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Background: Shoulder hemiarthroplasty is prone to tuberosity malposition and

migration, reducing the rate of tuberosity healing. We proposed to design a

tuberosity reconstruction baseplate to assist in tuberosity integration and to

evaluate the mechanical properties of baseplate made from the novel

biomaterial carbon fiber reinforced polymer (CFRP) composites.

Methods: The three-dimensional model of native proximal humerus was

constructed by computed tomography (CT) data. The morphological design

of baseplate was based on the tuberosity contour and rotator cuff footprint.

Finite element models were created for different thicknesses of CFRP

composites, poly (ether-ether-ketone) (PEEK) and titanium-nickel (TiNi)

alloy. The permissible load and suture hole displacements were applied to

evaluate the mechanical properties.

Results: The structurally optimized model made of CFRP composites provided

superior strength and deformability, compared to the PEEK material and TiNi

alloy. Its permissible load was above 200 N and the suture hole displacement

was between 0.9 and 1.4 mm.

Conclusion: This study proposed a method for designing tuberosity

reconstruction baseplate based on morphological data and extended the

application of biomaterial CFRP composites in orthopedics field. The

optimized model made of CFRP composites allowed a certain extent of

elastic deformation and showed the possibility for dynamic compression of

tuberosity bone blocks.
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Introduction

Proximal humeral fractures are the third most common type of

osteoporotic fracture in elderly patients (Launonen et al., 2015). Older

patients often present with comminuted Neer 3- and 4-part fractures

and are vulnerable to complications after plate fixation (Stone and

Namdari, 2019). Nowadays, shoulder hemiarthroplasty is an effective

treatment option for non-reconstructable proximal humeral

fractures. However, recent clinical follow-up studies have

demonstrated that the recovery of mobility and function after

hemiarthroplasty is not satisfactory (Yahuaca et al., 2020;

Amundsen et al., 2021). Nonunion and malunion of tuberosities

are risk factors for postoperative joint function (Tanner and Cofield,

1983; Kralinger et al., 2004). Therefore, the focus of hemiarthroplasty

is on restoring anatomical structure of the proximal humerus.

Tuberosity malposition is associated substantially with the

implant design and fixation technique. After implantation of the

humeral prosthetic stem, the tuberosity fracture fragments are

repositioned by suture traction, and then the greater and lesser

tuberosity are reattached to the stem by cerclage (Neer, 1970).

However, the cerclage suture is prone to inferior migration of

tuberosities, which leads to malreduction (Boileau et al., 2002).

Furthermore, due to the secondary migration following rotator

cuff contraction, the cerclage suture is difficult to achieve effective

tuberosity reconstruction (Grubhofer et al., 2021). In the setting of

bony comminution and local osteoporosis, there is also lack of

anatomical landmark for tuberosity reduction (Frankle et al., 2001).

In the light of these issues, we propose to design a tuberosity

reconstruction baseplate placed between the prosthetic humeral head

and stem to assist in tuberosity reduction and fixation. The contour of

greater and lesser tuberosity designed on this baseplate serves as a

landmark for anatomical reduction. Prefabricated suture holes

corresponding to the rotator cuff insertions are available to determine

relative position of the prosthetic humeral head and tuberosities. In

addition, the baseplate is expected to have a certain elastic deformability.

With continuous traction of the rotator cuff, the baseplate is able to

provide dynamic compression between the tuberosity bone blocks by

tension band effect. In this study, the materials for baseplate were

screened by finite element analysis, including the novel biomaterial

carbon fiber reinforced polymer (CFRP) composites [CF/epoxy

laminates, Toray Company Ltd., material code T800/3900 (Ahmad

et al., 2019)] and two other conventional orthopedic implant materials.

Subsequently, the strength and deformability of baseplatewere improved

through structural optimization.

Materials and methods

Tuberosity reconstruction baseplate
design

The geometry of tuberosity reconstruction baseplate consists

of the greater and lesser tuberosity and intertubercular groove

that provides a landmark for the anatomical reduction in

hemiarthroplasty procedure. The morphological design

requires a suitable section to depict the humeral shape of

anatomical neck and its distal region. The anatomical neck

section is approximately circular and does not allow for a

distinct tuberosity contour. Therefore, the baseplate design

should be based on the distal section of anatomical neck.

A 47-year-old male volunteer (Ethics Committee of Peking

University People’s Hospital, 2020PHB072-01, Beijing, China)

with no severe trauma history or obvious anatomical abnormality

was recruited. Computed tomography (CT) data of the proximal

humerus were imported into Mimics 19.0 (Materialise, Leuven,

Belgium) in DICOM format. Automatic threshold-based

segmentation extracted bone tissue from the CT data to

construct a 3D model of the native proximal humerus

(Figure 1A). In this model, the contour of anatomical neck

could be clearly identified. The osteotomy level was set at a

45-degree angle to the humeral stem, and the humeral head was

virtually resected along the anatomical neck to obtain the

anatomical neck section (Figure 1B). The virtual osteotomy

level was translated distally to obtain sections 1–5 mm from

anatomical neck (Figure 1C). Among these, section 5 mm from

anatomical neck showed a clear contour of the greater and lesser

tuberosity as well as intertubercular groove. Therefore, this

section was chosen for the morphological design (Figure 1D).

According to the anatomical landmarks of proximal humerus,

the rotator cuff footprint was depicted on the 3D model

(Figure 1E) (Curtis et al., 2006; Mochizuki et al., 2008).

Prefabricated suture holes were determined at the

corresponding locations on baseplate. The suture holes were

set at 2 mm in diameter and 2 mm from the edge. Each suture

hole was spaced more than 1 cm apart.

The blueprint of tuberosity reconstruction baseplate was

shown in Figure 2. Two prominences corresponded to the

greater and lesser tuberosity. Five suture holes adjacent to the

tuberosities corresponded to superior and inferior subscapularis,

supraspinatus, infraspinatus, and teres minor, respectively, for

knotting and fixing the baseplate to rotator cuff. Two additional

holes were provided at 6 o’clock position for vertical knotting.

The baseplate thicknesses were set to 1, 1.5, 2, 2.5, and 3 mm, and

the diameter was set to 40 mm to create five finite element

models.

Finite element analysis

The finite element models were automatically meshed in

Hypermesh 12.0 (Altair Engineering GmbH, Böblingen, Germany).

The mesh type was a 4-node linear tetrahedral element (C3D4) with

the mesh size of 0.4 mm. Preprocessing and linear static analysis were

performed in Ansys 19.0 (ANSYS, Inc., Canonsburg, PA,

United States). The baseplates were manufactured from three of

the most widely used orthopedic implant materials, including poly
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FIGURE 1
Steps in tuberosity reconstruction baseplate design. (A) Construction of a 3D native proximal humerus model. (B) Virtual osteotomy along the
anatomical neck. (C) Anatomical neck section and sections 1–5 mm from anatomical neck. The blue region represents contour of the greater
tuberosity and the red region represents contour of the lesser tuberosity. (D)Morphological design of the baseplate. (E) Location of the suture holes
based on rotator cuff footprint. The blue region is for subscapularis, the purple region is for supraspinatus, the orange region is for infraspinatus,
and the black region is for teres minor. The red dots are reference points for the location of suture holes.
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(ether-ether-ketone) (PEEK), titanium-nickel (TiNi) alloy and the

novel biomaterial CFRP composites. The PEEK and TiNi alloy were

set to be homogeneous and isotropic. The CFRP composites consisted

of multiple layers stacked in different directions with quasi-isotropic

properties. Each of the layers was 0.1875mm thick and the stacking

sequence was [45/0/−45/90]s. The Young’s modulus, Poisson’s ratio,

density and yield strength of three baseplate materials were presented

in Table 1 (Song et al., 2000; Ahmad et al., 2018; Vogel et al., 2018). In

addition, the shear modulus of CFRP composites was set at

3,000MPa. None of these baseplates exceeded the yield strength

and were therefore modelled as linear elastic.

Due to the complex actual loading conditions of rotator cuff,

loads of the same magnitude were applied vertically at seven

suture holes to simulate extreme situations. The central hole was

constrained. Firstly, a 1N load was applied at each suture hole to

obtain the maximum von Mises stress by finite element analysis.

And then the permissible load was calculated from the yield

strength of materials. With the permissible load applied, the

displacements of five suture holes corresponding to rotator cuff

in each finite element model were compared.

In vivo, the maximum force of a single rotator cuff

muscle does not exceed 200 N (Meyer et al., 2018). Also,

many of the high-strength sutures available for rotator cuff

repair have a failure strength above 200 N (Borbas et al.,

2021). Therefore, when the permissible load exceeds 200 N,

the baseplate only produces elastic deformation in practice

and does not yield. In addition, if a certain extent of

displacement occurs in the suture holes corresponding to

rotator cuff, it is possible for the baseplate to perform as a

tension band to achieve dynamic compression between

tuberosities.

Structure optimization

Based on the finite element analysis of three baseplate

materials, the model with higher permissible load and

larger suture hole displacement could be selected for

further structure optimization. During the optimization

process, thicker materials or more layers were designed

FIGURE 2
Blueprint of tuberosity reconstruction baseplate.

TABLE 1 Mechanical properties of baseplate materials.

Material Young’s modulus (MPa) Poisson’s ratio Density (kg/m3) Yield strength (MPa)

PEEK 3,450 0.40 1,300 95

TiNi 83,000 0.33 6,450 443

CFRP E1 = 100,000 µ1 = 0.40 1,550 1,000

E2 = 5,000 µ2 = 0.30
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at the von Mises stress concentrations to increase the

permissible load, while thinner materials or fewer layers

were designed in other regions to enhance the

deformability. A stress of 200N was loaded vertically on

each suture hole of the hybrid design model. The maximum

von Mises stress and suture hole displacements were

recorded.

Results

Stress distribution and displacement

The von Mises stress nephogram (Figure 3A) and displacement

nephogram (Figure 3B,C) for three baseplate materials with a

thickness of 2 mm showed similar distribution pattern. The von

FIGURE 3
(A) Frontal view of von Mises stress nephogram, (B) frontal view and (C) lateral view of displacement nephogram for a 2 mm thick baseplate
model under permissible load.
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Mises stress was concentrated around the central hole, with the

highest stress from 12 o’ to 3 o’clock position, followed by

6 o’–9 o’clock. The displacement was largest at the suture holes

corresponding to supraspinatus and superior subscapularis.

The permissible loads and suture hole displacements for three

baseplate materials with five thicknesses were demonstrated in

Table 2. As the baseplate thickened, the permissible load

increased and the suture hole displacement decreased. For the

same thickness, the baseplate made of PEEK had a lower

permissible load and a higher suture hole displacement. The

baseplate made of TiNi alloy had a higher permissible load and a

lower suture hole displacement. The baseplate made of CFRP

composites had the highest permissible load and a similar

displacement to the PEEK material.

Structure optimization

The CFRP baseplates with thicknesses of 1.5 and 2 mm

provided displacements up to 0.7–1.4 and 0.4–0.9 mm

respectively, which could serve as base models for structure

optimization (Table 2). In the optimized model with hybrid

design, two different stacking methods with different thicknesses

were designed (Figure 4A), each with six layers (Figure 4B). Stack

1 was located in the peripheral region with a thickness of

1.3125 mm. Stack two was located around the central hole,

mainly from 12 o’clock to 3 o’clock and from 6 o’clock to

9 o’clock. Stack 2 had a thickness of 1.875 mm.

The maximum von Mises stress of the structurally optimized

model was 988 MPa when 200 N load was applied at each suture

hole, which was lower than the yield strength of CFRP composite

material (Figure 5A). At the greater tuberosity, the suture hole

displacements were 1.1, 0.9 and 1.0 mm for the supraspinatus,

infraspinatus and teres minor, respectively (Figure 5B). At the

lesser tuberosity, the suture hole displacements were 1.4 and

1.2 mm for the superior and inferior subscapularis, respectively

(Figure 5B). In comparison, the optimized model presented

higher displacements for suture holes. The overall

deformation of baseplate was visualized through the lateral

view of displacement nephogram (Figure 5C).

Discussion

This study presented a feasible method to design a tuberosity

reconstruction baseplate based on CT data of the native proximal

humerus for application in shoulder hemiarthroplasty. Three

commonly used orthopedic implant materials and five

thicknesses were screened through finite element analysis.

Among these, an optimized model with hybrid design made

of CFRP composites demonstrated higher permissible load and

larger suture hole displacements, with the potential to achieve

anatomical reduction and dynamic compression of tuberosities.

The function of shoulder joint after hemiarthroplasty is

highly dependent on the tuberosity healing and therefore the

tuberosity reconstruction has received a lot of attention

(Simovitch et al., 2019). Doursounian et al. (2019) passed two

high-strength sutures through the subscapularis and

infraspinatus insertions and knotted them to achieve

horizontal fixation of tuberosities, then passed two more

sutures sequentially through drilled holes on the humeral

shaft and the supraspinatus insertion to achieve vertical

fixation with a figure-of-eight tension band. Onggo et al.

(2021) found that fracture stems significantly improved the

healing rate of greater tuberosity compared to nonfracture

stems, possibly due to the lateral fin providing a platform for

TABLE 2 Permissible load and suture hole displacement of finite element models.

Material Thickness (mm) Permissible load (MPa) Suture hole displacement (mm)

PEEK 1.0 9.3 0.8–1.9

1.5 21.0 0.6–1.3

2.0 37.4 0.5–1.0

2.5 58.8 0.3–0.8

3.0 85.0 0.3–0.7

TiNi 1.0 43.0 0.2–0.4

1.5 96.9 0.1–0.3

2.0 172.7 0.1–0.2

2.5 270.8 0.1

3.0 391.3 0.1

CFRP 1.0 67.8 0.8–1.4

1.5 103.2 0.7–1.4

2.0 211.4 0.4–0.9

2.5 396.7 0.4–0.8

3.0 407.3 0.2–0.8
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FIGURE 4
Structure optimization of tuberosity reconstruction baseplate. (A) Hybrid structural design and (B) stack design.

FIGURE 5
(A) Frontal view of von Mises stress nephogram, (B) frontal view and (C) lateral view of displacement nephogram for the optimized baseplate
model under 200 N load.
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tuberosity reconstruction. Krause et al. (2007) used steel cable

cerclage to enhance fixation stability and significantly reduced

the incidence of tuberosity migration and resorption. However,

these methods did not overcome the inherent shortcomings of

cerclage. Cerclage suture tends to result in low tuberosity

reduction and there is no continuous compressive stress

between the fracture fragments (Cadet and Ahmad, 2012). As

the edema resolves, the fracture fragments separate under the

traction of rotator cuff, eventually appearing as scar formation

rather than bony healing (Grubhofer et al., 2021).

Due to the unpredictability of tuberosity healing in

hemiarthroplasty, more surgeons prefer to reverse total

shoulder arthroplasty (RTSA) for complex proximal humeral

fractures (Panagopoulos et al., 2022). However, the revision of

RTSA is still a challenge, so the hemiarthroplasty remains an

irreplaceable treatment option at present (Schultz et al., 2021).

The main features of tuberosity reconstruction baseplate include

the provision of landmarks and suture holes for anatomical

reduction and a potential tension band effect based on elastic

deformability. Therefore, the baseplate offers a promising

alternative technique to tuberosity suture augmentation.

The results of this study showed that the PEEK material had

lower strength but superior deformability. The TiNi alloy had higher

strength but inferior deformability. The CFRP composite material,

in contrast, provided the highest strength with similar deformability

to the PEEKmaterial. The CFRP composites are commonly applied

in the automotive and aerospace industries as a high strength-to-

weight ratio material. In recent years, CFRP composites has been

applied increasingly in orthopedics field, gradually replacing

traditional metal-based implants (Merolli, 2019; Lin et al., 2020).

In the CF/epoxy composites chosen for baseplate, the carbon fibers

with moderate elastic modulus and high tensile strength are

reinforced with epoxy resin (Ahmad et al., 2019). The presence

of epoxy resin adversely affects the shear modulus, but the increased

deformability meets the mechanical requirements of baseplate

(Mahboob et al., 2021). Moreover, hybrid design is a popular

technique for structural optimization (Ghosh et al., 2022). This

technique maximizes the deformability of baseplate while

maintaining its mechanical strength.

In vitro biomechanical experiments found that the maximum

contraction force of supraspinatus muscle was approximately

302 N (Burkhart, 2000). Meyer et al. (2018) performed high

voltage electrical stimulation on the suprascapular nerve during

rotator cuff repair surgery and discovered that the maximum

contraction force of single rotator cuff muscle did not exceed

200 N. The loading conditions of rotator cuff in daily activities is

complicated and many patients are unable to achieve the

theoretical maximum contraction. Furthermore, the strength

of rotator cuff muscles varies in different positions (Tsuruike

et al., 2021). Thus, in this study we only used simplified loading

configurations to screen baseplate materials and thicknesses by

simulating extreme conditions. This may lead to an

overestimation of baseplate deformability.

There are other limitations to this study. There are variations

in tuberosity geometry in different populations, but only data

from a single volunteer were utilized as the design basis. In

addition, there is no definite evidence to suggest whether a

displacement of 0.9–1.4 mm in the optimized model enables

the dynamic compression effect. The next step is to validate the

mechanical properties of baseplate in cadaveric and mechanical

experiments.

Conclusion

This study proposed the concept of tuberosity reconstruction

baseplate and provided a design procedure based on CT data of

the native proximal humerus. A structurally optimized model

made of CFRP composites presented the potential to realize

anatomical reduction and dynamic compression of tuberosities.

As a novel biomaterial, the mechanical properties and clinical

efficacy of CFRP composites need further evaluation.
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