the output of EVs is too low to perform a large-scale

study in large animals or patients. On one hand, novel bioreactors

have been designed to enlarge the output of EVs. Published data

have shown that bioreactors can produce approximately 5- to 10-

fold output than routine cultures using cell factories and T-flasks

(Gimona et al., 2017). On the other hand, mammalian cells

produce only a few EVs in natural condition. Therefore,

molecular strategies have been investigated to increase the

production of EVs through the overexpression of core proteins

regulating EV biogenesis (Kojima et al., 2018; Ortega et al., 2019).

Modifications of the cell culture conditions may further improve

the output of EVs, such as biomaterial coating, extracellular matrix

composition, interface pattern and rigidity, cell metabolism, and

other physical and chemical stimulations.

Third, there is insufficient validation about the safety and

efficacy of EV therapy in humans. Contaminations and residues

brought by the supplement reagents of cell culture (e.g., serum and

other serum replacement) are inevitable and difficult to wash out.

To reduce their influence, ultracentrifugation and ultrafiltration

have been adopted before supplement usage.While earlier research

has suggested that the allogeneic EVs have extreme low

immunogenicity, recent studies have revealed that EVs secreted

by virus-infected cells or immune cells are immunogenic and can

deliver cell-specific molecules over long distances to elicit immune

responses (Hong et al., 2021). Some EV sources, such as MSCs, are

known to be lowly immunogenic, and therefore EVs derived from

them are expected not to be immunogenic; however, there is little

evidence for this at the moment (Zheng et al., 2018). To allow their

use in humans and avoid side effects or function loss, the

immunogenicity of EVs have to be tested.

Finally, the majority of EV studies are limited to rodent

models, and most of the main models for the detection of the

therapeutic effect of EVs are focused on 2D culture systems and

animal models (Fonseca et al., 2017). These approaches and other

more advanced skin experimental models (e.g., tissue biopsy, 3D

cell studies, and 3D bioprinting) all have drawbacks (e.g., lacking

cell-cell/-matrix crosstalk and natural mechanical and chemical

cues). To overcome these limitations, skin-on-a-chip (SoC)

biomimetic artificial skin models have been developed. SoC

can impart a fine control over the microenvironment, induce

some mechanical cues, help analyze the features of normal and

diseased human skin, and develop and test substances for

pharmaceutical and cosmetic applications. In brief, SoC has

significant potential during the analysis of the effect of EV

therapy (Sutterby et al., 2020).

EVs can carry proteins, nucleic acids, lipids, and metabolites.

Although studies of EVs in skin disease are still in the early stages,
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mainly focusing on proteins and nucleic acids, they have shown

promising results in a number of clinical trials and applications.

Other compositions in EVs are poorly investigated, including

lipids and metabolites. We would expect that they need to be

further investigated in the future, both biologically

and clinically. We have summarized the features of EVs in

Table 1.

The majority of EV studies is basic research and are rarely

reported in commercial and industrial products. Only a few

major product brands have developed EV-related products,

such as Condensation E.R.T, Oyon-Young, and ASCE. Even

so, the potential of EVs in skin care has attracted worldwide

attention. A series of problems (e.g., preparation, storage, and

preservation of life of EVs) have prevented EVs from being

widely promoted to reach an acceptable price level. In addition,

EVs have highly complex contents that act in a cooperative

manner, and little evidence is available to describe the dominant

player in the EV component. With the rapid development of

science and technology, we believe that the component-specific

and larger-scale production of EVs will be realized in the

coming future.

Conclusion

In this article we have summarized the current development

of the therapeutic potentials of EVs in skin aging, refractory

wound and pigmented dermatosis, and have reviewed a series of

novel methods for improving the efficacy of EV therapy.
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