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Skin tissue suffering from severe damages fail in self-regeneration. Proper

wound dressings are highly demanded to protect the wound region and

accelerate the healing process. Although large efforts have been devoted,

there still exist disturbing dilemmas for traditional dressings. The exquisite

design of bio-interface upon superwettable materials opens new avenues

and addresses the problems perfectly. However, the advancements in this

area have rarely been combed. In light of this, this minireview attempts to

summarize recent strategies of superwettable bio-interfaces for wound care.

Concentrating on the management of biofluids (blood and exudate), we

described superwettable hemostatic bio-interfaces first, and then introduced

the management of exudates. Finally, the perspective of this area was given.

This minireview gives a comprehensive outline for readers and is believed to

provide references for the design of superwettablematerials in biomedical area.
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Introduction

As the biggest organ in vertebrates, skin functions as the external barrier for the

protection of inner organs, regulation of the body temperature etc. (Morgado et al., 2015).

Skin tissue suffers from severe damages when high heat, pressure, genetic disorder and

other related diseases occur, and might fail in self-regeneration unfortunately (Divyashri

et al., 2022). The injured wounds are classified based on the cause, depth, complexity and

time of healing (Iacob et al., 2020). Among which, the chronic wound (in comparison with

acute wound) usually fails to heal after the treatment for more than 4 weeks, which poses

great threat to human health (Sweeney et al., 2012). In consideration of this, proper

wound dressings are highly demanded to protect the wound region and accelerate the

healing process.

The first wound bandage can be traced back to 4000 years ago, which was made by

honey or resin (Farahani and Shafiee, 2021). After thousands of years evolution, a variety

of materials have been applied in wound dressing, such as hydrocolloids, films, foam and

hydrogel. Ideal wound dressings should meet the requirements of good biocompatibility,
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moisture retention, appropriate mechanical property, non-

adherent and proper exudate management (Liang et al., 2021).

It should be noted that the feasible management of biofluid exerts

a crucial role in wound care among all characteristics. Regarding

to four phases of wound healing that include hemostasis,

inflammation, proliferation, and remodeling, the control of

bleeding in hemostasis stage is the primary task, followed by

the management of exudates in the inflammatory and

proliferative phases (Bernardes et al., 2021; Maleki et al.,

2021). Although large efforts have been devoted, there still

exist disturbing dilemmas for traditional dressings. For

example, materials capable of favorable absorption property

usually lead to the ingrowth of clotting and new granulation

tissues, which might cause secondary injuries for the routine

removal.

The development of superwettable materials opens new

avenues for wound dressings. Derived from the natural

superwettable phenomena, that include the typical examples

of self-cleaning lotus leaf and slippery nepenthes, diverse types

of superwetability have been explored: superhyrophilic,

amphiphobic and Janus wettability (Ding et al., 2012; Zhu

et al., 2017; Sun et al., 2021). Depending on this, the exquisite

design of bio-interface can address the problems of existing

dilemmas in wound dressing. However, the advancements in

this area have rarely been combed. In light of this, the aim of this

minireview is to summarize the recent strategies of superwettable

bio-interfaces for wound care. Concentrating on the

management of biofluids, we divided the content into the

control of blood (hemostasis) and exudates. The advantages

and disadvantages of each design were interpreted, such as

superhydrophilic, superhydrophobic, slippery, inner

hydrophilic-outer hydrophobic, inner hydrophobic-outer

hydrophilic and multilayer materials (Figure 1). Finally, the

perspective of this area was given. We have to state that

common hydrogels with the intrinsic hydrophilic

characteristic lack the feasible tailoring of wettability, and

benefit the wound healing from other viewpoints (injectable,

self-healing and smart response). This topic is beyond the scope

of this review and will not be discussed here. The readers please

refer to previous excellent reviews (Dong and Guo, 2021; Liang

et al., 2021; Maleki et al., 2021). We believe this minireview will

inspire the design of superwettable interfaces, and expand the

application of these materials in other related areas.

Superwettable hemostatic bio-
interfaces

The uncontrollable bleeding caused by severe trauma

threatens the life of people, haemorrhage control is thus the

principal step for wound management (Liu et al., 2022). In an

attempt to reduce the high mortality of massive hemorrhage, the

development of quick hemostatic materials is in high demand.

Normally, the bleeding stops by the formation of blood clot with

the main composition of platelets and fibrin (Versteeg et al.,

2013). Hydrophilic materials, cotton gauze, as an example,

possessing the advantage of high water affinity can absorb

water in the blood and accelerate clotting (Zhu et al., 2018).

By virtue of this, active hemostatic agents including proteins,

polysaccharides and silicon-based materials were widely

integrated in hydrophilic substrates for synergistic hemostasis

by activating the coagulation cascade, which can be fabricated in

the form of membranes, sponges, hydrogels and particles. This

topic has been well-summarized by Prof. Guo and will not be

discussed here (Liang et al., 2021).

Although large advancements have been achieved, normal

hemostatic interfaces constructed by hydrophilic materials

generally suffer from the following limitations: 1) massive

blood loss due to the rapid capillary drainage of hydrophilic

materials; 2) secondary injuries caused by the removal of wound

dressing, considering the clotting has formed between bleeding

tissue and materials. The delicate design of superwettable bio-

interfaces provides an intriguing solution to tackle these

problems.

Regarding to the massive blood loss, asymmetric or Janus

dressings with superhydrophilic and superhydrophobic

properties on two sides were adopted. For example, cotton

fabric was endowed with Janus performance by spraying one

side with hydrophobic SiO2 nano-particles and ethyl-α-
cyanoacrylate superglue, meanwhile the other side of fabric

remained superhydrophilic (Sasaki et al., 2016). The

superhydrophilic surface absorbed blood and expedited

clotting while the superhydrophobic side prevented the

permeation of water and blood. Zhu et al. reported that the

FIGURE 1
Schematic illustration of superwettable bio-interfaces in
wound management.
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Janus fabrics could reduce blood loss more than 50% in

comparison with the common superhydrophilic gauzes and

prolong the survival time in rat model (Zhu et al., 2018). The

similar results were duplicated on Janus cellulose sponges (Cheng

et al., 2020). It was explained that the hydrophobic layer

prevented the blood penetration and posed proper pressure

on the wound, which accounted for efficient blood clotting

performance (Figure 2A). This strategy was further verified in

self-assembled dipeptide aerogels (Li et al., 2020) and

carboxymethyl chitosan/paraffin modified cellulose films

(Wang et al., 2020). Moreover, the superhydrophobic external

layer, acts as an armor and protects the inner wound from

bacterial infection.

To avoid the secondary injuries, the affinity between bleeding

tissue and materials should be weakened, and hydrophobic blood-

repelling material seems an optimal choice (Liu et al., 2020).

However, it should be noted that mere blood repellence fails in

the control of massive bleeding. In this case, the active hemostatic

agents were simultaneously incorporated. Li and co-workers

creatively proposed an approach to address the dilemma of rapid

blood coagulation and facial wound-dressing removal (Li Z. et al.,

2019). Specifically, a super-hydrophobic surface with immobilized

carbon nanofibers (CNFs) was developed, among which CNFs

promoted quick fibrin growth and rapid clotting, while the air

pocked generated minimal contact area and easy detachment of

mature clots (Figure 2B). The peeling tension was 1-2 folds lower

than the commercial products. Besides, the commercial zeolite gauze

modified with a paraffin coating was rendered with blood repellent

property and procoagulant performance as well, which was derived

from the retained cation exchange capacity of zeolites (Zhang W.

et al., 2021). Very recently, He et al. tailored the hydrophilicity-

hydrophobicity balance of cotton gauze by modifying it with

catechol compound with flexible long hydrophobic alkyl chain

(He H. et al., 2022). The adhesion/blocking effect of catechol

groups, blood wicking of cotton and hydrophobic effect of alkyl

chains conjointly contributed to the outstanding hemostatic

efficiency (rapid hemostatic, low blood loss and no secondary

injuries). Following the similar idea, superhydrophilic/

superhydrophobic alternate pattern was designed to realize the

balance between hemostatic and reduced adhesion (Long et al.,

2021).

Superwettable bio-interfaces for
exudate management

Apart from the haemorrhage control in the first step of

wound care, the management of exudate is also crucial to

FIGURE 2
(A) Schematic illustration of Janus sponges for wound repair. (B) Super-hydrophobic surface with immobilized carbon nanofibers for
hemostasis. SEM image and water contact angle of the surface (upper), long fibrin fibers generated when platelet poor plasma droplet rolled down
(bottom). (C) Schematic illustration of the fabrication process of the 3D-structured slippery polyurethane textile and application in vacuum sealing
drainage therapy. (D) The design of self-pumping dressing by exudate drainage. (E) Scheme of four-layer wound dressing with properties of
self-pumping and ion backflow.
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wound healing (Sweeney et al., 2012). Wound exudate is defined

as the fluid produced around wound in the inflammatory and

proliferative phases when haemostasis has been completed

(Bernardes et al., 2021). For the acute wounds, the exudate is

mainly composed of water electrolytes, protein-digesting

enzymes, macrophages, inflammatory mediators and

neutrophils, which allows the autolysis of damaged tissue, and

provides nutrient for the metabolism of cells (Spear, 2012). The

exudate is regarded positive in acute wounds and its production

declines with the passage of time. In this case, the dressings

should perform the protection and moist control roles (Priya

et al., 2016; Shi et al., 2020). By contrast, the composition of

chronic wound exudate shows distinct differences: it contains

higher concentrations of pro-inflammatory cytokines, matrix

metalloproteinases (MMP), and decreased levels of growth

factors (Brett, 2006). In addition, the exudate damages peri-

wound skin and its production in chronic wounds might be

continuous and excessive due to inflammation (Cutting, 2003).

Moreover, high-volume exudate could raise the risk of bacterial

invasion because the saturated dressing functions as a portal. In

this sense, it is of great significance to remove excessive exudate

while maintain a moist environment for wound healing.

Water absorbent dressings made by hydrophilic materials

supply abundant channels for exudate drainage and are great

candidates for exudate management (Varaprasad et al., 2020). In

general, the hydrophilic dressings were endowed with other

functions including antibacterial and electro-activity (Mayandi

et al., 2020; Li et al., 2021; Wang et al., 2022). For instance,

superhydrophilic electrospun gelatin nanofibers were loaded

with ε-polylysine (a broad-spectrum antibacterial agent) and

crosslinked by polydopamine (PDA) for the treatment of

second-degree burns (Mayandi et al., 2020). The gelatin mats

absorbed the exudates and propelled the migration of early

bacterial colonizers into the antibacterial trappers. Li et al.

reported nanozyme composite cryogels with the capability of

exudate absorption and acid triggered sterilization (Li et al.,

2021). The macroporous structure and excellent hydrophilicity

of cyogel generated rapid liquid absorption property.

Furthermore, taking advantage of the pH-responsive amine

groups and switchable Schiff base reaction, on the one hand,

the polymer scaffold and Fe-MIL-88NH2 nanozyme were

positively charged to capture microbes through electrostatic

interaction in acidic condition. On the other hand, the

nanozyme conducted reversible release and rebinding behavior

for dynamic killing of microbes. Wang and coworkers opened a

new path for the utilization of exudate by transmitting

endogenous bioelectricity and motivating the cascade release

of growth factors (Wang et al., 2022). To achieve this goal,

short nanofibrous sponges were modified by graphene oxide,

which was then reduced to conductive graphene under the effect

of PDA, and VEGF-carrying liposomes were then loaded. The

above works represent the characteristic examples of hydrophilic

bio-interfaces, which regulated the biofluid by simple absorption.

However, the hygroscopic dressing might overhydrate the

wounds and complicate the healing (Schuren et al., 2005).

Besides, new granulation tissues grown in the hydrophilic

mats further hinder the routine change of dressing. Therefore,

other strategies based on superwettbility interfaces have been

proposed.

Hydrophobic/slippery surfaces

By contrast with the hydrophilic surfaces, superhydrophobic

or slippery interfaces are resistance to biofluid, bacteria and cells,

which is also known as great anti-fouling property (Zhang H.

et al., 2022). These merits perfectly cope with the adhesion of

bacteria and new grown tissue, and have exerted great application

in wound management. Zhang and coworkers pioneered the

utilization of slippery material by fabricating microfiber textiles

with liquid-infused porous surface (Zhang et al., 2020).

Benefiting from the super low adhesion of biofluid and cells

on surfaces, the wound exudation efficiency could be significantly

enhanced with neglectable tissue injury in a vacuum sealing

drainage therapy (Figure 2C). This anti-adhesion surface can also

be integrated in functional patch to prevent the adhesion of

wounded intestine with surrounding tissue (Li et al., 2022), and

endowed with bactericidal characteristic by the introduction of

antibacterial silver nanoparticles (Shi G. et al., 2019).

Aside from the nepenthes-inspired slippery surface,

hydrophobic surface combining the advantage of hydrophilic

interface was skillfully constructed by microfluidic-emulsion-

templating method (Yao et al., 2020). Porous polyvinyl

alcohol hydrogel membrane loaded with zeolitic imidazolate

framework-8 not only exhibited good repellence to blood and

body fluids, but also enabled the controlled release of zinc irons

for the eradication of bacterial and the promotion of angiogenesis

and collagen deposition.

Janus materials

Natural human skin is asymmetric with epidermis and

dermis arranged from the outer to the inner side (Wu et al.,

2016). The epidermis is dense and hydrophobic to resist the

bacterial adhesion and avoid excessive dehydration, while the

inner dermal layer is sponge-like and hydrophilic to support

nutrient exchange and facilitate metabolism. Inspired by this,

extensive efforts have been devoted to fabricate asymmetric

dressing from the viewpoint of skin tissue engineering. In

analogy to natural skin structure, the hydrophilic surfaces

resembling that of dermis were normally taken as the inner

side for direct interaction with tissue. In order to render the

surface with regenerative property, the topological morphology

of materials could be engineered to facilitate cell behavior.

Besides, growth factors and therapeutic agents were often
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loaded to augment the effect. In the meanwhile, the hydrophobic

surfaces mimicking epidermis were adopted as the external

protective layer to defend against bacterial attack.

As for the bioactive side, fibrous membranes and hydrogels

provide supportive environments for drug loading and surface

structuration. While the protective side can be constructed by

various types of hydrophobic materials. As examples, hydrophilic

core/shell fibrous membrane was prepared by coaxial

electrospinning with curcumin and antimicrobial peptides

loaded in the core and shell respectively. Subsequently, poly

(lactic acid) (PLA) beads were electro-sprayed on one side of the

membrane for superhydrophobic surface (Li W. et al., 2019). The

release of antimicrobial peptides and curcumin favored for the

treatment of the acute inflammatory response and mid to late

wound healing stages correspondingly. And the

superhydrophobic surfaces prohibited the adhesion and

invasion of exogenous bacteria. Analogously, pioglitazone-

incorporated gelatin and poly (ε-caprolactone) (PCL) were

electron-spined on two sides of nylon mesh separately (Yu

et al., 2020). This asymmetric composite dressing promoted

the healing of full-thickness skin wound in diabetic mice

(both type 1 and 2 diabetes). You and coworkers fabricated a

Janus patch with resveratrol-loaded hydrogel and hydrophobic

polymer (You et al., 2015). Taking advantage of the hydrophobic

blocking polymer, the fluid penetration, accompanied with the

diffusion of resveratrol was monodirectional, which was

beneficial for efficient drug delivery. The hydrogel layer of

functional Janus membrane could also be loaded with growth

factors and the hydrophobic surface was reported to prevent

exudate leaks (An et al., 2017). Interestingly, anisotropic

microgrooved hydrogel was designed to facilitate cell behavior

(adhesion, proliferation, and oriented migration), and the other

side was endowed with anti-adhesive performance by the

infusion of liquid paraffin (Zou et al., 2020). This Janus patch

avoided adhesion-related complications and promoted the repair

of abdominal wall defects in rat. Moreover, superwettable

asymmetric polyurethane (PU) sponges were successfully

prepared by spraying fluorinated zinc oxide nanoparticles

onto one surface of PDA-modified sponge (Chen et al., 2022).

It was demonstrated that the durable bacterial barrier of

superhydrophobic coatings was conductive to the healing of

infected wound.

In contrast to the inner hydrophilic-outer hydrophobic

strategy, inner hydrophobic-outer hydrophilic design features

the unidirectional transport of exudates and feasible change of

wound dressings. This concept was proposed by Shi and

coworkers for the first time (Figure 2D), who elaborated the

mechanism and key points for the design of self-pumping

dressing (Shi L. et al., 2019). The density of hydrophobic

nanofiber arrays and the multiple contacting points on

hydrophilic microfibers contributed to the rapid transport of

biofluids to the hydrophilic side once they were in contact with

the hydrophobic fibers. More importantly, the intrinsic

hydrophobicity of fabrics resisted the ingrowth of regenerated

tissue. Since then, a variety of bio-interfaces including polymeric

fibers (Luo et al., 2021), polyurethane sponges (Zhang H. et al.,

2021), porous films (Chi et al., 2021), hydrogel composite

membrane (Zhang J. et al., 2022) and cotton fabrics (Zhang Z.

et al., 2022) have been well-developed. To the best of our

knowledge, the absorption and retainment of biofluid is

closely associated with the intrinsic property of hydrophilic

substrates. In regard to this, the reverse penetration of liquid

from the hydrophilic substrate might occur if the water retention

capability is not satisfactory. To address this problem,

nanofibrous composite aerogel served as the hydrophilic

absorption layer to prohibit the reverse liquid penetration

(Zhang K. et al., 2021). In brief, quaternized chitosan/

polyvinyl alcohol aerogel overcame low water absorption

property of traditional compact nanofibers, meanwhile

retained the soft mechanical property. After the coverage of

hydrophobic curcumin-loaded PCL, the hybrid dressing was

utilized for diabetic wound therapy by virtue of antibacterial,

antioxidant, and fluid gating characteristics. From another

perspective, Qian et al. raised the management of exudate by

the collection of wound exudate in the early stage, followed by the

cascade release of drug (curcumin) from the hydrophilic

substrates (Qian et al., 2022). The inverse effects of the

hydrophilic layers in above two works might be attributed to

diverse absorption capabilities of hydrophilic substrates and

different blocking ability of hydrophobic layer.

Multilayer designs

Superior to single-layer or double-layer dressings, multilayer

substrates are designable for the attainment of more complex

functions. He et al. reported a three-layer composite dressing

consisted of PCL/gelatin nanofiber, collagen/quaternized

chitosan sponge and PCL/polystyrene microspheres from the

inner to the outer side (He C. et al., 2022). The aligned PCL/

gelatin together with curcumin promoted directed cell growth

and migration, sponges absorbed exudates, and hydrophobic

microspheres inhibited exogenic bacterial adhesion. This

strategy enables the antibacterial role of both inner and outer

sides. Obeying the same rule, superhydrophilic-hydrophilic-

hydrophobic-superhydrophobic four-layer hybrid substrates

were developed with the integration of ciprofloxacin and

astaxanthin in the hydrophilic layer (Zhang et al., 2023). The

combination of fluid absorption, antibacterial, antioxidation and

self-cleaning gave rise to potential applications of this membrane

in skin tissue engineering.

For the purpose of full utilization of exudates, Chang’s group

designed a four-layer composite dressing for self-pumping and

ion backflow (Bao et al., 2020). PU membrane with micropore

arrays served as the bottom layer, while hydrophilic deacetylated

cellulose acetate, bioactive silicate bioglass particles and
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superabsorbent particles were placed above in sequence

(Figure 2E). This system allows for unidirectional transport of

abundant exudates from wound bed, and simultaneous backflow

of a small amount of fluid (containing bioactive ions). This novel

bi-functional transport process benefited the regeneration of

diabetic wound. Furthermore, this design can be simplified by

sandwich structure: hydrophilic zinc silicate bioceramics

encapsuled by hydrophobic PLA in both sides (Zhang Z.

et al., 2021). The exudate absorption followed by the release

of Zn2+ and SiO3
2- ions facilitated the healing of burn wound and

regeneration of appendage (hair follicle).

To surmount the low stretching capability of traditional band

aids, Xu and coworkers intelligently fabricated a three-layer

patch using Janus polydimethylsiloxane layer, filter paper and

medical adhesive tape (Xu et al., 2021). Polydimethylsiloxane

layer was drilled by femtosecond laser and then single-side

modified for Janus property. This patch possessed

unidirectional liquid transport on both relaxed and stretched

states, indicating the application on moveable skin wounds

(stretched or bended skin surface).

Conclusion

In summary, the development of superwettable bio-

interfaces motivates the application of these designs in wound

care, which exhibit attractive advantages of biofluid

management, drug delivery, easy to change etc. In view of the

two primary biofluids during healing stages (blood and

exudates), superwettable hemostatic bio-interfaces were first

described, the management of exudates was then summarized.

The blood management requires the quick hemostatic, no blood

loss and secondary injuries, and the integration of

superhydrophobic bio-interface satisfies the needs. Diverse

strategies including hydrophobic/slippery, inner hydrophilic-

outer hydrophobic, inner hydrophobic-outer hydrophilic and

multilayer surfaces were applied for exudate management. These

bio-interfaces all have distinctive merits and were reasonably

verified in the specific wound model. Based on the shallow

understanding of authors, the perspectives were proposed as

follows: 1) The delicate control of exudates (the backflow and

purification) needs in-deep investigation, especially the

mechanism and accuracy. 2) Almost all chronic animal

models in the reported papers differ from that in clinic (non-

healing for more than 4 weeks), and the animal model resembling

that of real case would be more meaningful. 3) The regeneration

of skin appendices and scarless wound healing are still

challenging. In a word, tailoring superwettability bio-interfaces

provides inspiring solutions to tackle the existing problems in

wound management. We hope that this minireview can give a

comprehensive outline for readers and provide references for the

design of superwettable materials in biomedical area.
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