
Cardiotocography analysis by
empirical dynamic modeling and
Gaussian processes

Guanchao Feng1*, Cassandra Heiselman2, J. Gerald Quirk2 and
Petar M. Djurić1*
1Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, United States,
2Department of Obstetrics and Gynecology, Renaissance School of Medicine, Stony Brook University, Stony
Brook, NY, United States

Introduction: During labor, fetal heart rate (FHR) and uterine activity (UA) can be
continuously monitored using Cardiotocography (CTG). This is the most widely
adopted approach for electronic fetal monitoring in hospitals. Both FHR and UA
recordings are evaluated by obstetricians for assessing fetal well-being. Due to the
complex and noisy nature of these recordings, the evaluation by obstetricians suffers
from high interobserver and intraobserver variability. Machine learning is a field that
has seen unprecedented advances in the past two decades and many efforts have
been made in computerized analysis of CTG using machine learning methods.
However, in the literature, the focus is often only on FHR signals unlike in
evaluations performed by obstetricians where the UA signals are also taken into
account.

Methods: Machine learning is a field that has seen unprecedented advances in the
past two decades andmany efforts have beenmade in computerized analysis of CTG
using machine learning methods. However, in the literature, the focus is often only
on FHR signals unlike in evaluations performed by obstetricians where the UA signals
are also taken into account. In this paper, we propose to model intrapartum CTG
recordings from a dynamical system perspective using empirical dynamic modeling
with Gaussian processes, which is a Bayesian nonparametric approach for estimation
of functions.

Results and Discussion: In the context of our paper, Gaussian processes are capable
for simultaneous estimation of the dimensionality of attractor manifolds and
reconstructing of attractor manifolds from time series data. This capacity of
Gaussian processes allows for revealing causal relationships between the studied
time series. Experimental results on real CTG recordings show that FHR and UA
signals are causally related. More importantly, this causal relationship and estimated
attractor manifolds can be exploited for several important applications in
computerized analysis of CTG recordings including estimating missing FHR
samples, recovering burst errors in FHR tracings and characterizing the
interactions between FHR and UA signals.
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1 Introduction

During labor, without adequate level of oxygenation, a fetus can
become hypoxic and acidotic. Very small changes in pH may
significantly affect the function of various fetal organ systems, such
as the central nervous system and the cardiovascular system (Omo-
Aghoja, 2014). Oxygen deprivation or hypoxia is one of the most
common challenges in fetal life, and can cause permanent brain
damage or even death of the fetus (Giussani, 2016). Continuous
electronic fetal monitoring (EFM) is commonly performed by
Cardiotocography (CTG). The CTG monitor samples both fetal
heart rate (FHR) and maternal uterine contractions or uterine
activity (UA). The purpose of EFM is to alert obstetricians of these
changes in fetal status for appropriate and timely intervention (Afors
and Chandraharan, 2011). In Figure 1, we see the same CTG recording
displayed in US format (horizontal: 3 cm/min, vertical: 30 bpm/cm)
and in EU format (horizontal: 1 cm/min, vertical: 20 bpm/cm),
respectively. In each plot, the upper tracing represents FHR signal
and the lower tracing is the corresponding UA signal. Since the focus
of our paper is on intrapartum CTG, in this work, the term CTG refers
to intrapartum CTG if not specifically stated.

The CTG recordings are visually evaluated by experienced
obstetricians, nurse-midwives and labor & delivery room nurses
following clinical guidelines (Macones et al., 2008; Ayres-de
Campos et al., 2015) that are based on FHR and interbeat
variability, frequency and duration of uterine contractions, and the
temporal relationship of decelerations of the FHR in relationship to
the onset as well as the offset of uterine contractions. The FHR tracings
are then usually categorized into one of three categories: category I as
normal, category II as atypical or indeterminate, and category III as
abnormal. Although category II patterns occur in the majority of
fetuses in labor, there is still no standard approach to their
management Clark et al. (2013).

After more than half a century of EFM in practice, its usefulness
and benefits still remain controversial. During this period, there has
been an increase in cesarean delivery and instrumental vaginal births
(Alfirevic et al., 2006), and yet, the incidences of neonatal mortality
and cerebral palsy have not been reduced (Bailey, 2009). However, it is
worth noting that CTG has remained a widely used technology for
assessing fetal wellbeing in real time during labor (Freeman et al.,
2012; Nageotte, 2015). Presently, most hospitals in the United States
offer CTG as the primary means of fetal surveillance during labor.

Several studies have reported that the evaluation of FHR tracings
by obstetricians suffers from high interobserver and intraobserver
variability. In a recent article, the agreement among expert
obstetricians was investigated by having nine experienced
obstetricians annotate 634 CTG recordings. Their results showed
that the inter- and intra-observer variability was large and that the
overall proportion of agreement among them only reached 48%
(Hruban et al., 2015). There is little doubt that interpreting CTG
recordings using morphological features is an exceptionally complex
and often unsatisfactory exercise.

Computerized analysis of intrapartum CTG recordings is a logical
approach because of its inherent “objectivity.” Computerized analysis
has evolved from algorithms that literally implement the clinical
guidelines to sophisticated machine learning techniques, which
exploit patterns that cannot be discovered by human eyes. The
interpretation of intrapartum CTG recordings, however, still
remains challenging for computerized systems (Steer, 2014).

Interestingly, none of the exciting breakthroughs in machine
learning have contributed to revolutionizing the computerized
analysis of intrapartum CTG recordings yet (Georgieva et al., 2019).

Unlike the assessment performed by obstetricians and physicians
where FHR is evaluated jointly with UA and other clinical data, in the
literature of automated analysis, the focus is often classification of FHR
tracings (Georgoulas et al., 2017), and the analysis usually concentrates on
the FHR signals only. That is, other intrapartum signals, such as UA and
maternal heart rate (MHR), and clinical data are not considered. Since
these other signals and data also provide valuable information about the
fetal wellbeing, excluding them from the analysis is a disadvantage. Rare
exceptions of articles where FHR signals are studied in conjunction with
UA signals are (Romano et al., 2006; Cesarelli et al., 2010; Warmerdam
et al., 2016; Warmerdam et al., 2018).

Empirical dynamic modeling (EDM) is a flexible data-driven
framework for modeling non-linear dynamic systems. It is built upon
the mathematical theory of reconstructing system attractors from time
series data and is often used for studying systems with non-linear state-
dependent behavior. An attractor of a system can be seen as a collection of
states toward which the system tends to evolve under different initial
conditions. Thus, reconstructing an attractors is of great importance in
investigating system characteristics and behavior. AGaussian process (GP)
extends the concept of multivariate Gaussian distribution. The latter is
defined for vectors of finite dimensions, whereas GPs are objects of infinite
dimension, which gives them flexibility for modeling distributions of
functions. Learning unknown functions (or mappings) lies at the core
of solving many machine learning problems, and in practice, GPs provide
a Bayesian non-parametric framework for learning unknown functions.
Particularly, when we have to estimate an unknown function, we first
specify a prior distribution for this function using a GP (instead of
assuming an analytical form of it, like a polynomial of some form or a
set of superimposed sinusoids). Then, we learn the posterior distribution of
the function by incorporating the observed data and using Bayes’ theorem.
We point out that our prior knowledge of the unknown function (e.g.,
periodicity) can be encoded in the prior distribution of the GP.

In this paper, we present our work on intrapartum CTG analysis
using empirical dynamic modelling (EDM) with Gaussian processes.
With our approach, we are able to reconstruct attractor manifolds
from time series data within the Bayesian non-parametric probabilistic
framework. Instead of only relying on FHR signals, both FHR and UA
signals are taken into account from a dynamical system perspective.
The Bayesian nature allows for data efficiency and proper
quantification of uncertainties in learning.

The article is structured as follows. In the next section, we first
briefly introduce an open access CTG database that has been widely
adopted in computerized analysis of CTG recordings. We also selected
this database for our experiments. Then we discuss the background
and some fundamentals of EDM and GP. In Section 3, we describe our
GP-based EDM in details. In Section 4 and Section 5 we present (direct
and indirect) applications of GP-based EDM in CTG analysis. Finally,
in Section 6, we conclude this article with some final remarks.

2 Background

2.1 Open access intrapartum CTG database

In this work, in all the experiments we used an open access
intrapartum CTG database, known as CTU-UHB database. The
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intrapartum CTG database consists of a total of 552 intrapartum
recordings, which were acquired between April 2010 and August
2012 at the Obstetrics Ward of the University Hospital in Brno
(UHB), Czech Republic. The data were collected and anonymized
at the UHB and de-identified at the Czech Technical University
(CTU). The database is composed of a mixture of recordings
acquired by ultrasound Doppler probes, direct scalp
measurements or a combination of both. Each CTG record
contains time information and signal of fetal heart rate and
uterine contractions, both sampled at 4 Hz. When a signal was
recorded using an internal scalp electrode, it also contained T/QRS
ratio and information about biphasic T-waves. All recordings have
available biochemical markers as well as some more general clinical
features. A detailed description of this database and reasoning
behind the selection criteria for including recordings in the
database can be found in (Chudáček et al., 2014).

2.2 Empirical dynamic modelling

Empirical dynamic modeling (EDM) is an emerging non-
parametric framework for modeling non-linear dynamic systems
(Chang et al., 2017). It is based on the mathematical theory of
reconstructing attractor manifolds from time series data. Unlike
models based on hypothesized parametric equations or known
physical laws that describe simple idealized situations, empirical
models infer patterns and associations from the data that are

highly flexible and usually of great use in complex natural settings
(Sugihara et al., 2020). The purpose of EDM is to infer the behavior of
dynamic systems by reconstructing state space from time series data.
This approach is based on mathematical theory developed initially in
(Takens, 1981; Takens, 1985).

A direct application of EDM is causal discovery using
reconstructed attractor manifolds, a method that is referred to as
convergent cross mapping (CCM) and proposed in (Sugihara et al.,
2012). From a dynamical system perspective, two time series are
causally related if they are from the same dynamical system. In
particular, let Mx and My denote the reconstructed attractor
manifolds from time series xt and yt, respectively. If xt and yt
belong to the same dynamical system, Mx and My are topologically
similar because they are embeddings of the (latent) attractorM of the
system, and the signature of the causing series is encoded in the
observed samples of the caused series (Wismüller et al., 2014; Schiecke
et al., 2015).

2.3 Gaussian processes

A GP is a stochastic process with every finite set of random
variables having a multivariate normal distribution (Rasmussen and
Williams, 2006). A GP extends a multivariate Gaussian distribution to
infinite dimensionality. Therefore, a GP can be seen as a distribution of
a real-valued function f(x) in which x denotes the input and usually is a
vector. The infinite dimensionality is actually easy to work with, given

FIGURE 1
A segment of CTG recording from an open access intrapartum CTG database [described in (Chudáček et al., 2014)] in US (top two plots) and in EU
(bottom two plots) paper formats, respectively.
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the marginalization property of multivariate Gaussian distributions.
Further, latent functions can be conveniently marginalized out when
computing model evidence.

A GP is characterized by its mean function m(x) and covariance
function kf(xi, xi), which are defined by m(x) � E[f(x)], and
kf(xi, xj) � E[(f(xi) −m(xi))(f(xj) −m(xj))]. To reduce the
number of hyperparameters, in practice, a GP is assumed to be
zero mean, that is, m(x) = 0 for every x. Furthermore, to preserve
the tractability of the marginal likelihood, additive white Gaussian
noise is usually adopted for modeling the observation noise, i.e., we
write

y � y x( ) � f x( ) + ϵ, (1)
where ϵ ~ N (0, σ2ϵ) is additive white Gaussian noise.

The covariance matrix Kff for training data can be obtained by
evaluating the covariance function on X, i.e., Kff = kf(X, X), where
X � {xi}Ni�1 denotes the collection of all training inputs. Then the
likelihood of f(X) is given by

p y|f( ) � N y; f , σ2ϵI( ), (2)
and the prior probability density function of f(X), which is specified by
a GP, can be written as

p f |X, θ( ) � N f ; 0,Kff( ), (3)

where θ denotes the set of hyperparameters used for modeling the
covariance function.

Training refers to learning the model parameters, which include
the hyperparameters θ and the variance of the observation noise σ2ϵ
from the training data. These parameters are learned by maximizing
the marginal likelihood. In the GP regression setting, the marginal
likelihood can be obtained by marginalizing f, and the logarithm of the
marginal likelihood defined by

logp y|X, θ( ) � logN y; 0, Kff + σ2ϵI( )
� logN y; 0, K( )
� −1

2
yTK−1y − 1

2
log|K| − n

2
log 2 π

(4)

can be used as an objective function for finding the.
We note that the last three terms in Eq. 4) have interpretations.

The first one, −1
2y

TK−1y, is known as data-fit, which is the only term
that involves the observations y. This term measures how well the
model explains the data. The second term, −1

2 log|K|, is known as
penalty for the model complexity, and it depends on both the
covariance function and the inputs. The third term, −n

2 log 2 π, does
not depend on the covariance matrix and the observations, and
therefore, it is a normalization constant. The trade-off between
data-fit and model complexity is automatic, which means that the
tendency of the log marginal likelihood to favor more complex models
is counterbalanced by the penalty for additional complexity. In other
words, more complex models would have a better fit (a smaller value
for yTK−1y) but a larger value of |K| than simpler models. This
capability of the objective function (i.e., the log-likelihood) of
making the GP robust to over-fitting reflects the principle of
Occam’s razor. The hyper-parameters can be tuned by adopting a
gradient-based optimizer.

For a test input X*, the predictive distribution of the test output,
p(f*|X*, X, θ), will be a Gaussian distribution with a mean and
covariance given by

E f*( ) � Kf X*,X( )[ ]K−1y, (5)
cov f*( ) � Kf X*,X*( ) − Kf X*,X( )[ ]K−1 Kf X*,X( )[ ]⊤. (6)

We should note that the prediction is provided by way of a predictive
distribution instead of a simple point estimate, which is preferable in
many situations, particularly, in decision making. Since the mode of a
Gaussian distribution is the same as its expectation, the mean of a
predictive distribution, i.e., E(f*) is also the maximum a posteriori
(MAP) estimate of f.

The covariance function transforms distance or similarity between
inputs to covariance between outputs, and therefore, the design of the
covariance function is critical in modeling. Perhaps the most widely
adopted covariance function is the squared exponential or radial basis
function (RBF). Its general form is given by

k x, x′( ) � σ2
f exp −1

2
∑Q
q�1

1
ℓq

xq − xq′( )2⎛⎝ ⎞⎠, (7)

where the characteristic length-scale ℓq > 0 and the signal variance σ2f
are its hyperparameters. These parameters are interpretable; for
instance, σ2f measures the strength or variability of the
corresponding function, whereas ℓq controls the model complexity
in the qth dimension since the input distance will be scaled by ℓ.
Therefore, if ℓ is small, a small change in the input distance will cause a
large change in the covariance of the outputs, and vice versa.
Equivalently, one can define a relevance weight by rq � 1

ℓq
to

measure the importance or relevance of that dimension in the
modeling. Since rq is automatically learned from training data, this
is known as automatic relevance determination (ARD) (Rasmussen
and Williams, 2006). In supervised learning, ARD can be applied for
automatic feature selection, and in unsupervised learning it can be
utilized for automatic dimensionality reduction (Lawrence, 2004;
Damianou et al., 2012; 2016). Another popular family of
covariance functions is the Matérn class of functions. The
parameter that defines them is denoted as ]. When ] is half
integer, it can be shown that the Matérn covariance functions
become simply a product of an exponential and a polynomial. Its
one dimensional form corresponding to ] = 3/2 is as follow:

k]�3/2 d( ) � σ2f 1 + 

3

√
d/ℓ( )exp − 


3
√

d/ℓ( ), (8)

where d is the distance between xi and xj. Unlike the RBF covariance
function, the Matérn covariance functions generally models rough
processes. More information on the designing of covariance functions
can be found in (Rasmussen and Williams, 2006).

3 Model description

3.1 Taken’s theorem

We reiterate that the core of EDM is state space reconstruction
based on Takens’ theorem, which is stated as follows:

Theorem 1. (Takens’ theorem). Let M be a compact manifold of
(integer) dimension d. Then for generic pairs (ϕ, y), where

• ϕ: M → M is a C2-diffeomorphism of M in itself,
• y: M → R is a C2-differentiable function,
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the map Φ(ϕ,y): M → R2d+1 given by

Φ ϕ,y( ) x( ): � y x( ), y ϕ x( )( ), y ϕ2 x( )( ), . . . , y ϕ2d x( )( )( )
is an embedding of M in R2d+1.
In the literature of EDM, the most popular choice of ϕ is delay

embedding, i.e., delay by a constant τ. Takens’ theorem provides a
theoretical foundation that under some mild conditions, we can
reconstruct M by using, e.g., delay embedding of dimension E =
2d + 1 from a single observation variable of the system. Specifically,
given a time series x(t), for each time instant t, an E dimensional vector
mx(t) = [x(t),x(t−τ),. . .,x(t−(E−1)τ)]⊤ is constructed. Then each
mx ∈ RE is collected as a row in a matrix MDE

x ∈ RN×E where N is
the number ofmx vectors constructed from x(t). Essentially, MDE

x is a
reconstructed attractor manifold with E-dimensional delay
embedding from x(t).

Despite the sound theoretical foundation established by Takens’
theorem, some details need to be addressed before applying Takens’
theorem. In most situations we do not have perfect knowledge
regarding the underlying dynamical system that generates the
observations, and therefore, the true dimensionality of attractor
manifold d remains latent to us. Although Takens’ theorem states
that E = 2d + 1 should be sufficient, E = 2d + 1 is essentially latent as
well. If the embedding dimension E is too small, then the
reconstructed states can overlap and can appear to be the same
even though they actually correspond to different states. On the
other hand, if E is too large, the subsequent analysis will suffer
from the curse of dimensionality (Sugihara et al., 2012).

In the literature of EDM, E is either selected empirically based on
domain knowledge or by grid-search type methods. For instance, in
(Ye et al., 2015) the embedding dimension is selected using the false
nearest neighbours (Kennel et al., 1992) and grid searching from E = 2
to E = 8. Similarly, in (Sugihara et al., 2012) and (Sugihara et al., 2020),
E is determined by prediction performance and grid searching from
E = 2 to E = 10. In order to properly measure the prediction
performance, performance metrics are averaged over a large
number of randomly initialized experiments for each value of E in
the gird, and this can be computationally expensive. As mentioned in
(Sugihara et al., 2012; 2020), the optimal E that achieves the best
prediction performance in the grid search does not necessarily
correspond to the dimensionality of the original dynamical system.

Furthermore, in theory, the choice of τ can be arbitrary because it
is not specified in Takens’ theorem. However, the choice of τ will
indeed affect the quality of attractor manifold reconstruction. If τ is
too small, each dimension will be strongly correlated. On the other
hand if τ is too large, we will lose information about the underlying
dynamical system. In practice, the value of τ is often selected using a
mutual information based approach (Fraser and Swinney, 1986), and
it also relies on a grid search. Finally, since observational noise is not
modeled in delay embedding, the reconstruction result is not robust to
observational noise. Clearly, this undermines its applicability to real-
world data.

3.2 Empirical dynamic modeling with GP

Recently it has been shown that the dynamics of processes can be
learned with continuous time latent processes that are parametrized by
neural ordinary differential equations (Chen et al., 2018). However,

learning the parameters in the neural networks requires a large
amount of training data, which can be difficult in applications
where observations are expensive to collect. Instead, EDM and GPs
can exploit the widely adopted delay embedding and estimate a latent
representation of the state space. Conceptually, EDM with a GP
combine the convenience of delay embedding and power of
representation learning.

In the initial reconstruction step using delay embedding, instead of
performing grid search for selecting E and τ, we directly assign a
relatively large E, e.g., E = 10 or E = 20, to fulfill the requirement of
Taken’s theorem. To preserve the dynamical information, we choose
τ = 1, i.e., a delay by one sample, which is the smallest delay.We denote
this initial reconstruction asMinit. That is, given a time series xt, an E-
dimensional vector minit

x (t) � [x(t), x(t − 1), . . . , x(t − (E − 1))]⊤
can be found on Minit for time instance t. We should note that
Minit ∈ RN×E is not only of high dimensionality but also with high
correlation between the different dimensions.

Then we apply a GP latent variable model (GPLVM) (Titsias and
Lawrence, 2010) to infer a lower dimensional latent representation of
Minit, denoted as MGP. The generative model is as follows:

Minit � f MGP( ) + , (9)
where  ∈ RN×d̂ is a matrix whose rows are zero mean Gaussian with
covariance σ2ϵI. We initialize each dimension in f as an independent
draw from a GP where the covariance function is a multi-dimensional
radial basis function (RBF) conversion function in Eq. 7).
Conceptually, we remove the redundancy of the dimensions in
Minit with the GPLVM.

The learning requires maximizing the marginal likelihood
given by:

p Minit( ) � ∫p Minit | MGP( )p MGP( )dMGP. (10)

Unlike the GP regression framework, this marginal likelihood is
intractable because MGP and Minit are related by the covariance
function in a highly non-linear manner, and in general, non-linear
mapping will not preserve Gaussianity. This is handled in (Titsias and
Lawrence, 2010) by employing variational inference and approximating
the true posterior p(MGP|Minit) by a Gaussian variational distribution
q(MGP). From this distribution, we obtain a tractable lower bound on the
marginal likelihood, which is used for learning.

The ARD weights embedded in the covariance function enable us
to estimate the dimensionality of the underlying latent attractor
manifold, i.e., d, since irrelevant dimensions will be assigned
weights close to zero. Instead of initializing d̂<E, we initialize d̂ to
be equal to E. If the non-linear mappings governed by GP fail to
remove redundancy in Minit, e.g., E is not sufficiently large in the first
place, we do not enforce compression. Finally, we use the mean of
q(MGP) as the reconstructed attractor manifold after removing its
irrelevant dimensions, and the uncertainty of learning is captured in
the covariance of q(MGP).

3.3 A toy example

We demonstrate the aforementioned approach of EDM
using the Lorenz system (Tabor and Weiss, 1981; Emanuel, 1994)
which is non-linear, non-periodic, three-dimensional and
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deterministic. It has been well-studied for having chaotic solutions for
certain parameter values and initial conditions. To demonstrate that
our GP-based method can provide reliable reconstruction of an

attractor manifold, we generated a Lorenz attractor (a set of
chaotic solutions of the Lorenz system) M with the following
equations:

FIGURE 2
The underlying latent Lorenz attractor (left) generated in the toy example and its projection on the X-axis (right).

FIGURE 3
The reconstructed Lorenz attractor from X(t) using GP-based approach (top) and ARD weights of learned latent dimensions (bottom). The number of
dimensions with non-zero ARD weights is three, which is the true dimension of the Lorenz attractor. The GP-based approach is capable of learning the
dimension of the latent attractor from data in an automated manner.

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Feng et al. 10.3389/fbioe.2022.1057807

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1057807


dx/dt � a y − x( ),
dy/dt � x c − z( ) − y,
dz/dt � xy − bz,

(11)

and a classic set of parameter values a = 10, b � 8
3, and c = 28. Further,

we assumed that only the projection on the X-axis, denoted as X(t),
was observed. The generated Lorenz attractor and its projection X(t)
are plotted in Figure 2.

Then we reconstructed the attractor manifold from X(t) with our
GP-based method. The reconstruction results are shown in Figure 3,
where we can see that the MGP

X is topologically similar to the
underlying latent Lorenz attractor. Moreover, the true dimension of
the Lorenz system, which is 3, was correctly revealed by the ARD
weights although we initialized Q = 20. It can be shown that the GP-
based reconstruction is also robust to observation noise. More details
on this can be found in (Feng et al., 2020b).

4 Application I: Causal discovery
between FHR and UA

As mentioned in Section 2.2, an immediate application of EDM is
CCM for causal discovery from time series data. The basic idea of
CCM is to measure the extent to which the historical record of one
variable can reliably estimate states of the other variable using simplex
projections (Sugihara and May, 1990). Essentially, CCM tests whether
or not a neighborhood defined on Mx is preserved on My, and vice
versa, i.e., for causal discovery it looks for a signature of cause in the
history of the effect. More details about the CCM framework can be
found in (Sugihara et al., 2012).

Although in the literature on obstetrics and gynecology it has been
well recognized that changes on UA can cause changes in FHR
(Spinnewijn et al., 1996; Nageotte, 2015; Sletten et al., 2016), we
confirmed this conclusion by testing causality between the FHR and
UA signals within the CCM framework. Specifically, we first
reconstructed the attractor manifolds from the FHR and UA
signals using the GP-based EDM. For instance, a short segment of
FHR and UA signals and their corresponding reconstructed attractor
manifolds are shown in Figure 4. Then we carried out the simplex
projection algorithm using GP regression, similar to the original
simplex project in (Sugihara and May, 1990). However, unlike the
original simplex projection, the GP-based simplex projection is more
robust to noise since the observation noise is considered explicitly in
the generative process as shown in Eq. 1). Considering that the
causality between FHR and UA signals is well recognized and due
to limited space, the CCM framework and GP-based simplex
projection are not described further here. More details about this
can be found in (Feng et al., 2020a). It is worth noting that the
developed framework in (Feng et al., 2020a) can readily be applied to
causal discovery in other communities.

5 Application II: Characterizing
interactions between FHR andUA signals

In the evaluation performed by obstetricians, the FHR signal is
assessed with reference to its corresponding UA signal. For instance,
widely adopted FHR patterns are the early deceleration, which is
defined as a symmetrical decrease and return back to the previous level
and similarly, the late deceleration is defined as a visually apparent and

FIGURE 4
Raw FHR and UA segments (top), and their corresponding reconstructed attractor manifolds with the GP-based method (bottom).
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gradual decrease in the FHR typically following the uterine
contraction. In the literature of automated analysis of FHR, the
interaction between FHR and UA is usually not considered. In this
section, we show that the GP-based EDM can be applied to
characterizing the interaction between FHR and UA signals.

We adopted the same open access database, and we used
the first 30 min of FHR and UA signals in this experiment
because when approaching the end of labor, the signal
quality of both FHR and UA recordings deteriorates
noticeably (Spilka, 2013). We used the preprocessing
algorithm described in (Spilka, 2013). One CTG recording
was excluded from our experiment because its UA recording
is empty. Then for each CTG recording, we reconstructed the
attractor manifolds of the FHR and UA signals using the GP-
based method.

We used the Hausdorff distance to measure the distance or
similarity between the reconstructed attractor manifolds (of the
FHR and UA signals). In other words, for each CTG recording, we
utilized the Hausdorff distance between MGP

FHR and MGP
UA to

characterize the interaction between the FHR and UA signals. The
Hausdorff distance measures the degree of mismatch between two set
of points A and B (Shapiro and Blaschko, 2004), and it is defined as
follows:

H A, B( ) � max sup
a∈A

d a, B( ), sup
b∈B

d A, b( ){ }, (12)

where

d a, B( ) � inf
b∈B

d a, b( ) (13)

and d(a, b) represents the Euclidean distance between point a and
point b.

In computerized analysis of CTG, the gold standard for labeling
FHR tracings has been the umbilical arterial pH value of the fetus at
birth (Armstrong and Stenson, 2007), although the choice of a cutoff
value to determine “acidosis” has not been universally accepted
(Georgieva et al., 2013; Abry et al., 2018). The popular FHR
features generally are not well correlated with the pH value (the
absolute value of the Pearson correlation coefficient between a
feature and pH value is close to zero) (Fulcher et al., 2014).
Therefore, the Pearson correlation coefficient with pH is an
important well-adopted metric when proposing and selecting FHR
features, and we adopted it for evaluating H(MGP

FHR,M
GP
UA).

For comparison purposes, we selected popular time domain
features including the short term variability (STV) and the long
term variability (LTV) (Gonçalves et al., 2006) as well as frequency
domain features proposed in (Signorini et al., 2003). Further, we used
non-linear domain features including the approximate entropy and
the sample entropy (Delgado-Bonal and Marshak, 2019). The
frequency domain features proposed in (Signorini et al., 2003) were
the energies in four frequency bands: very low frequency (VLF):
0–.06 Hz, low frequency (LF): .06–.3 Hz, medium frequency (MF):
.3–1 Hz and high frequency (LF): 1–2 Hz; and the ratio of energies
defined by LF/(MF + HF).

The correlation matrix of the features and the umbilical artery
pH is illustrated in Figure 5. The correlation coefficient between the
umbilical cord artery pH value and H(MGP

FHR ,M
GP
UA) is −.12, which is

comparable with that of the popular FHR features such as STV, LTV
and LF. Meanwhile, H(MGP

FHR ,M
GP
UA) is not highly correlated with

FIGURE 5
The correlation matrix of features and umbilical artery pH, computed with 552 CTG recordings in an open access CTG database described in Chudáček
et al. (2014). The correlation coefficient between H(MGP

FHR ,M
GP
UA), denoted as HD, and pH is comparable with popular features such as STV, LTV and LF.

Meanwhile H(MGP
FHR ,M

GP
UA) is not highly correlated with other FHR features.
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these popular FHR features, the highest correlation coefficient
between H(MGP

FHR ,M
GP
UA) and other FHR features being −.26. This

indicates thatH(MGP
FHR ,M

GP
UA) is not only interpretable but also able to

provide additional information on the umbilical artery pH.
Despite the popularity of labeling, CTG recordings using

umbilical artery pH in computerized analysis, a few caveats
should be noted. One is that, there may be an implicit bias in
using pH values as a label because in many hospitals this value is
acquired only after a pregnancy is declared or suspected to be of
“high risk.” Further, the umbilical artery pH value can change over
time. This indicates that the arterial pH has intrinsic variance and
its value may be affected by factors such as duration of labor, cord
blood sampling technique and total time elapsed between delivery
of the fetus and acquisition of the umbilical cord blood sample.
Finally, we recall that there are commonly adopted clinical
evaluations of fetal wellbeing post-delivery, e.g., via Apgar
scores, but they have inter-observer and intra-observer variability.

6 Application III: Estimating missing
samples in FHR

In practice, many factors may affect the quality of the CTG
signals in their acquisition, for instance, intra-recording
displacement of the ultrasound probe, fetal or maternal
movement, and technician’s expertise and experience
(Hamelmann et al., 2016). A particular challenge in the analysis
for CTG recordings is the large number of missing samples in FHR.
For example, when using Doppler-based FHR measurements, the
percentage of missing samples can vary from 0%–40% (Oikonomou
et al., 2013). Such signal loss episodes have various causes, e.g., fetal
or maternal movement, and misplaced transducer. The missing
samples introduce variability and uncertainty to the extracted
features. This not only indicates the necessity of adopting a
probabilistic framework where we can properly express the
uncertainties, but also suggests the need for appropriate

treatment of the missing samples. Because many computerized
approaches rely on features extracted from FHR recordings, these
missing samples can cause serious problems if they are not properly
addressed. In (Spilka et al., 2012), the authors investigated the
stability of several commonly used FHR features when there were
missing samples, and their experimental results showed that the
feature values changed dramatically with the increase of missing
samples. In automated FHR analysis, small segments of missing
samples are interpolated with linear or cubic spline interpolation,
and longer consecutive segments are often entirely removed (Sprott
and Sprott, 2003).

In this application, we take causal relationship between FHR and
UA into consideration when estimating missing samples in FHR
recordings. Particularly, for reliable recovery of missing samples in
FHR, we propose a GP-based method using GP regression which is
capable of incorporating UA signals for the estimate of missing FHR
samples automatically (Feng et al., 2017). We model the observed
value of the ith sample yi in a FHR segment as a function of the time
index i and its synchronized UA sample, ui, with additive Gaussian
white noise, i.e.,

yi � y xi( ) � f xi( ) + ϵ, (14)
where xi � [i, ui]′ is a 2-D vector, f(xi) is a latent variable, and
ϵ ~ N (0, σ2) is Gaussian white noise.

We designed the covariance function for this task as a sum of an
RBF covariance function (for capturing slow varying components), a
Matérn covariance function (] = 3/2, for capturing rapid varying
components), and a linear covariance function (for capturing
linearity). Its specific form is as follows:

kf xi, xj( ) � α1
2 1 + 


3
√

xi − xj( )′Λ1 xi − xj( )[ ]12[ ]
× exp − 


3
√

xi − xj( )′Λ1 xi − xj( )[ ]12[ ]
+α22 exp −1

2
xi − xj( )′Λ2 xi − xj( )[ ]12[ ]

+ xi( )′Λ3 xj( )[ ],
(15)

FIGURE 6
The two CTG segments, i.e., FHR (top) and UA (bottom) recordings, used for estimating of random missing samples in FHR.
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where Λ1 � β1 0
0 β2

( ), Λ2 � β3 0
0 β4

( ) and Λ3 � β5 0
0 β6

( ).
We tested this approach on two raw CTG segments of length

2 min that are plotted in Figure 6. We evaluated the performance by
investigating the recovery performance with respect to different
percentages of missing samples, which ranged from 1% to 99%
with a step size of 1% on both CTG segments. For each
percentage, the experiment was repeated 100 times and the
performance metrics were averaged over 100 results. To
demonstrate the contribution of the UA signal, the experiments
were repeated using a similar GP model but with the UA samples
excluded from the input of the latent function, i.e., ui was taken out
from xi � [i, ui]′. Cubic spline interpolation was also adopted for
benchmarking since it is widely applied in practice. The recovery
performance was measured by the mean squared error (MSE) in
logarithmic scale and the signal-to-noise ratio (SNR), which were
defined by

LogMSE � loge
s − ŝ‖ ‖2
N

( ), (16)

and

SNR � 10 log10
s‖ ‖2

s − ŝ‖ ‖2( ), (17)

where N is the number of missing samples, s is the ground truth
and ŝ is the reconstructed signal. The experimental results, for
both CTG segments in Figure 6, are shown in Figure 7, and they
clearly show that the GP-based method, when incorporated the
UA signals, provides the best performance. For example, even
when the percentage of missing samples was more than 50%, the
MSE of our approach was still around one beat per minute in both
cases.

A more challenging situation in estimating the missing samples in
FHR recordings is that when the missing samples are consecutive
(i.e., they appear in bursts) and their corresponding UA samples are
also missing. In (Feng et al., 2021), we proposed to utilize the attractor
manifold of FHR signal learned by GP-based EDM for this task,
because it enables us to identify similarity in terms of the state of
system. Particularly, in the generative process, on top of the GP-based
EDM, we explicitly correlated points on the attractor manifold in time
by modeling Minit

FHR as the output of a dynamically constrained
deep GP.

7 Conclusion

In this paper, we present a GP-based EDM for state space
reconstruction from time series data, which is able to estimate the
attractor manifold within probabilistic framework. The
dimensionality of the attractor manifold is also simultaneously
learned from observations, which is more principled comparing to
the classical EDM with direct delay embedding where the
parameters are selected using grid search-based methods.
Furthermore, the learning is captured by the covariance of the
variational distribution q(MGP), which is important in many
applications especially in decision making. Unlike the
traditional EDM with direct delay embedding, the observation
noise is explicitly modeled in the GP-based EDM, and as a result,
the GP-based EDM is more robust to observation noise.
Comparing with EDM using neural ODE, the GP-based EDM
is data efficient because the number of model parameters are
much less then that of the neural networks. Improving the state
space reconstruction is beneficial for subsequent analysis of the
FHR and UA signals. For instance, in CCM for casual discovery,

FIGURE 7
Experimental results of estimating randommissing samples in FHR: The experiment results for the first CTG segment (left), and the experiment results for
the second CTG segment (right). The MSE (upper plot, in logarithmic scale) and SNR (bottom plot) of each method under different percentages of missing
samples are presented, averaged over 100 experiments.
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the correspondence between the reconstructed attractor
manifolds is utilized to detect causality.

It is well recognized, from clinical point of view, that changes
in the UA signal can cause changes in the FHR signal. In
computerized analysis of CTGs, we first confirmed this
conclusion within the CCM framework by testing the
correspondence between the reconstructed attractor
manifolds of the FHR and UA signals. This is also the logic
behind taking the UA signal into consideration in automated
analysis of CTGs. The GP-based EDM enables us to compare the
FHR and UA signals simultaneously from a dynamical system
point of view. As a direct application of a GP-based EDM, we
then used the Hausdorff distance between the reconstructed
attractor manifolds of the FHR and UA signals,
i.e., H(MGP

FHR , M
GP
UA), to characterize the interaction between

the FHR and UA signals. We showed that H(MGP
FHR , M

GP
UA) is

able to provide additional information about the umbilical
artery pH. Further, we addressed the problem of missing
samples in the CTGs. The treatment of missing samples is
often the very first step in preprocessing the FHR and UA
signals, which in turn plays an important role in all of the
downstream analysis of these signals. Utilizing causal
relationship is more reliable and desirable in this task
compared to correlation which can be spurious and
inconsistent. As an indirect application of GP-based EDM,
we also used the causal relationship between the FHR and
UA signals for improved estimation of missing samples in the
recordings.
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