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Currently, bone defect repair is still an intractable clinical problem. Numerous

treatments have been performed, but their clinical results are unsatisfactory. As

a key element of cell-free therapy, exosome is becoming a promising tool of

bone regeneration in recent decades, because of its promoting osteogenesis

and osteogenic differentiation function in vivo and in vitro. However, low yield,

weak activity, inefficient targeting ability, and unpredictable side effects of

natural exosomes have limited the clinical application. To overcome the

weakness, various approaches have been applied to produce engineering

exosomes by regulating their production and function at present. In this

review, we will focus on the engineering exosomes for bone defect repair.

By summarizing the exosomal cargos affecting osteogenesis, the strategies of

engineering exosomes and properties of exosome-integrated biomaterials, this

work will provide novel insights into exploring advanced engineering exosome-

based cell-free therapy for bone defect repair.
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1 Introduction

Bone is the central element in skeletal tissues of the human body, and provides a

framework for attachment of muscles and other tissues, enables body movements, provides

protection of internal organs from injury, promotes blood cells production, and balances

calcium and acid/base homeostasis (Elefteriou, 2018). However, the regeneration of critical-

size bone defects is still a major clinical challenge and globally costs up to $45 billion per year

(Mauffrey et al., 2015; Bharadwaz and Jayasuriya, 2020). Recently, stem cell therapy is

considered as a potential strategy for bone defect regeneration (Tan SHS. et al., 2020), and

several clinical studies have demonstrated mesenchymal stromal/stem cells (MSCs) to be safe

and efficacious for the treatment of bone defects and diseases (Liebergall et al., 2013; Chen

et al., 2016; Castillo-Cardiel et al., 2017; Hernigou et al., 2018a; Hernigou et al., 2018b).

Nevertheless, cellular therapies incur significant costs and challenges as they require

stringently monitored manufacturing, handling, and storage to ensure optimal viability

and potency of cells needed for transplantation (Tan et al., 2021). More importantly,

accumulating evidence indicates that the positive effect of MSCs on tissue repair is to

stimulate the activity of tissue-resident recipient cells through paracrine, such as exosomes,
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rather than directly differentiate into parenchymal cells to repair or

replace damaged tissue (Liang et al., 2014; Zhang et al., 2016). Such

concerns have driven the search for alternate therapeutic strategies

and cell-free therapies based on exosomes have become strongly

established in the landscape of regenerative medicine.

Exosome is a subclass of membrane-coated extracellular

vesicles with sizes of 30–150 nm (Tkach and Thery, 2016). As

one of the most revolutionary contributions to cell biology in the

past 30 years (Wang Y. et al., 2019), exosomes can exert multiple

biological functions by targeting recipient cells and inducing

signaling via receptor-ligand interactions, endocytosis and/or

phagocytosis (Bobrie et al., 2012; Colombo et al., 2014;

Hoshino et al., 2015; Shang et al., 2021). Exosomes have been

experimented with many animal models for the regeneration of

bone, osteochondral, and cartilage injury/diseases such as

osteoarthritis (OA), osteoporosis, osteonecrosis, and

inflammatory bone loss in periodontitis with enhanced tissue

formation and integration (Kuang et al., 2019; Kim et al., 2020;

Lei et al., 2022). Furthermore, several exosome-based clinical

experiments of orthopedic diseases have been performed based

on US-NIH clinical trial database (https://clinicaltrials.gov/).

However, there still are several constraints to exosome clinical

applications for bone defect repair: 1) unclear mechanism of

promoting bone tissue regeneration; 2) poor retention and

targeting ability of exosome at the bone defect site; 3) low

extraction rate and complex separation process.

In view of the shortcomings of natural exosomes, a growing

number of studies are aiming to develop engineering exosomes

based on modifying exosomal cargos or/and incorporating

biomaterials (Bei et al., 2021; Lathwal et al., 2021; Liang et al.,

2021). Here we will review the recent research of engineering

exosome used in bone defect repair, and highlight the bioactive

cargos and construction strategies. Additionally, we will also

summarize the application of biomaterials to impregnate

exosome and focus on how the properties of biomaterials

assist exosome to promote bone regeneration. By reviewing

currently available knowledge, this present review will

contribute to the clinical knowledge and may have

implications for the engineering design of exosomes used in

bone defect repair.

2 Osteogenic cargos in exosomes

In the past decade, numerous exosomal bioactive cargos have

been revealed (Kalluri and LeBleu, 2020). Exosomal cargos are

dependent on the parent cell type and vary between different

physiological or pathological conditions (Meng et al., 2019). The

vesicular structure of exosome provides an enclosed space to

protect exosomal cargos against degradation. In return, exosomal

cargos are the foundation to endow exosomes with various

biological functions. In this section we will review recent

research about exosomes in bone regeneration and focus on

the functions of exosomal cargos and their molecular

mechanisms (Figure 1).

2.1 Non-Coding RNA

Non-coding RNAs (ncRNAs) refer to the RNAs that lack

protein-coding regions, and have the potential to regulate gene

expression at transcriptional, post-transcriptional, and

translational levels, thereby modulating associated signaling

networks (Bhat et al., 2020). NcRNAs have become a hot

topic of increasing concern after the completion of the

Human Genome Project (Lander et al., 2001), which showed

only 1.2% of genes in the genome could encode proteins, whereas

the rest were considered as “non-coding”. Accumulating

evidence demonstrates that a variety of ncRNAs can be

encapsulated and transported by exosomes, among which

exosomal microRNAs (miRNAs), long non-coding RNAs

(lncRNAs), and circular RNAs (circRNAs) are the most

attractive subclasses in the field of bone regeneration.

2.1.1 miRNAs
MiRNAs are small, highly conserved ncRNAs with ~22 nt

length (Prattichizzo et al., 2021). The biogenesis of miRNAs

involves the processing of larger primary miRNAs (pri-miRNAs)

into shorter pre-miRNAs, and the maturation of pre-miRNA to

produce active miRNAs (Ha and Kim, 2014). MiRNAs mediate

post-transcriptional gene silencing by binding to the target

mRNAs 3′-untranslated region (UTR) or open reading frames

(ORFs) to regulate the translational process in a wide range of

physiological processes (Yang et al., 2017).

Since the first observation of exosomal miRNAs in 2007

(Valadi et al., 2007), miRNAs have become the most studied

cargos in exosome. Recently, a massive number of studies have

demonstrated that miRNAs in natural exosomes derived from

multiple cell types can promote osteogenesis (Table 1). These

studies confirmed miRNAs from exosomes of different cellular

origin can enter recipient cells with the help of exosome

internalization, and then regulate the expressions of genes

associated with osteogenic at the translational level to regulate

bone regeneration.

2.1.2 lncRNAs
As a heterogeneous group of non-protein-coding

transcripts with length of greater than 200 nucleotides,

lncRNAs are emerging regulators involved in diverse

physiological and pathological processes (Kopp and

Mendell, 2018; Nair et al., 2020). Notably, lncRNAs can be

selectively packaged into exosomes (Valadi et al., 2007), which

enable them as biomarkers of certain disease. For instance, the

expressions of lncRNAs in serum exosomes from persons with

or without osteoporosis showed significant differences (Teng

et al., 2020).
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Beyond as molecular markers, lncRNAs can sponge miRNAs

and regulate the expression of downstream genes, called

competing endogenous RNA (ceRNA) mechanism (Salmena

et al., 2011). Accumulating evidence showed that lncRNAs

from multiple cells-derived exosomes can enter the receptor

cells and have the potential to regulate bone regeneration

(Table 1).

2.1.3 circRNAs
CircRNA, a special subclass of lncRNAs with a circular

structure, has recently gained interest because of their

extraordinary stability, much longer half-life and diverse

biological functions (Jeck and Sharpless, 2014; Liu and Chen,

2022). CircRNAs can be selectively packaged into exosomes

similar to lncRNAs (Ma et al., 2021). Additionally, exosomal

circRNA also has the potential to regulate gene expression by

ceRNA mechanism (Zhi et al., 2021; Du et al., 2022). Number of

studies have revealed the regulatory function of exosomal

circRNA in bone regeneration (Table 1). Interestingly, the

effect of exosomal circRNAs in regulating bone regeneration,

it seems, is a double-edged sword. For example, Zhi et al. (2021)

reported that serum exosomal hsa_circ_0006859 was

upregulated in patients with osteoporosis, and suppressed

osteogenesis and promoted adipogenesis. Therefore, the

regulatory functions of exosomal circRNAs are still unclear,

which needs further studies.

2.1.4 tsRNAs
Transfer RNA (tRNA)-derived small RNA (tsRNA) is a class

of small ncRNAs generated from precursor or mature tRNAs,

which has recently received considerable attention (Zhu et al.,

2018; Zhu et al., 2019). With the deepening of research, tsRNAs

have been reported to regulate stem cell maintenance (Blanco

et al., 2016), cancer (Balatti et al., 2017), viral infection (Nunes

et al., 2020), neurological diseases (Zhang et al., 2020), epigenetic

inheritance (Zhang Y. et al., 2018), and symbiosis (Ren et al.,

2019). The mechanisms of action of tsRNAs include playing as

mimicry/replacement of tRNAs with sequence/structure effects,

associating with ribonucleoproteins and binding to the target

genes like miRNAs (Chen et al., 2021). Although the function of

exosomal tsRNAs is an emerging field with a paucity of research,

Fang et al. (2020) explored the osteogenic effect of exosomal

tsRNA (Table 1). They found tsRNA-10277 in the exosome

derived from BMSCs could enhance osteogenic differentiation

ability of dexamethasone-induced BMSCs.

2.2 mRNAs
As the Central Dogma of molecular biology presented

mRNA as the fundamental ingredient in genetic translational

machinery (Crick, 1970), it seemed that transferring mRNA via

exosomes to affect the biological processes of recipient cells

would be a more simple and efficient method compared with

transferring ncRNAs. However, there has been remarkably little

work about exosomal mRNA. This is probably because miRNAs

and lncRNAs are the vast majority of exosomal RNAs

(Hergenreider et al., 2012; Zhang et al., 2015; Zhang et al.,

2017), and exosomal mRNAs were classically thought to be in

the form of fragments, but not their intact forms (Valadi et al.,

2007; Wei et al., 2017). With further research, it was estimated

that on average, one intact mRNA can be found within every

1,000 exosomes produced endogenously without external

stimulation (Yang Z. et al., 2020). Therefore, it is essential to

confirm the integrity, high expression and regulatory function of

mRNAs in the research based on exosomal mRNAs. In recent

FIGURE 1
Schematic of exosomal cargos (miRNA, lncRNA, circRNA, tsRNA, mRNA and protein) with the function of promoting bone regeneration.
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TABLE 1 The exosomal cargos involved in bone regeneration.

Cargos Sources Target cell Function References

ncRNA

miRNA

miR-23a-3p UCMSCs Chondrocytes BMSCs Promoting the migration, proliferation and differentiation of
chondrocytes and BMSCs

Hu et al. (2020)

miR-21 UCMSCs EPCs Enhancing angiogenesis Zhang et al.
(2021c)

miR-378a M2 polarized
macrophages

MSCs Inducing osteogenic differentiation Kang et al. (2020)

miR-100-5p IPFP-MSCs Chondrocytes Enhancing the autophagy level of chondrocytes Wu et al. (2019)

miR-335 Mature DCs BMSCs Promoting the proliferation and osteogenic differentiation of BMSCs Cao et al. (2021)

miR-126 EPCs Endothelial cells Enhancing the proliferation, migration, and angiogenic capacity of
endothelial cells

Jia et al. (2019)

miR-451a ADSCs Macrophages Inhibiting inflammation and promoting the polarization of
M1 macrophages to M2 macrophages

Li et al. (2022)

miR-126–5p SCAP HUVECs Promoting angiogenesis Jing et al. (2022)

miR-150–5p MC3T3-E1 Promoting osteogenesis

miR-29a BMSCs HUVECs Promoting angiogenesis Lu et al. (2020)

lncRNA

NEAT1 Prostate cancer cells BMSCs Inducing osteogenic differentiation Mo et al. (2021)

MALAT1 EPCs Bone marrow-derived
macrophages

Enhancing recruitment and differentiation of osteoclast precursors Cui et al. (2019)

MALAT1 BMSCs hFOB1.19 Enhancing osteoblast activity Yang et al. (2019)

MEG-3 BMSCs Chondrocytes Reducing senescence and apoptosis Jin et al. (2021)

LYRM4-AS1 BMSCs Chondrocytes Regulating the growth of chondrocytes Wang et al.
(2021c)

H19 BMSCs CD31+ ECs and BMSCs Promoting endothelial angiogenesis and BMSCs osteogenesis Behera et al.
(2021)

BMSCs Affecting osteogenic differentiation Wang et al.
(2021d)

circRNA

circLPAR1 Osteogenic-induced
DPSCs

DPSCs Promoting osteogenic differentiation of the recipient DPSCs Xie et al. (2020)

circRNA_0001236 BMSCs BMSCs Promoting chondrogenic differentiation Mao et al. (2021)

circ_003564 BMSCs Primary neurons and PC-12
cells

Attenuating inflammasome-related pyroptosis Zhao et al. (2022)

circ-Rtn4 BMSCs MC3T3-E1 cells Attenuating TNF-α-induced cytotoxicity and apoptosis Cao et al. (2020)

circ_0008542 MC3T3-E1 cells Osteoclast Promoting osteoclast differentiation and bone resorption Wang et al.
(2021b)

circRNA3503 SMSCs Chondrocytes Promoting chondrocyte renewal to alleviate the progressive loss of
chondrocytes

Tao et al. (2021)

cirHmbox1 Osteoclasts Osteoclasts and osteoblasts Regulating osteoclasts differentiation and osteoblasts differentiation Liu et al. (2020)

tsRNA

tsRNA-10277 BMSCs Dexamethasone-induced
BMSCs

Enhancing osteogenic differentiation ability Fang et al. (2020)

mRNA

TFAM SHED DPSCs Promoting osteogenic differentiation Guo et al. (2022)

IL-10 M2 polarized
macrophages

BMSCs Regulating cell differentiation and bone metabolism Chen et al. (2022)

Protein

CD73 MSCs Chondrocytes Suppressing inflammation and restoring matrix homeostasis Zhang et al.
(2019)

Wnt-3a ADSCs Primary osteoblastic cells Promoting the proliferation and osteogenic differentiation Lu et al. (2017)

(Continued on following page)
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research, the regulatory function of exosomal mRNA in bone

regeneration have been revealed (Table 1). These studies showed

exosomal mRNAs also could be a useful tool to aid the healing of

bone defects, as long as improving the loading efficiency of

intrinsically encapsulate transcribed mRNA into secreted

exosomes.

2.3 Protein
A variety of proteins have been observed in exosomes,

including cytoskeletal proteins, tetraspanins (CD9, CD63,

CD81, and CD82), ESCRT-associated components (Alix and

TSG101), heat shock proteins (HSP60, HSP70, and HSP90),

antigen presentation proteins (MHC I and MHC II), and

integrins (Kalluri and LeBleu, 2020; Zhu et al., 2020). As the

main executor of life activities, proteins are not only the markers

of exosomes but also endow exosomes with many biofunctions

including regulating bone regeneration (Table 1).

Despite above research drawn inspiring conclusions, the

controversy about the function of exosomal protein in bone

regeneration persists. Take BMP2, an important regulator of

osteogenesis, as an example. Han L. et al. (2022) reported that

BMP2 in BMSC-derived exosomes could promote tendon bone

healing in rotator cuff tear by activating Smad/RUNX2 signaling

pathway. Conversely, in another study, exosomes derived from

MSCs overexpressing BMP2 did not contain BMP2 protein, and

the function of promoting bone regeneration was possibly due to

the changes of exosomal miRNA composition (Huang et al.,

2020). Additionally, Furuta et al. (2016) found MSC exosomes

could promote mice fracture healing, but the levels of SDF-1,

MCP-1, and MCP-3, essential factors in the initial phase of

fracture healing (Kitaori et al., 2009; Toupadakis et al., 2012;

Ando et al., 2014; Ishikawa et al., 2014), in MSC exosomes were

significantly lower, suggesting that bone regeneration may be

mediated by other exosome components (such as miRNAs) but

not exosomal proteins. The controversy above suggests that the

mechanisms by which exosomal proteins work may be complex

and remain to be determined.

To sum up, the function of various exosomal cargos makes

exosomes have the ability to regulate bone regeneration in

different ways. Predictably, more and more exosomal cargos

would be revealed to function in bone regeneration by

conventional or novel mechanism in the near future.

Meanwhile, the explorations of mechanism inspired

investigators to design engineering exosomes for bone

regeneration by modifying the exosomal cargos, which will be

discussed in the next section.

3 Strategies of engineering exosomes
for bone defect repair

Although numerous exosomal cargos have been revealed to

function in promoting osteogenic differentiation in the past

decade, the clinical application of exosome in bone

regeneration is still facing major challenges. The reason may

be the low exosome yield, low content of functional exosomal

cargos and low targeting efficiency of native exosomes (Song

et al., 2022).

To improve the yield of exosomes, it is necessary to simplify the

exosome extraction procedure. Until now, six classes of exosome

separation strategies have been reported, including ultra-speed

centrifugation, ultrafiltration, immunoaffinity capture, charge

neutralization-based polymer precipitation, size-exclusion

chromatograph, and microfluidic techniques, with unique sets of

advantages and disadvantages for each technique (Yang D. et al.,

2020). These rapid development in separation technology has in a

large extent solved the problem of exosome isolation.

In order to enrich the exosomal cargo and increase exosome

targeting efficiency, engineering exosome is rapidly expanding in the

past decade. Engineering exosomes are the exosomes created

through changing parent cells or directly on exosomes by

biochemical or physical treatment (Kojima et al., 2018; Yerneni

et al., 2019). In this section, we summarized the three strategies of

engineering exosomes for bone regeneration (Figure 2): 1) direct

modification of exosomes, 2) chemical or physical treatment of

parent cells, and 3) genetic modification of parent cells.

3.1 Direct modification of exosomes

The direct modification of exosomes means decorating the

surface proteins to improve the targeting ability of exosomes; or

TABLE 1 (Continued) The exosomal cargos involved in bone regeneration.

Cargos Sources Target cell Function References

Mutant HIF-1α BMSCs BMSCs Promoting osteogenic differentiation capacity and angiogenesis Li et al. (2017)

HUVECs

BMP2 BMSCs BMSCs Promoting tendon bone healing in rotator cuff tear Han et al. (2022a)

UCMSCs, umbilical cord-derived mesenchymal stem cells; IPFP-MSCs, infrapatellar fat pad mesenchymal stem cells; DCs, dendritic cells; EPCs, endothelial progenitor cells; ADSCs,

adipose-derived stem cells; SCAP, stem cells from apical papilla; BMSCs, bone marrow mesenchymal stem cells; ECs, endothelial cells; DPSCs, dental pulp stem cells; SMSCs, synovium

mesenchymal stem cells; SHED, stem cells from human exfoliated deciduous teeth; DPSCs, dental pulp stem cells; MSCs, mesenchymal stem cells; HUVECs, human umbilical vein

endothelial cells.
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embellishing exosomal cargos or exogenous bioactive molecules

to enhance the regulatory function through chemical methods

(conjugation of peptides to exosomal surface (Gao X. et al.,

2018)) or physical methods (electroporation (Tian et al., 2014)

or sonication (Wang P. et al., 2019)) directly. This strategy has

been extensively used to enhance the targeting ability and/or

deliver specific cargo to the lesion region in numerous diseases,

such as cancers (Gilligan and Dwyer, 2017; Zhang and Yu, 2019;

Zhou et al., 2021), acute lung injury/acute respiratory distress

syndrome (Zoulikha et al., 2022), inflammatory bowel disease

(Ocansey et al., 2020) and Alzheimer’s disease (Alvarez-Erviti

et al., 2011).

In bone regeneration, several studies have revealed the enhanced

function of exosomes modified by electroporation and sonication.

For example, Wang et al. (2021e) used electroporation to introduce

activating transcription factor 4 (ATF4) mRNA into mice serum

exosomes, and found the ATF4-overloading exosomes could

promote chondrocyte autophagy and inhibit chondrocyte

apoptosis, which in turn protected cartilage and alleviated

osteoarthritic progression. Zha et al. (2021) encapsulated plasmid

carrying the vascular endothelial growth factor (VEGF) into

exosomes via electroporation, and the gene-activated engineering

exosomes could effectively induce the bulk of vascularized bone

regeneration. Choi et al. (2019) inactivated pre-osteoblast exosomal

let-7, a critical miRNA regulating osteogenesis regulation, by

transfecting let-7 inhibitor into exosomes via electroporation, and

found these exosomes lost the ability to recover osteogenic

differentiation, which confirmed the availability of direct

modification of exosomes strategy from the opposite.

Additionally, although data are scarce, sonication is another

method to load hydrophilic molecules into exosomes, which is

considered much more efficient than electroporation (Kim et al.,

2016). In several studies, themixture of BMP2 protein and exosomes

was sonicated on ice to construct BMP2-loaded exosomes (Haney

et al., 2015; Yerneni et al., 2021; Yerneni et al., 2022), and these

engineering exosomes could enhance the osteogenic potential of

MC3T3-E1 cells (Yerneni et al., 2022).

Direct modification of exosomes seems a simple and useful

approach to obtain engineering exosomes, but the application of

this strategy is still facing several challenges. The loading

efficiency of electroporation is largely suppressed when

transferring oligonucleotides with more than 750 bp length

into exosomes (Lamichhane et al., 2015). Another important

point to consider is that sonication is reported to be the most

damaging technique for exosomal membrane integrity (Donoso-

Quezada et al., 2020). Besides, the size and zeta potential were

reported to affect the efficiency of exosome internalization

(Caponnetto et al., 2017; Patel et al., 2019), which should be

taken into consideration in the further research. Therefore, when

using this strategy to product engineering exosomes, it must be

carefully designed to increase loading and internalization

efficiency and avoid exosome rupture.

3.2 Chemical or physical treatment of
parent cells

Directly treating parent cells with chemical or physical factors is

an available strategy for engineering exosomes. As originated from

parent cells, the characteristics of exosomes will be reflected by the

FIGURE 2
Three strategies of engineering exosomes for bone regeneration. ODM: osteogenic differentiation medium.
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physiological and biochemical alterations of parent cells. Numerous

studies have confirmed that the preconditioning of stem cells via

hypoxia, pharmacological agents, chemical agents, trophic factors,

cytokines, and physical factors could improve stem cells’ function

in vitro and in vivo (Liu et al., 2011; Ferrer et al., 2013; Yang et al.,

2016; Kheirandish et al., 2017; Yin et al., 2017; Hu and Li, 2018).

Chemical agents and metal ions are the two main treatment

modalities of producing engineering exosomes by chemical

treatment. Culturing parent cells in the osteogenic differentiation

medium (ODM) is the most common method. Liu A. et al. (2021)

isolated exosomes from BMSCs after osteoinductive culturing and

found these engineering exosomes enhanced the bone forming

capacity and induced rapid initiation of bone regeneration. In

other research, umbilical cord mesenchymal stem cells (Ge and

Wang, 2021) and dental pulp stem cells (Xie et al., 2020) were

cultured in theODM to produce engineering exosomes, which could

enhance osteogenesis. Besides the ODM, many other chemical

agents, TNF-α (Lu et al., 2017), short peptide (Zhao W. et al.,

2021), parathyroid hormone (Shao et al., 2022),

dimethyloxalylglycine (Liang et al., 2019) and BMP2 (Wei et al.,

2019), were also used to produce engineering exosomes for bone

defect repair. The metal ions treatment of parent cells can also

endow exosomes with the ability to enhance bone regeneration. The

exosomes derived from BMSCs stimulated by strontium-substituted

calcium silicate ceramics could regulate osteogenesis and

angiogenesis of human umbilical vein endothelial cells (Liu et al.,

2021c). Similarly, macrophage-derived exosomes upon stimulation

with titania nanotubes simultaneously enhanced osteogenesis and

angiogenesis (Wang et al., 2022d).

Moreover, various physical modifications of parent cells also

could yield engineering exosomes. Wu et al. (2021a) collected

exosomes from BMSCs stimulated by magnetic nanoparticles and

a static magnetic field and found these exosomes could improve

osteogenesis and angiogenesis. As oxygen concentration plays a

crucial role in proliferation (Silván et al., 2009), Shen et al. (2022)

found exosomes derived from hypoxia preconditioned MSCs

promote cartilage regeneration via the miR-205–5p/PTEN/AKT

pathway. The mechanical force is an essential factor to regulate

the differentiation of stem cells (Halder et al., 2012). Lv et al. (2020)

found exosomes derived from osteocyte induced by mechanical

strain could promote the proliferation and osteogenic differentiation

of human periodontal ligament stem cell. Low yield is one of the

main challenges for the application of engineering exosomes. To

overcome this, Fan et al. (2020) employed an extrusion approach to

amass exosome mimetics (EMs) from human MSCs, and the EMs

demonstrated robust bone regeneration. In other studies, low-

intensity pulsed ultrasound not only promoted BMSC-exosome

release, but enhances the effects of BMSC-exosomes on cartilage

regeneration in osteoarthritis (Liao et al., 2021; Xia et al., 2022).

According to above research, chemical or physical treatment of

parent cells indeed is an effective strategy to produce engineering

exosomes for bone regeneration. It is worthwhile tomention that the

function of the engineering exosomes produced by this strategy still

relies on the exosomal cargos in substantially all these studies.

Therefore, modifying the nucleic acids of parent cells to produce

engineering exosomes with bioactive cargos seems another ideal

strategy, which will be elaborated on below.

3.3 Genetic modification of parent cells

With advances in molecular biological techniques, gene-

editing has become one of the most commonly used

methodologies in molecular research. Consequently,

FIGURE 3
The properties of biomaterial (hydrogel and metal scaffold) help exosomes to promote bone regeneration.
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engineering exosomes with more or totally new bioactive

molecules can be performed by editing certain genes in parent

cells. As described previously, cargos are the basis of exosomes

function, and numerous exosomal cargos (mRNAs, miRNAs,

lncRNAs, circRNAs and proteins) have been confirmed to

promote bone regeneration, which enlightened researchers to

produce engineering exosomes by genetic modification of the

parent cells.

As the most extensively studied exosomal cargos, miRNAs with

the function of promoting bone regeneration received tremendous

attention, and a vast variety of studies have attempted to enhance the

biofunction of exosomes by gene-editing of parent cells’ miRNAs.

Wang N. et al. (2022) transfected BMSCs with lentivirus to obtain

exosomes overexpressing miR-140–3p, and found these exosomes

promoted bone defect remodeling. A lentiviral infection system was

also used to overexpress miR-940 in MDA-MB-231 cells to attain

engineering exosomes, which could promote the osteogenic

differentiation of human MSCs (Hashimoto et al., 2018).

Transferring parent cells with miRNAs by Lipofectamine reagent

is another genetic modification method. By this way, exosomes

overexpressing miR-378 (Nan et al., 2021), miR-181b (Liu W. et al.,

2021) andmiR-122–5p (Liao et al., 2019) have been demonstrated to

promote osteogenic differentiation.

The mRNA is also an important target for this strategy. Li

et al. (2017) transfected adenovirus carrying mutant HIF-1α into

BMSCs, and found the mutant protein was highly expressed in

BMSCs exosomes, which markedly accelerated the bone

regeneration and angiogenesis. Interestingly, in several other

TABLE 2 The properties of exosome-integrated biomaterials for bone defect repair.

Properties Biomaterials References

Maintaining exosomes stability Nanocomposite hydrogels Li et al. (2021b)

Enhancing local concentrations of exosomes Acellular extracellular matrix hydrogel Xing et al. (2021)

Injectable hyaluronic acid hydrogel Zhang et al. (2021c)

Gelatin methacrylate/nanoclay hydrogel Hu et al. (2020)

3D matrix hydrogels Holkar et al. (2021)

Injectable thermosensitive hydrogel Ma et al. (2022)

Enhancing exosomes activity 3D matrix hydrogels Yu et al. (2022b)

Alginate hydrogel Holkar et al. (2021)

Optimizing the 3D distribution ABM/P-15 CMC-hydrogel Matos et al. (2012)

3D-printed porous bone scaffolds Zha et al. (2021)

Antibacterial property Food-grade probiotic-modified implant Tan et al. (2020a)

Multifunctional HA hydrogel Liu et al. (2022)

Yu et al. (2022a)

Natural polymer HA hydrogel Mi et al. (2022)

Chitosan hydrogel Shen et al. (2020)

Adapting to irregular bone defects Injectable thermosensitive hydrogel Xing et al. (2021)

PDLLA-PEG-PDLLA triblock copolymer gels Tao et al. (2021)

Chitosan hydrogel Fan et al. (2020)

Wu et al. (2021b)

Nanocomposite hydrogel based on gelatin and Laponite Liu et al. (2021b)

PG/TCP Zhang et al. (2021a)

HA hydrogel Yu et al. (2022a)

Alginate Huang et al. (2020)

Holkar et al. (2021)

Gel-ADH Lin et al. (2022)

Silk fibroin Shen et al. (2022)

Hyaluronic acid Sang et al. (2022)

Yang et al. (2020b)

SIS-CA hydrogel Ma et al. (2022)

Favorable adhesion Crosslinked network of alginate-dopamine, chondroitin sulfate, and regenerated silk fibroin Zhang et al. (2021b)

HA hydrogel modified with the PPFLMLLKGSTR peptide Li et al. (2020)

Thermo-sensitivity SIS-CA hydrogel Ma et al. (2022)

ABM/P-15, CMC-hydrogel: bovine-derived mineral bound to a P-15 carboxymethyl cellulose-hydrogel; HA, hyaluronic acid; PDLLA-PEG-PDLLA, poly (D, L-lactide)-b-poly (ethylene

glycol)-b-poly (D, L-lactide); PG/TCP, poly ethylene glycol maleate citrate with β-TCP; Gel-ADH, hydrazide grafted gelatin; SIS-CA, small intestinal submucosa with propionic acid.
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studies, exosomes derived from parent cells with gene-editing of

BMP2 (Huang et al., 2020), Scx (Feng et al., 2021) and P2X7R (Xu

et al., 2020) performed the enhanced osteogenic ability. However,

this modulating function was due to the changes of exosomal

miRNA rather than the transfection of these genes. This might be

due to two reasons: firstly, the cellular components are selectively

packaged into exosomes to be exosomal cargos (Ma et al., 2021),

and gene-editing of certain genes may not inevitably result in

their expression change in exosome; secondly, miRNAs are the

most abundant exosomal cargos, which may be more sensitive to

the gene-editing modification.

Several studies revealed the effect of genetic modification on

other exosomal bioactive molecules (lncRNAs and circRNAs). Cui

et al. (2019) inhibited lncRNA-MALAT1 expression in endothelial

progenitor cells-derived exosomes by transfecting lncRNA-

MALAT1-targeting siRNA, which disrupted bone regeneration.

Cao et al. (2020) subcloned the full sequence of circ-Rtn4 into

the pcDNA-3.1 vector and transfected the vector into BMSCs using

Lipofectamine 2000 to overexpress exosomal circ-Rtn4.

Nevertheless, to date, the research in this field has remained

limited for the technical reason. Take upregulating circRNAs as

an example, it is difficult to deplete or generate the circular form

without affecting the linear counterpart of circRNA (Nielsen et al.,

2022). In addition, low cyclization efficacy and accuracy also limited

the modification of circRNAs by gene-editing. Therefore,

investigation into novel and high-efficiency genetic modification

technologies is required to combat these problems.

4 Properties of exosome-integrated
biomaterials essential for bone defect
repair

Although the strategies of engineering exosomes could

enhance exosome yield and biofunction, exosomes used for

clinical bone defect treatment are still limited (van der Meel

et al., 2014; Lener et al., 2015). Currently, the major modes of

exosome application are direct injection or carrier loading, which

is mainly aimed at systemic diseases, such as osteoporosis (Song

et al., 2019), hematological malignancies (De Luca et al., 2017),

and myocardial ischemia-reperfusion injury (Zhao et al., 2019).

Nevertheless, it has been reported that no significant effect was

observed with free exosomes treatment by direct injection,

because of its rapid excretion from the site of application

(Zhang Z. et al., 2018; Wang C. et al., 2019; Xing et al., 2022),

suggeting the medand for exosome-integrated biomaterials.

Currently, more and more biomaterials have been designed

and applied in bone regeneration (Cui et al., 2020; Zhao D.

et al., 2021; Zhu et al., 2022a; Zhu et al., 2022b;Wang et al., 2022c;

Zhang et al., 2022). Therefore, the selection of available

biomaterials with appropriate stability and integrity to load

and release exosomes at the bone defect site to increase their

retention and stability may be necessary for bone regeneration.

Several excellent and informative reviews have addressed the

types, synthetic procedure and/or encapsulation approaches of

biomaterials used to carry exosomes (Riau et al., 2019; Pishavar

et al., 2021; Wang D. et al., 2022; Sun et al., 2022). Instead, we

propose to streamline the properties of biomaterial to dissect how

and by what mechanisms the biomaterials help exosomes to

promote bone regeneration (Figure 3; Table 2). By summarizing

the previous studies, we expected to represent a promising

strategy for the use of engineering exosomes in combination

with biomaterials for clinical bone regeneration.

4.1 Maintaining the exosome stability

The first consideration is how to maintain the stability of

exosomes. Despite the bilayer membrane structures making

exosomes resist degradation to some extent, exosomes are

unstable and maintain for less 48 h at room temperature

(Chew et al., 2019). The time will be even shorter at 37°C, at

which exposed functional substances (proteins and RNA) will be

rapidly degraded and metabolized. In fact, stability is an

important but often overlooked point in the research of

biomaterials loading exosomes, which should be given

sufficient attention in the further. Hydrogel encapsulated

exosomes was reported to protect them without degradation

and supply therapeutic effects with persistent exosomes delivery

(Riau et al., 2019). Li et al. (2021b) used the gelatin and laponite

to prepare nanocomposite hydrogels as a carrier for exosomes to

extend the time of BMSC-exosomes in the periodontal pocket

and enhance their osteoinductive function.

4.2 Enhancing local concentrations of
exosomes

The therapeutic effect of exosomes depends strongly on the

local concentrations. However, it is demanding to produce

exosomes in large quantities with high quality and purity,

making clinical applications of exosomes more expensive.

Additionally, free exosomes diffused out from the defect

rapidly, resulting in no exertion of exosomal cargo activity

(Riau et al., 2019). According to the research of Lai et al.

(2012), biodistribution proceeds in the stages of liver and

lungs for 30 min after direct injection of exosomes, and

exosomes are removed within 1 h–6 h after administration via

liver and kidney treatment. Thus, much research was performed

with the aim of enhancing the retention and sustained-releasing

of exosomes at the defect site. Xing et al. (2021) synthesized an

acellular extracellular matrix hydrogel coupled with adipose-

derived mesenchymal stem cell exosomes to regulate the

intervertebral disc microenvironment for the treatment of

intervertebral disc degeneration. The decomposition of the

hydrogel was slowed down, allowing exosomes to remain in
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the disc for up to 28 days Zhang Y. et al. (2021) fabricated an

injectable hyaluronic acid hydrogel encapsulated with umbilical

MSC-derived exosomes through three-dimensional (3D)

printing technology, and the hydrogel showed good sustained-

releasing features in the rat critical-size cranial defect model. Hu

et al. (2020) fabricated Gelatin methacrylate/nanoclay hydrogel

for sustained release of exosomes. The hydrogels with a 3D

matrix prevent the dispersion of exosomes and maintained

their local concentration, which enable the controlled release

of exosomes at bone defect sites (Holkar et al., 2021). In another

study, exosomes were incorporated into an injectable

thermosensitive hydrogel by constructing fusion peptides,

which also enhanced the retention of exosomes and improved

the biological activity of exosomes (Ma et al., 2022). Generally,

the consensus has been achieved that it is essential to enhance

local exosome concentrations at the bone defect site, and the

biomaterials loading exosomes should possess the property of

enhancing the retention and sustained-releasing of exosomes.

4.3 Enhancing exosomes activity

The hydrogel with 3Dmicroenvironment can enhance exosome

activity and affect the interaction of integrin membrane protein

between cells and the cell matrix, which promotes cell proliferation

and differentiation in a bone regeneration environment. YuW. et al.

(2022) encapsulated exosomes derived from periodontal ligament

stem cells into a hydrogel with 3D microenvironment, which

enhanced osteoinductive ability and significantly promoted bone

defect repair in rats. Another study demonstrated alginate hydrogels

combined with exosomes promoted osteogenesis by increasing cell-

exosomes interactions, cell aggregation, and long-term viability

(Holkar et al., 2021).

4.4 Optimizing the 3D distribution of
exosomes

Biomaterials with a highly porous and 3D structure mimic

the porosity, pore size, and interconnectedness of native bone

ideally. In bone defects repair, bioactive materials with good

mechanical properties not only provide temporary mechanical

support for the bone at the implant site, but also modulate

extracellular matrix formation, facilitate better cell-cell and

cell-matrix interactions, retain the cell morphology, provide

mechanical stimulations, and support cell growth and

exosomes secretion, the features which are akin to in vivo

systems (Tibbitt and Anseth, 2009). Matos et al. (2012)

showed that the lyophilized biomaterials created a more

homogenous interparticle spacing, allowed a more suitable

particle distribution and stabilization, then promoting a faster

bone regeneration with relevant clinical benefits. Similarly,

biocompatible 3D porous biomaterials ensured a uniform

spacing and stable distribution of MSC-exosomes compared

with compacted materials (Zha et al., 2021).

4.5 Antibacterial property

During bone defect healing, the bacterial infection is one of the

risk factors (Blair et al., 2015). Therefore, antibacterial property of

biomaterials should also be taken into consideration. Tan L. et al.

(2020) developed a food-grade probiotic-modified implant to

prevent methicillin-resistant Staphylococcus aureus infection and

accelerated bone integration. Liu et al. (2022) designed a

multifunctional hyaluronic acid (HA) hydrogel with antibacterial

property. Then, this group loaded plasma exosomes to this hydrogel

for promoting infected fracture healing (Yu C. et al., 2022). Mi et al.

(2022) combined engineered exosomes and a natural polymer HA

hydrogel, which performed an anti-inflammatory and antibacterial

function on fracture repair acceleration. As a cationic natural

polymer biomaterial, chitosan has anti-microbial property (Dai

et al., 2011), and many reports have shown cationic loaded

engineering exosomes could promote bone regeneration (Fan

et al., 2020; Shen et al., 2020; Wang et al., 2020; Wu et al.,

2021b; Bahar et al., 2022; Nikhil and Kumar, 2022), although

some of them did not look at the antibacterial property. The

biomaterials with antibacterial property have been designed in

some studies, but these materials are still rarely used for bone

defect repair, which merits further investigation.

4.6 Adapting to irregular bone defects

Clinical bone defects caused by trauma, neoplasia,

infection or corrective osteotomies are always irregular.

Hence, biomaterials should have the injectable property to

fill irregular defects and promote in situ bone tissue

regeneration. Xing et al. (2021) constructed an injectable

thermosensitive hydrogel system via a coordinative crossing

of ADSC-derived exosomes and acellular extracellular matrix

hydrogels to effectively protect nucleus pulposus cells from

pyroptosis after intervertebral disc degeneration. By taking

advantage of injectable, reversible, and thermosensitive

abilities, Tao et al. (2021) used PDLLA-PEG-PDLLA

triblock copolymer gels as a carrier of synovium

mesenchymal stem cells-derived exosomes for intra-

articular injection to prevent osteoarthritis progression.

Additionally, multiple biomaterials, including chitosan

hydrogel (Fan et al., 2020; Wu et al., 2021b),

nanocomposite hydrogel (based on gelatin and Laponite)

(Liu et al., 2021b), PG/TCP (PEGMC with β-TCP) (Zhang

B. et al., 2021), HA hydrogel (Yu C. et al., 2022), alginate

(Huang et al., 2020; Holkar et al., 2021), Gel-ADH (hydrazide

grafted gelatin) (Lin et al., 2022), silk fibroin (Shen et al.,

2022), hyaluronic acid (Yang S. et al., 2020; Sang et al., 2022)
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and SIS-CA (small intestinal submucosa (SIS) with propionic

acid (CA)) hydrogel (Ma et al., 2022) were reported to adapt

irregular bone defects and were used to carry exosomes for

skeletal regeneration. Generally, although local injection

therapy is not suitable for certain types of bone

regeneration, such as spinal cord repair (Han M. et al.,

2022), injectable biomaterials loading engineering exosomes

have been used extensively to repair irregular bone defects.

4.7 Other properties

In a moist environment, the favorable adhesion of

biomaterials is essential for in situ bone regeneration (Hasani-

Sadrabadi et al., 2020; Li et al., 2020; Zhang FX. et al., 2021).

Inspired by mussel materials, which exhibit underwater robust

adhesion (Gao Z. et al., 2018), Zhang and the colleague (2021b)

prepared a hydrogel with high bonding strength to the wet

surface using a crosslinked network of alginate-dopamine,

chondroitin sulfate, and regenerated silk fibroin, which

promote cartilage defect regeneration by combining with

BMSCs-exosomes. Peptide-modification is another strategy for

enhancing biomaterial adhesion. Li et al. (2020) prepared a

biomaterial with high adhesion by modifying HA hydrogel

with the PPFLMLLKGSTR peptide, which could locally deliver

human placenta amniotic membrane mesenchymal stem cell-

derived exosomes in spinal cord tissue.

Biomaterials with thermo-sensitivity are also of particular

concern for their property, changing between a liquid state and a

solid-state based on the ambient temperature (López-Noriega et al.,

2014; Ni et al., 2014). Several thermo-sensitive biomaterials have

been used in bone defect repair (Fu et al., 2012; Kim et al., 2018; Yu

et al., 2020;WangQS. et al., 2021). Further,Ma et al. (2022) designed

a novel thermo-sensitive biomaterial by loading BMSCs-exosomes

with SIS-CA hydrogel to regulate bone regeneration.

Collectively, the bio-functional materials not only provide a

scaffold or carrier for engineering exosomes, but also play an

essential role by their own variety properties. Along with major

advancements in chemical engineering techniques, more and

more novel biomaterials with various properties have been

synthesized for bone regeneration. In the future, selection of

appropriate biomaterials to integrate engineering exosomes

should be one of the leading focuses of bone defect repair.

5 Conclusion and perspective

Coexistence of challenges and opportunities have greatly

stimulated the study of engineering exosomes for bone

regeneration in the past 10 years. In the present review, we

mainly addressed the molecular basis of exosomal cargos, the

strategies of engineering exosomes and the properties of exosome-

integrated biomaterials required for bone regeneration. The research

about engineering exosomes for bone defect repair is undeniably in

its infancy. The rapid development of engineering exosomes is

impeded by several key challenges, especially the consistency of

exosomes production. As a result, these difficulties inspired the

development of new and cutting-edge approaches, often distinct

from those in the conventional study of cells, to address both

exosome production and function. Refining the isolation,

purification and storage techniques of exosomes may be an

effective means of improving the consistency of exosomes

production (Colao et al., 2018; Zeng et al., 2022). Additionally,

excellent biomaterials emerged continuously, which greatly

promoted research self-renewal. The effective combination of

engineering exosomes and biomaterials will be greater than the

sum of their parts and exhibit synergy effects in bone

regeneration. We optimistically foresee that novel biomaterials will

be constructed and more sophisticated engineering exosomes will be

implemented for bone tissue regeneration. This huge progress is sure

to benefit both biomedical research and therapeutic modalities in the

field of bone regeneration.
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