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To explore the causal pathogen and the correlated rhizosphere soil

microecology of sugarcane root rot, we sampled the sugarcane root

materials displaying different disease severity, and the corresponding

rhizosphere soil, for systematic root phenotype and microbial population

analyses. We found that with increased level of disease severity reflected by

above-ground parts of sugarcane, the total root length, total root surface area

and total volume were significantly reduced, accompanied with changes in the

microbial population diversity and structure in rhizosphere soil. Fungal

community richness was significantly lower in the rhizosphere soil samples

from mildly diseased plant than that from either healthy plant, or severely

diseased plant. Particularly, we noticed that a peculiar decrease of potential

pathogenic fungi in rhizosphere soil, including genera Fusarium, Talaromyces

and Neocosmospora, with increased level of disease severity. As for bacterial

community, Firmicuteswas found to be of the highest level, while Acidobacteria

and Chloroflexi of the lowest level, in rhizosphere soil from healthy plant

compared to that from diseased plant of different severity. FUNGuild

prediction showed that the proportion of saprophytic fungi was higher in

the rhizosphere soil of healthy plants, while the proportion of pathogenic

fungi was higher in the rhizosphere soil of diseased plants. By co-

occurrence network analysis we demonstrated the Bacillus and Burkholderia

were in a strong interaction with Fusarium pathogen(s). Consistently, the

biocontrol and/or growth-promoting bacteria isolated from the rhizosphere

soil were mostly (6 out of 7) belonging to Bacillus and Burkholderia species. By

confrontation culture and pot experiments, we verified the biocontrol and/or

growth-promoting property of the isolated bacterial strains. Overall, we

demonstrated a clear correlation between sugarcane root rot severity and

rhizosphere soil microbiome composition and function, and identified

several promising biocontrol bacteria strains with strong disease suppression

effect and growth-promoting properties.
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Introduction

Sugarcane (Saccharum officinarum L. cv. Badila) is an

important economic crop as well as a popular tropical/

subtropical fruit grown in tropical and subtropical regions,

including China (Boaretto et al., 2021; Ren et al., 2022)

(Supplementary Figure S1A). In recent years, with ratoon

planting of sugarcane, a large number of pathogens that cause

sugarcane root rot accumulate in plants or in the soil year by year,

resulting in the imbalance of soil microbial community, which

seriously restricts the development of the sugarcane industry

(Pang et al., 2021; Ren et al., 2021). Among them, sugarcane root

rot caused by Fusarium commune (Wang et al., 2018) occurs

seriously in the chewing cane producing areas in Guangdong

Province, China (Supplementary Figure S1A). Mild disease

symptoms include wilt and yellow leaves, slow growth and

reduction in tiller numbers of seedlings. In severe cases, the

disease causes sugarcane death and large-scale yield reduction,

which poses a serious threat to the high yield and high sugar

content in sugarcane (Ren et al., 2021).

The root system is the main organ of crops to anchor and

support the above-ground parts of plants and to absorb soil water

and nutrients, and is closely related to the growth and

development, physiological functions and material metabolism

of plants. If the root system of plants is under adverse conditions,

a series of morphological changes will occur (Potocka and

Szymanowska-Pulka., 2018; Vives-Peris et al., 2020). On the

other hand, rhizosphere soil microbiota, as the most active

organisms in the soil, form a dynamic combination of plants

and the interactive environment between soil-rhizosphere

microbiota-plants (Peiffer et al., 2013). If the balance between

soil-rhizosphere microbiota-plants is disrupted, plant growth

would be affected (Qu et al., 2022). Microbial pathogens are

sharing the same rhizospheric environment with other microbes,

therefore encountering the same abiotic environmental factors

(Mendes et al., 2013). Correspondingly, physiological changes in

the microbes may also affect each other, thus resulting in a

dynamic micro-ecological environment around the root system.

Disease occurrence could be viewed as an outcome of such

micro-ecological interaction (Xu et al., 2012). The rhizosphere

microbiota has complex composition and high dynamics, and are

often referred to as the second genome of plants (Berendsen et al.,

2012). Studies have shown that soil-borne diseases are correlated

with the number and activity of rhizosphere soil microbiota (Lee

et al., 2021). Therefore, understanding the structure, function

and interaction of rhizosphere soil microbiota (including the

pathogens) is of great significance for the prevention and control

of soil-borne diseases. At present, investigation on sugarcane

rhizosphere soil microbiota is more on their effect on plant

growth and agronomic traits, but very less about their

contribution to root rot disease severity.

As the symptoms of sugarcane root rot is not prominent in the

early stage, effective prevention methods are lacking (Tu., 2012).

Traditional agricultural or chemical methods are used to control

root rot, but are either time-consuming or limited by region, labor

force and season in production and application (Liang et al., 2017).

Besides, chemical control may cause problems including crop drug

residues, microbial drug resistance, and/or soil quality decline or

even degradation (Komárek et al., 2010). Biological control is an

ideal alternative in controlling crop disease, due to its advantages of

being friendly to the ecological environment, non-toxic or side

effects to non-target organisms, and difficult for pathogens to

develop drug resistance (Tariq et al., 2020). Studies have shown

that plants can recruit antagonistic microorganisms to the

pathogens, from the rhizosphere soil, which could be used as

biocontrol agents to improve disease resistance (Mendes et al.,

2011). Such biocontrol bacteria have the characteristics of fast

reproduction speed, simple nutritional requirements, good

environmental adaptability and strong root reproduction and

colonization ability (Chen et al., 2020). A recent study found that

Bacillus species had been isolated from banana rhizosphere soil,

which can significantly promote the growth of banana seedlings and

effectively prevent and control banana Fusariumwilt (Li et al., 2012).

Biocontrol bacteria had been isolated from the rhizosphere soil of

wheat and corn, which had strong inhibitory effects on soil-borne

diseases caused by Fusarium oxysporum, Sclerotinia sclerotiorum

and Rhizoctonia solani (Sun et al., 2014). Pantoea agglomerans

produces and secretes Herbicolin A as a major antifungal

compound to suppress Fusarium head blight (FHB) in cereals

caused by Fusarium graminearum (Xu et al., 2022). Some

biocontrol bacteria are also plant growth promoting rhizobacteria

(PGPR). Such PGPR strains can directly or indirectly benefit host

plants through their own metabolites or colonization advantages,

such as improving plant disease resistance through nitrogen fixation,

synthesis of siderophores and growth hormones (Du et al., 2016;

Bloch et al., 2020). At present, the development of biocontrol

bacteria had a good control effect on the root rot of medicinal

plants (Mu et al., 2014), but the development of biocontrol bacteria

in the rhizosphere soil of sugarcane root rot and the verification of

the subsequent growth-promoting ability have not yet been

reported.

With the aim to characterize rhizospheric microbes

correlating/contributing to sugarcane root rot occurrence/

severity, we collected roots and rhizosphere soil samples from

the sugarcane displaying different severity of root rot disease, on

a same sugarcane-planting plot in Guangzhou city, Guangdong

Province, China. We categorize disease severity based on root

phenotypes including total root length, total root surface area and
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total volume of the plants. We also characterized the composition

and diversity of the rhizosphere soil microbial population

correlating with different disease severity, using high-

throughput sequencing technology. We further predicted

rhizosphere soil microbiome function and generated a

microbial co-occurrence network, for a better understanding

of the relationship between the fungal pathogen Fusarium

species and the bacterial community in the rhizosphere soil.

Rhizospheric bacteria with biocontrol effects were isolated,

identified, and their biocontrol ability was verified.

Furthermore, some of the biocontrol bacteria displayed

growth-promoting ability. Overall, our study depicts a

correlation between rhizosphere microbial community and

sugarcane root rot occurrence and/or severity, and providing

candidate biocontrol/growth-promoting microbial resources

with great potential in agricultural application.

Materials and methods

Sample collection and sugarcane root
characterization

The sugarcane cultivars were planted in the same sugarcane

plot in Nanshunyi Village, Dagang Town, Nansha District,

Guangzhou City, Guangdong Province, China (22°47′04.4″N
and 113°26′14.8″E), following regular irrigation, fertilization

and maintenance practice. Samples used in this study were

collected on 31 October 2019. We arbitrarily determined

sugarcane root rot severity according to the height and

stoutness of above-ground part of plants, as healthy (DHZA),

mildly diseased (DHZB), moderately diseased (DHZC) and

severely diseased (DHZD) groups (Supplementary Figure

S1B). “DHZ” is short for “Dahuizhong”, the cultivar name

called by the local farmer. Six sugarcane plantlets (adult-

plants) from each group were randomly selected for collection

of their roots and rhizosphere soil samples. The sampling follows

the established method (Clemensson-Lindell and Persson.,

1992): the roots of each sugarcane were dug out and loosely

attached soil was removed by manual shaking, whereas the

rhizosphere soil was collected from the surface of the roots.

After collecting the rhizosphere soil, the sugarcane roots were

washed with clean water, and air-dry. The cleaned root system

and rhizosphere soil were sealed in sterile ziplock bags for later

use. Photographs of the dried roots were taken, and total root

length, root surface area, and root volume were measured using

the software RhizoVision Explorer v1.0 (Seethepalli et al., 2021).

Soil DNA extraction

Microbial DNA was extracted from fresh soil samples using

the E. Z.N.A® Soil DNA Kit (Omega Bio-Tek Inc., Norcross, GA,

United States ). The concentration and purity of extracted DNA

were measured using a NanoDrop 2000 spectrophotometer

(Thermo Fisher Scientific, Waltham, MA, United States ). The

microbial community structure was determined based on paired-

end amplicon sequencing of the 16S rDNA gene (for bacteria)

and the Internal Transcribed Spacer (ITS) region of fungal

ribosomal DNA (for fungi) on the Illumina MiSeq PE

250 platform, following the established protocol (Schmidt

et al., 2019). The V5-V7 hypervariable regions of the bacterial

16S rDNA gene were amplified using primers 799F and 1193R

(Zhang et al., 2019) to assess bacterial communities, using the

established PCR reaction conditions and procedures were

described in Han et al. (2020). The fungal ITS1 region was

amplified from each sample using primers ITS1F and ITS2R

(Schmidt et al., 2019), which provided a comprehensive coverage

with the highest taxonomical accuracy for fungal sequences, to

assess fungal communities, using the reported PCR reaction

conditions and procedures (Kang et al., 2021). PCR reaction

was performed on a Bio-Rad S1000 Thermal Cycler (Bio-Rad,

CA). Subsequently, high-throughput sequencing of the DNA

libraries was performed using Illumina Miseq PE 250 platform

and the sequences were deposited in the NCBI database with

accession number PRJNA858005 and PRJNA858105 (http://

www.ncbi.nlm.nih.gov), and GSA database (Chen et al., 2021)

with accession number PRJCA011320 (https://ngdc.cncb.ac.cn/

gsa/).

Bioinformatics analysis

For multiple samples sequenced in parallel, the sliding

window method was used to screen the quality of the paired-

end sequences in the FASTQ format one by one, and then FLASH

v1.2.11 (http://ccb.jhu.edu/software/FLASH/) was used to pair

the paired-end sequences that passed the primary quality

screening according to overlapping bases (Magoč and

Salzberg., 2011). Subsequently, the ligated sequence

identifications were assigned to corresponding samples, and

QIIME2 v2020.2 (https://qiime2.org//) were used to

demultiplexed raw sequences (Bolyen et al., 2019). Quality

control functions in the DADA2 v1.5.2 (https://benjjneb.

github.io/dada2/bigdata.html) plugin for precut, reverse reads

and noise removal, chimera detection and removal to filter low

quality reads, reconstruct amplicon sequence variants (ASVs),

and generate feature tables for ASV counts (Callahan et al., 2016).

Sequences belonged to archaea, mitochondria, and chloroplasts

were removed. To avoid potential bias caused by differences in

sequencing depth, the number of sequences in each sample was

rarefied (Zhou et al., 2022). Bacterial and fungal community

alpha diversity was processed in the Majorbio cloud (https://

cloud.majorbio.com). Subsequently, at the ASV level, the

microbial richness (Chao1) and diversity (Shannon) of

rhizosphere soil microbiomes correlating with different disease
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severity (DHZA, DHZB, DHZC, and DHZD) were calculated to

characterize the differences in alpha diversity between samples.

Beta diversity is based on the Abundance-based Jaccard distance

algorithm and the ANOSIM method, to evaluate and compare

the differences between sample communities. Heatmaps, PCoA,

and RDA were performed using the Majorbio cloud (http://

cloud.majorbio.com).

Function predicting of rhizosphere soil
microbiome

BugBase (https://bugbase.cs.umn.edu/index.html) was used

for prediction of bacterial phenotypes (Ward et al., 2017),

including biofilm formation, pathogenicity, presence of mobile

element(s), oxygen utilization (including aerobic, anaerobic,

facultatively anaerobic, and oxidative stress tolerant), etc. The

fungal community was analyzed by microecological guild using

FUNGuild (Nguyen et al., 2016), which could be subdivided into

three nutritional modes: pathotroph, symbiotroph and

saprotroph. By respectively linking bacterial species

classification and fungal species classification with phenotypic

BugBase and functional FUNGuild classification, the

classification of bacteria and fungi was predicted.

Co-occurrence network analysis

The interaction between rhizosphere soil bacteria and the

pathogen Fusarium genus was evaluated by determining the

Spearman rank correlation coefficient and topological network

properties of Fusarium and bacterial pairs. Co-occurrence

networks were constructed through the MENA (molecular

ecological network analysis pipeline) based analysis protocol

(Feng et al., 2022). The network topology characteristics

include the total number of network nodes (Operational

Taxonomic Unit, OTU), total number of edges (connections

between nodes), and degrees of co-occurrence (the number

directly related to nodes) (Hartman et al., 2018). The co-

occurrence network diagram was drawn using Cytoscape

v.3.3.0 software (http://www.cytoscape.org/) to visualize the

network.

Isolation and identification of sugarcane
root rot pathogen(s)

The diseased plants with typical symptoms of sugarcane root

rot were collected and separated according to the tissue

separation method (Xiao et al., 2020) as schematically

presented in Supplementary Figure S1C. The fungal hyphae

and spore were observed under a microscope, and classified

according to The Fusarium laboratory manual (Leslie and

Summerell., 2006), and verified whether they were pathogen

according to Koch’s Law (Supplementary Figure S1D). For

molecular identification, fungal genomic DNA was extracted

using the fungal genomic DNA extraction kit (Omega Bio-

Tek Inc., Norcross, GA, United States ) and subjected to PCR

amplification using primers EF-1 and EF-2 (Geiser et al., 2004),

following standard PCR reaction conditions and procedures

(Herron 2015). The amplified products were sequenced by

Sangon Biotechnology Co., Ltd. (Shanghai, China), followed

by BLAST search (http://blast.ncbi.nlm.nih,gov/Blast.cgi) to

identify the fungal genus. The phylogenetic analysis was

performed with MEGA7 (https://www.megasoftware.net/).

Screening and identification of biocontrol
bacteria

After weighing 10 g of each rhizosphere soil sample, sterile

water was used to prepare a soil dilution (Supplementary Figure

S1E), which was then streaked to Nutrient Agar (NA) medium

and cultured for 3 days. Single colonies with different colonial

shapes and/or colors were isolated (Li et al., 2020), and evaluated

by the confrontation culture method, the mycelial growth rate

method and the spore germination method, following the

established procedure (Li et al., 2020). The diameter of the

fungal colony and the rate of fungal spore germination, with

or without confrontation of screened bacterial strains, were

measured, and used to calculate the inhibition rate using the

following formula: mycelial growth inhibition (%) = (control

colony diameter–treatment colony diameter)/(control colony

diameter–inoculation plug diameter) ×100; spore germination

inhibition (%) = (control spore germination rate–treatment

spore germination rate)/control spore germination rate ×100.

All the selected biocontrol bacteria were identified to the

species level based on their morphological characteristics,

physiological and biochemical characteristics (Breed., 1984;

Dong and Cai., 2001), and 16S rDNA sequence alignment.

For PCR amplification of the bacterial 16S rDNA gene,

universal primers 27F/1492R (Lane., 1991) were used. The

amplified products were sequenced by Sangon Biotechnology

Co., Ltd. (Shanghai, China) and subjected to BLAST search

(http://blast.ncbi.nlm.nih,gov/Blast.cgi). Phylogenetic analysis

was performed with MEGA7 (https://www.megasoftware.net/).

Sugarcane root rot control effect and
growth-promoting effect of biocontrol
bacteria

The screened biocontrol bacteria were cultured in 100 ml of

liquid Nutrient Broth (NB) medium, at 37°C, and shaking at

180 r/min, for 24 h. The bacterial cells were centrifuged and

adjusted OD600 to 0.5 in sterile water. Such biocontrol bacteria
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suspension was evenly mixed with sterile soil and vermiculite in a

ratio of 1:30, and placed in different U-PVC pipes, in which the

healthy sugarcane tubers of equal size were transplanted, after

disinfection (to avoid unequal residual microbes brought in by

the tubers). The isolated pathogenic fungal strain (#3) that causes

sugarcane root rot was cultured 100 ml of Potato Dextrose Broth

(PDB) medium at 28°C and shanking at 180 r/min for 5 days, and

diluted with sterile water to 1 × 106 spores/ml. The fungal

suspension was irrigated into the soil mixed with different

biocontrol bacterial suspension, with the same proportion

(Supplementary Figure S1F). Sugarcane grown in the soil

containing no biocontrol bacteria served as the blank control.

Three biological repeats were performed for each biocontrol

bacteria treatment. After 45 days of sugarcane growth under

different combination of fungal/bacterial inoculation, we dug

out all the sugarcane roots, washed them with clean water, and

air-dry, before imaging and measuring total root length, root

surface area, and root volume using the software RhizoVision

Explorer v1.0 (Seethepalli et al., 2021).

To assess the growth promoting effect, individual bacteria

were inoculated to the sterile soils and vermiculite, following the

same procedure as aforementioned. The sugarcane plants were

allowed to grow in such bacterial inoculated soils for 45 days,

before characterization of above-ground parts and roots.

Qualitative determination of phosphorus-dissolving, nitrogen-

fixing, siderophore and 3-indoleacetic acid capacities followed

the established protocols (Syed-Ab-Rahman et al., 2018).

Data analysis

All statistics analyses were performed using SPSS

v21 software (IBM, United States ), and analyzed by Duncan

test of analysis of variance (ANOVA). p values <0.05 were

considered statistically significant.

Results

Phenotypic analysis of sugarcane root rot
disease

A longer root system, with a larger total surface area and

volume, allows plants to absorb a wide range of soil water and

nutrients, resulting in stronger plants (Deng et al., 2020). We

arbitrarily determined sugarcane root rot severity, and

categorized it as 4°: healthy (DHZA), mildly diseased (DHZB),

moderately diseased (DHZC) and severely diseased (DHZD),

based on the height and stoutness of above-ground part of

sugarcane plantlets (Supplementary Figure S1B). “DHZ” is

short for “Dahuizhong”, the cultivar name called by the local

farmer. The total root length (Figure 1A), volume (Figure 1B)

and surface area (Figure 1C) of sugarcane roots were significantly

reduced, with increasing severity degrees. Compared with

DHZA, the total root length of DHZB, DHZC or DHZD

plantlets (adult-plants) decreased by 162.12, 292.46 and

593.95 cm, respectively; the total volume was decreased by

39.68, 45.15 and 55.88 cm3; and the total surface area was

decreased by 258.02, 293.31 and 363.91 cm2, respectively.

Overall, we confirmed that the sugarcane root rot severity

degree was highly correlated to the growth displayed by the

above-ground part of sugarcane.

Microbial alpha diversity

Alpha diversity showed no significant difference of

rhizosphere soil bacterial community between different disease

severity groups (p > 0.05, Figures 2A,B). Pearson correlation

analysis showed that the total root surface area of DHZA was

negatively correlated with the Chao1 index, but positively

correlated with the Shannon index (Figure 2C). However, no

significant correlation was found in other groups, between

disease severity degrees and bacterial community diversity

(Figure 2C). On the other hand, rhizosphere soil fungal

community from DHZD group had the highest Chao1 and

Shannon indices (Figures 2D,E). Particularly, the Chao1 index

of rhizosphere soil fungal communities was significantly different

among healthy and different diseased groups (p < 0.01,

Figure 2D), while the Shannon index was not significantly

different (p > 0.05, Figure 2E), indicating that the fungal

community richness, but not the diversity, was correlating

with disease severity. Pearson correlation analysis showed that

the Chao1 index of the rhizosphere soil fungal community in

DHZB group was negatively correlated with the total root length,

and the Shannon index of the rhizosphere soil fungal community

in DHZC group was positively correlated with the total root

surface area (Figure 2F).

Bacterial beta diversity and community
composition

PCoA analysis of the bacterial communities based on the

Abundance-based Jaccard distance revealed that soil microbiome

formed three distinct clusters (Figure 3A). The DHZA samples

were separated from DHZB samples along the first axis

(PERMANOVA, p < 0.05), while separated from DHZC and

DHZD samples, which were clustered together (PERMANOVA,

p < 0.05), along the second axis (PERMANOVA, p < 0.05)

(Figure 3A). The microbiome in DHZA samples was mainly

distributed in the positive value area, while those from DHZB,

DHZC and DHZD samples in the negative value area, of PCoA1

(Figure 3A). These results confirm that sugarcane root rot disease

significantly affected the rhizosphere bacterial community

composition.
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The bacterial community compositions varied significantly

in different severity groups (Figure 3B). Proteobacteria and

Actinobacteriota were most abundant in all sampled groups,

accounting for more than 65% of the identified phyla. The rest of

phylum level in the rhizosphere soil samples showed significant

difference (p < 0.05) among groups DHZA-DHZD, except for

Proteobateria, based on Kruskal–Wallis H test analysis

(Figure 3C). The relative abundance of Actinobacteriota was

decreased by 16.10% and 18.48% respectively in DHZC and

DHZD, while increased by 3.91% in DHZB, as compared to that

FIGURE 1
Categorization of sugarcane root rot severity based on total root length (A), total root volume (B), or total root surface area (C). Samples were
from DHZA: healthy plants, DHZB: mildly diseased plants, DHZC: moderately diseased plants, or DHZD: severely diseased plants. “DHZ” is short for
“Dahuizhong”, the cultivar name called by the local farmer. Different lowercase letters denote significant differences at the p < 0.05 level by Duncan’s
new multiple range test.

FIGURE 2
Bacterial and fungal alpha diversity analysis. Bacterial alpha-diversity represented by Chao 1 (A) or Shannon (B) indexes in rhizosphere soil
samples from plants of different root rot severity. (C) Correlation between bacterial alpha-diversity and root phenotype factors based on Pearson
analysis. Fungal alpha-diversity represented by Chao 1 (D) or Shannon (E) indexes in rhizosphere soil samples from plants of different root rot severity.
For (A), (B), (D) and (E), F, Fisher’s F-ratio; p, p-value. *p < 0.05, **p < 0.01. (F) Correlation between fungal alpha-diversity and root phenotype
factors, using Pearson analysis. For (C) and (F), *p < 0.05, **p < 0.01.
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in DHZA. The trend of Proteobacteria abundance was opposite

to that of Actinobacteriota, as it increased by 51.93% and 51.59%

in DHZC and DHZD respectively, and decreased by 3.32% in

DHZB, compared to that of DHZA. The relative abundances of

Acidobacteriota and Chloroflexi were significantly increased in

DHZB, DHZC and DHZD groups in comparison to healthy

(DHZA) samples. In contrast, the relative abundance of

Firmicutes decreased with increasing disease severity (Figures

3B,C). We further illustrated the correlation between disease

severity degree and rhizosphere bacterial community

composition by Redundancy Analysis (RDA) analysis. As

shown in Figure 3D, RDA1 and RDA2 explained 22.20%

and 6.18% of the sample differences, respectively. The

composition of bacterial community was indeed affected by

disease severity degree, which was reflected by the total root

length (R2 = 0.8828, p = 0.002), total root volume (R2 = 0.8687, p =

0.002) and total root surface area (R2 = 0.8378, p = 0.003). We

speculate that the rhizosphere bacterial community composition

was changed as a consequence of increased severity of disease.

Fungal beta diversity and community
composition

Similar as the bacterial communities, the fungal community

diversity also formed three distinct clusters, based on PCoA

analysis, with the rhizosphere soil fungal species composition of

DHZC and DHZD groups in a cluster, and DHZA and DHZB

respectively in a cluster (Figure 4A). The rhizosphere soil fungal

microbiome of DHZA group was mainly distributed in the

FIGURE 3
Bacterial beta diversity and microbiome composition analysis. (A) Principal coordinate analysis (PCoA) using the Abundance-based Jaccard
distance matrix. (B) Relative abundance of different phyla in rhizosphere soil samples from plants of different sugarcane root rot severity. (C)
Kruskal–Wallis H test analysis showing bacteria at the phylum level. *p < 0.05, **p < 0.01, ***p < 0.001. (D) Redundancy analysis (RDA) of rhizosphere
bacterial community (dot) and root phenotype (arrows) indicates influential root phenotype factors.
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positive value area, while that of DHZB, DHZC and DHZD

groups in the negative value area, of PCoA1 (Figure 4A). These

results reveal significant change in the fungal species composition

potentially resulted from disease progression.

We further assessed fungal relative abundances at the genus

level, and found that Fusarium, Talaromyces, Neocosmospora,

Trichoderma and Gibberella were commonly present in all the

tested groups (Figure 4B). Furthermore, significant differences in

the relative abundance of each genus were found among different

groups (Figure 4C), supporting a correlation between fungal

community composition and disease severity degree. The relative

abundances of Fusarium, Talaromyces, and Neocosmospora in

DHZA rhizosphere soil samples were 13.77%, 10.33%, and

9.56%, respectively, and totaled as 33.66% out of all identified

fungal genera. Surprisingly, the totaled relative abundances of

these genera decreased in DHZB, DHZC and DHZD rhizosphere

soil samples, as 19.21%, 14.95% and 10.71% respectively.

Notably, the relative abundances of Fusarium, the genus

potentially containing the pathogen of sugarcane root rot as

reported (Wang et al., 2018; Ren et al., 2021), was 13.77%, 9.85%,

4.41%, and 6.47% in group DHZA to DHZD, showing a negative

correlation with increased disease severity (Figures 4B,C). RDA

analysis confirmed that the composition of fungal community

was also affected by disease severity degree, which was reflected

by the total root length (R2 = 0.6726, p = 0.001), total root volume

(R2 = 0.7385, p = 0.010) and total root surface area (R2 = 0.8319,

p = 0.001) (Figure 4D).

Functional prediction of the rhizosphere
soil microbiome

Phenotypic prediction of the rhizosphere soil bacterial

microbiome was performed using BugBase database, and

significant differences among DHZA to DHZD groups was

found in terms of anaerobic, facultatively anaerobic, forming

biofilms, potentially pathogenic, aerobic, and containing mobile

elements, but not in stress tolerant, Gram positive and Gram

FIGURE 4
Fungal beta diversity and microbiome composition analysis. (A) PCoA using the Abund jaccard distance matrix, to analyze fungal species
composition in different rhizosphere soil samples. (B) Relative abundance of different genus in different soil samples. (C) Kruskal–Wallis H test
analyzed fungi at the genus level. *p < 0.05, **p < 0.01, ***p < 0.001. (D) RDA of rhizosphere fungal community (dot) and root phenotype (arrows)
indicates influential root phenotype factors.
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negative (Supplementary Figure SA). It was worth noting that the

predicted proportion of facultatively anaerobic and forming

biofilms in rhizosphere soil bacteria was highest in the healthy

(DHZA) group, as compared to diseased groups (Supplementary

Figures S2B,C).

On the other hand, functional prediction of the rhizosphere soil

fungal microbiome was performed using Fungi Functional Guild

(FUNGuild) database. Saprotroph was the most common tropic

type in all tested rhizosphere soil samples, with an average

proportion of 46%, and the pathotroph in the second place, with

an average proportion of 18.5%. It was worth noting that the

proportion of saprotroph was higher, while pathotroph was

lower, in DHZA group in comparison to DHZD group

(Supplementary Figure S2D). Overall, from a biological point-of-

view, we infer that decreased proportion of bacteria with facultatively

anaerobic and forming biofilms functions, and of saprophytic fungi,

accompanied with increased proportion of pathotropic fungi, could

be viewed as an indicator of sugarcane root rot.

FIGURE 5
Co-occurrence networks and the relative abundance of selected microorganisms. (A) Co-occurrence networks visualizing significant
correlations (ρ > 0.5 & ρ < −0.5, p < 0.05) between Fusarium pathogenic fungi and bacterial communities. The pathogenic fungus Fusarium (rectangle
in the center of each network) was positively (solid lines) or negatively (dashed lines) connecting to the bacterial communities. Different Fusarium
groups (Fusarium 1, Fusarium 2 and Fusarium 3). (B) The relative abundance of Fusarium pathogenic fungi and the top two correlated bacteria in
different rhizosphere soil samples.
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Co-occurrence network analysis

A co-occurrence network was constructed for a better

understanding of the relationship between the fungal

pathogen Fusarium species and the bacterial community in

the rhizosphere soil. A connection with a magnitude >0.5
(positive correlation) or < -0.5 (negative correlation) and

statistically significant (p < 0.05) was defined as correlation.

The drawn network diagram was represented by different

OTUs with positive and negative interactions, where the solid

line for positive interaction indicates the change along the same

trend among species, and the dashed line for negative interaction

indicates the change along the opposite trend among species. We

found correlations between different Fusarium groups (Fusarium

1, Fusarium 2 and Fusarium 3) and rhizosphere soil bacterial

communities, among which Burkholderia had the largest number

of species, with a total of 10, and Bacillus in the second place, with

a total of 9 (Figure 5A). Correlation between three Fusarium

groups also existed (Figure 5A). Notably, as the disease severity

gradually increased, the cumulative relative abundances of

Fusarium, Burkholderia and Bacillus species also accordingly

changed, displaying an increase or decrease trend (Figure 5B).

The DHZB group contained the most Bacillus and Burkholderia

species, while the DHZA group contained the most Fusarium

species in the rhizosphere soil (Figure 5B). Overall, our data

demonstrate that a correlation between Fusarium species and

rhizosphere soil bacterial communities, with Burkholderia and

Bacillus species being more strongly correlated. Also, combined

with the trend of cumulative relative abundance, it was

speculated that some Burkholderia and Bacillus species may

act as new antagonistic bacteria to inhibit the growth and

reproduction of (pathogenic) Fusarium species. We infer that

the plants infected by Fusarium species may tend to recruit

beneficial microorganisms, including Burkholderia and Bacillus

species, in order to suppress pathogenic microorganisms and/or

boost plant immunity.

Identification and verification of fungal
pathogen and biocontrol bacteria from
rhizospheric soil

Three fungal strain was isolated from the diseased samples,

and named as GXUF-3. When grown on Potato Dextrose Agar

(PDA) medium for 5 days, GXUF-3 formed luxuriant and white

velvet-like mycelial colony, which was white when viewed from

backside (Supplementary Figure S3A). CXUF-3 produced

abundant large conidia of sickle- or spindle-shape, with

0–5 septum per conidium, when cultured in liquid

carboxymethyl cellulose (CMC) medium (Supplementary

Figure S3B). BLAST search using the PCR amplified

Elongation factor 1-alpha (EF-1α) region of GXUF-3 showed

a 100% homology with Fusarium commune (MF150040.1).

The phylogenetic analysis based on the amplified EF-1α
region showed that the GXUF-3 strain was clustered with

several F. commune strains, and relatively far away from other

Fusarium species (Supplementary Figure S3C). Overall, the

GXUF-3 strain was identified as F. commune. To verify

whether GXUF-3 strain was the causal pathogen of sugarcane

root rot, we inoculated it in the sterilized soils that was used for

planting sugarcane. After 45 days growth we observed that the

infected sugarcane roots were seriously hindered, gradually

turning brown, soft and rotten, and meanwhile the above-

ground part was dwarfed, and the leaves turned yellow

(Supplementary Figure S3D). In contrast, the plants

inoculated with sterile water (untreated control) grew

normally and showed no disease symptoms (Supplementary

Figure S3D). The re-isolated fungal strain from the infected

sugarcane displayed similar colonial morphology as GXUF-3

(Supplementary Figure S3D), confirming that GXUF-3 was the

causal pathogen of sugarcane root rot.

A total of 273 bacterial strains were isolated from the tested

rhizosphere soil samples, among which 7 strains with potential

biocontrol effects were obtained by confrontation culture with

F. commune strain GXUF-3. We named these seven biocontrol

strains as GXUB-1, GXUB-2, GXUB-3, GXUB-4, GXUL-1,

GXUL-2, GXUJ-1 (Supplementary Figure S4A). GXUL-1

strain displayed the weakest, while GXUB-1 strain with the

strongest, inhibitory effect on fungal mycelial growth

(Supplementary Figures S4A,B). Furthermore, we found that

mycelial growth and spore germination of GXUF-3 was

suppressed by different concentration of biocontrol bacterial

fermentation broth (Supplementary Figures S4C,D), suggesting

that the tested bacterial strains produced anti-fungus

compound(s). We also noticed a significant difference in

mycelial growth and spore germination inhibition rates

among different bacteria strains (Supplementary Figures

S4C, D; Supplementary Table S1). Overall, we obtained

seven bacterial strains with varied inhibitory effect on

mycelial growth and spore germination of the fungal

pathogen causing sugarcane root rot.

Based on morphological (Figure 6A), physiological and

biochemical characterization (Supplementary Table S2), and

molecular identification (Figure 6B), we identified GXUB-1

and GXUB-3 as B. velezensis, GXUB-2 as B. siamensis, and

GXUB-4 as B. amyloliquefaciens; GXUL-1 and GXUL-2 as B.

cepacia, and GXUJ-1 as A. pokkalii.

To test control effect of these seven strains on sugarcane root

rot, we inoculated them individually, and respectively with fungal

pathogen, to the sterile soils, on which sugarcane was planted.

After 45 days growth, the total root length, total root surface area

and total root volume of sugarcane were measured. Obvious

changes of root phenotypes were seen in the biocontrol bacteria

treated seedling, as compared to the control group which was

inoculated with fungal pathogen alone (Figures 7A–C),

confirming that all the tested biocontrol bacteria were effective
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in suppressing sugarcane root rot, among which B. siamensis

GXUB-2 strain had the best control effect (Figures 7A–C).

To test the growth-promoting property of these seven strains,

sugarcane was planted in bacteria inoculated soils, without fungal

pathogen, for 45 days, and the root phenotypes were

characterized. Obvious differences were visualized in the root

phenotypes of sugarcane under different bacterial inoculation

(Figures 7D–F). Surprisingly, inoculation with GXUB-3, GXUB-

4 or GXDJ-1 alone suppressed growth of roots part (Figures

7D–F), while in presence of fungal pathogen, all these three

strains displayed disease suppressing property (Figures 7A–C). In

contrast, inoculation with the other four strains caused increase

in the total root length and total root surface ar.

The ability of nitrogen fixation, phosphorus solubilization,

phytohormea (Figures 7D–F). GXUB-1 and GXUL-1 caused a

slight decrease, while GXUB-2 and GXUL-2 caused increase, in

the total root volume (Figures 7D–F). In summary, we found that

B. velezensis GXUB-3 strain, B. amyloliquefaciens GXUB-4 and

A. pokkalii GXUJ-1 strain had a growth-inhibitory effect on the

sugarcane roots, and the other four strains with growth-

promoting property, among which B. siamensis GXUB-2 and

B. cepacia GXUL-2 strains behaved better (Figures 7D–F)one(s)

production, and siderophore production were assessed in these

seven strains. Both GXUL-1 and GXUL-2 strains were able to

produce the phytohormone indole-3-acetic acid (IAA),

siderophores, and able to fix nitrogen and solubilize

phosphorus (Supplementary Table S3). GXUB-1 displayed

only siderophores producing ability (Supplementary Table S3).

The three strains with inhibitory effect on sugarcane growth,

GXUB-3, GXUB-4 and GXUJ-1, possessed none of the tested

activities. However, GXUB-2 strain with the best disease

suppression effect and an ideal growth-promoting effect, also

did not possess four tested properties (Supplementary Table S3),

suggesting that its biocontrol and growth-promoting mechanism

may lie in other untested aspects.

Discussion

In this study, we isolated and verified a F. commune strain

(GXUF-3) as the causal pathogen of sugarcane root rot, as

consistent with a previous report (Wang et al., 2018). We

further found that sugarcane root rot led to the destruction of

sugarcane roots, reflected by the root phenotypes including

reduction in total root length, total root surface, and total

volume (Figure 1). Such change in root morphology is likely

result in weakened root function, and thus led to dwarf above-

ground part, and thus seriously affected the growth of sugarcane

ratoons and the economics of sugarcane production (Pissolato

et al., 2021). By microbiome analysis, we found that rhizosphere

soil bacterial community diversity was not significantly changed

among different severity degree of sugarcane root rot (Figures

2A,B), which is similar with a previous report on the avocado

root rot (Solís-García et al., 2021). However, we found significant

FIGURE 6
Identification of 7 isolated biocontrol bacteria. (A)Colonymorphology andGram staining of different biocontrol bacteria. Scale bar = 50 µm. (B)
Phylogenetic analysis of biocontrol bacteria based on 16S rDNA sequences. (A) Bacillus species; (B) Burkholderia species; (C) Arthrobacter species.
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differences in the fungal community richness between

rhizosphere soil from diseased and healthy plants (Figure 2D).

We infer that the pathogen Fusarium species may have an

advantage in interspecific competition, and therefore become

dominant species in the community during disease progress.

Such phenomenon was also reported in Fusarium root rot disease

to other crops (Wang et al., 2017). We further found an obvious

correlation between disease severity and microbial community

structure in the rhizosphere soil, based on PCoA (Figure 3A,

Figure 4A), Kruskal–Wallis H test (Figure 3C, Figure 4C), and

RDA (Figure 3D, Figure 4D) analyses. A higher relative

abundance of Firmicutes in rhizosphere soil from healthy

plant than diseased plant (Figure 3B) suggests that this

phylum may play a role in disease suppression. Consistent

with this observation, Bacillus species belonging to Firmicutes,

were in a strong co-occurrence interaction network with

Fusarium pathogen(s) (Figure 5A). In terms of fungal

microbiome in the rhizosphere soil, we found that Fusarium,

Talaromyces and Neocosmospora were dominant in healthy

group (>30%), while declined in diseased groups (< 20%;

Figure 4B). We infer that it may at least partially be due to

the significant bacteriostatic effect of Talaromyces on common

soil-borne disease pathogens, as reported (Tian et al., 2021).

BugBase and FUNGuild were respectively used to predict

bacterial and fungal function in the tested rhizosphere soil

samples. We found facultatively anaerobic and biofilms

forming bacteria were significantly higher in healthy group

than in disease groups (Supplementary Figures S2B and C). On

the other hand, we found saprotrophic fungi occupied a higher

proportion in the healthy group, while pathotropic fungi

increased in the diseased groups (Supplementary Figure

S2D). Co-occurrence network analysis can be used to reveal

highly related taxa in the community, for a better

understanding of the association between bacteria and fungi

(Zheng et al., 2021; Jin et al., 2022). In this study, we

demonstrated the Bacillus and Burkholderia were in a strong

co-occurrence interaction network with Fusarium pathogen(s)

(Figure 5A), and 6 out of 7 isolated bio-control bacterial strains

were identified as Bacillus and Burkholderia species (Figure 6)

from the rhizosphere soil. Additional, the observed

accumulation of Burkholderia and Bacillus, and the

concomitant decline of Fusarium, in rhizosphere soil with

increased disease severity (Figure 5B), is possibly due to the

recruitment of beneficial microorganisms in response to

Fusarium infection to the host cane. This observation is

consistent with the report that the stressed plants tend to

recruit beneficial microorganisms, to suppress pathogenic

microorganisms (Liu et al., 2021). Alternatively, the apparent

FIGURE 7
Disease control and growth-promoting effect of biocontrol bacteria strains.Quantification of disease control effects of different biocontrol
bacteria on root phenotypes of sugarcane root rot based on total root length (A), total root volume (B), or total root surface area (C). Quantification of
growth-promoting effects of different biocontrol bacteria based on root phenotypes of sugarcane root rot based on total root length (D), total root
volume (E), or total root surface area (F). Different lowercase letters denote significant differences at the p < 0.05 level by Duncan’s newmultiple
range test.
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negative correlation between the relative abundances of

Fusarium and disease severity may resulted from increased

fungal community richness, particularly increase of

saprotrophs, as leak of nutrients from rot roots to

rhizosphere soil along with increase disease severity. To our

knowledge, our study is the first report on the relationship

between the root phenotype of the sugarcane root rot disease,

and rhizosphere soil microbiome composition and function.

Biocontrol bacteria are ideal alternatives of crop disease

control, by producing biologically active metabolites such as

antibiotics, bacteriocins and siderophores (Gajbhiye and

Kapadnis., 2016). In this study, we identified Bacillus and

Burkholderia as the bacterial groups that were strongly related

to the Fusarium pathogens of sugarcane root rot (Figure 5A).

We further isolated 7 biocontrol bacteria strains, including

species of Bacillus, Burkholderia and Arthrobacter (Figure 6),

with strong suppression effect on Fusarium pathogen mycelial

growth and spore germination (Supplementary Figure S4) and

disease occurrence (Figures 7A–C). Among them, Bacillus

strains displayed the strongest ability on disease control

(Figures 7A–C). As a major source of biocontrol agents,

Bacillus genus possesses numerous merits including eco-

friendly, inexpensive and sustainable (Chen Y. S. et al.,

2020). Application of Bacillus strain in controlling root rot

disease has been reported in Astragalus (Gao et al., 2019), and

Burkholderia strain has also been reported to control root rot

in maize (Tagele et al., 2019). On the other hand, Arthrobacter

strain was reported in management of Fusarium diseases

(Barrows-Broaddus et al., 1985). Our study, for the first

time, shows the potential of Bacillus, Burkholderia and

Arthrobacter in biocontrol of sugarcane root rot. Among

them, Bacillus and Burkholderia strains were found to

possess grow-promoting property (Figures 7D–F), part of

which may lie in their ability of nitrogen fixation,

phosphorus solubilization, phytohormone or siderophore

production (Supplementary Table S1D). Such growth-

promoting mechanisms have been reported in various

Burkholderia species (Elliott et al., 2007; Ghosh et al.,

2019). Furthermore, it is worth testing the effect of mixing

bacterial strains with best disease inhibitory effect, and those

with best growth-promoting effect, in future.

In summary, we characterized the relationship between

rhizospheric soil microbes and sugarcane root rot occurrence/

severity, which provided a theoretical basis for the prevention

and control of sugarcane root rot by micro-ecological regulation.

Besides rhizosphere soil microbiome, other potential factors

including environmental variables, sugarcane genotype, soil

edaphic factors, may also contribute to the crop disease, and

affect each other, which awaits further (Wang et al., 2017)

investigation in future.
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