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Induced pluripotent stem cells (iPS cells) represent a particularly versatile stem cell type for
a large array of applications in biology and medicine. Taking full advantage of iPS cell
technology requires high throughput and automated iPS cell culture and differentiation. We
present an automated platform for efficient and robust iPS cell culture and differentiation
into blood cells. We implemented cell cluster sorting for analysis and sorting of iPS cell
clusters in order to establish clonal iPS cell lines with high reproducibility and efficacy.
Patient-specific iPS cells were induced to differentiate towards hematopoietic cells via
embryoid body (EB) formation. EB size impacts on iPS cell differentiation and we applied
cell cluster sorting to obtain EB of defined size for efficient blood cell differentiation. In
summary, implementing cell cluster sorting into the workflow of iPS cell cloning, growth
and differentiation represent a valuable add-on for standard and automated iPS cell
handling.

Keywords: cell cluster sorter, large particle flow cytometry, induced pluripotent stem cells, iPS cells, embryoid body,
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INTRODUCTION

Induced pluripotent stem cells (iPS cells) are engineered stem cells, which are readily obtained from
somatic cells of patients by reprogramming (Takahashi and Yamanaka, 2016). They retain the
patient-specific genetic background, including disease specific and/or associated mutations. iPS cells
offer unprecedented opportunities for disease modeling, drug screening, regenerative and
personalized medicine (Rowe and Daley, 2019). However, the processes of iPS cell
reprogramming, maintenance, and differentiation are costly and require constant supervision
and cell quality assessment by highly trained personnel (Chen et al., 2014; Niessing et al., 2021).
Techniques for manual iPS cell handling continue to advance but generating iPS cells of high quality
at large scale and in compliance with Good Manufacturing Practice (GMP) still remains a challenge
(Baghbaderani et al., 2015; Rivera et al., 2020). Traditional manual handling of iPS cells relies mostly
on the expertise of the operator and inevitable inter-technician variabilities affect iPS cell growth and
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quality. Moreover, manual handling introduces financial and
temporal obstacles that limit large scale iPS cell application
(Soares et al., 2014; Niessing et al., 2021).

Transferring conventional laboratory processes into industrial
manufacturing requires advanced methods and machineries,
which are reliable, reproducible, scalable, and adaptable.
Automation of distinct steps and integrated systems of iPS cell
generation, culture and differentiation have been previously
described (Marx et al., 2013; Elanzew et al., 2015; Elanzew
et al., 2020; Konagaya et al., 2015; Paull et al., 2015; Coston
et al., 2020; Dhingra et al., 2020). For example, an automated
culture system maintained iPS cells in their undifferentiated state
for up to 60 days (Konagaya et al., 2015). Modular robotic
platforms enabled high-throughput reprogramming towards
iPS cells and highly parallelized iPS cell cultures and thus, the
processing of a large number of iPS cell preparations (Paull et al.,
2015; Elanzew et al., 2020). Isolation of individual iPS cell
colonies was automated with an integrated working stage
composed of robotic picking arm, inverted microscopy and
motorized stage (Haupt et al., 2012).

Human iPS cells harbor the potential to develop into all cell
types of our body but iPS cell differentiation towards
hematopoietic cells has been notoriously challenging (Qin
et al., 2014; Ackermann et al., 2015). Frequently, human iPS
cells are induced to differentiate into hematopoietic cells through
three dimensional embryoid bodies (EB), which recapitulate early
steps of human development (Hong et al., 2010; Sturgeon et al.,
2014; Garcia-Alegria et al., 2018). Following EB formation
specific cocktails of cytokines and/or growth factors in concert
with specific stroma cells or scaffolds instruct further
development into the desired hematopoietic cell type
(Ackermann et al., 2015). EB formation is accomplished 1) by
releasing iPS cell clusters from 2D cultures on feeder or feeder-
free cultures followed by EB formation in low attachment dishes
or 2) by dissociating iPS cell clusters into single cells, which are
then reassembled in hanging drops or by centrifugation in spin
EB protocols (Ng et al., 2008; Hong et al., 2010; Zeevaert et al.,

2020). The EB formation method and EB size impact the
differentiated cells obtained (Messana et al., 2008; Hong et al.,
2010), which underscores the importance of cell mechanics in EB
for differentiation (Zeevaert et al., 2020).

Therefore, in the present work, we embarked on the strategy to
automate 1) iPS cell culture onMEF feeder, 2) EB formation from
iPS cell clusters and 3) their differentiation into hematopoietic
cells. Additionally, we capitalized on cell cluster flow cytometry
for 1) analyzing and sorting individual iPS cell clusters to obtain
clonal iPS cell lines and 2) sorting EB of defined size for
hematopoietic differentiation.

MATERIALS AND METHODS

iPS Cell Lines and iPS Cell Culture
The iPS cell lines used in the present work were derived from
an aggressive systemic mastocytosis (ASM) patient by
reprogramming peripheral blood CD34+ hematopoietic cells
using the CytoTune reprogramming kit (Thermo Fisher
Scientific) as described in our previous work (patient 1 in
Toledo et al., 2021). The iPS cell line 1 (hereafter referred to as
line 1) harbors the KIT D816V and NFE2 mutations and
displays an erythroid bias upon hematopoietic
differentiation. The iPS cell line 2 (hereafter referred to as
line 2) does not harbor mutations in the KIT or NFE2 gene and
does not show an erythroid bias upon hematopoietic
differentiation (Toledo et al., 2021). In the Human
Pluripotent Stem Cell Registry (https://hpscreg.eu) line 1
and line 2 are referred to as UKAi004-D and UKAi004-B,
respectively. The “unstable” iPS cell line used in the present
work was generated as described previously (Toledo et al.,
2021) and was classified as “unstable” based on iPS cell
morphology and increased number of differentiating cells
under standard iPS cell culture condition. iPS cells were
cultured on mouse embryo fibroblast (MEF) feeder as
described (Sontag et al., 2017; Toledo et al., 2021).

Graphical Abstract | Clonal iPS cell lines and embryoid bodies (EB) of defined size are obtained by cell cluster sorting in an automated platform.
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Establishment of the Liquid Handling Unit
(LHU) Modular Preprogrammed Operating
System
MEF and iPS cell handling was performed on the automated
platform Hamilton STARlet liquid handling unit (LHU)
(Hamilton, Reno, NV, United States) with the following
functional units: tube carrier, tilt module, plate carriers, tip
carriers, shaker, liquid waste container and multiple positions
for 6-well plates (Supplementary Figures S1A,B, S2A,B, S3,
S4A). Cells were incubated in an automated Cytomat 2 C-LIN
incubator (Thermo Fisher Scientific) under normoxic conditions
at 37°C and 5% CO2. Microscopy was performed with an
automated EVOS Fluorescence Digital Inverted Microscope
(AMG-Advanced Microscopy Group, WA, United States).
Tissue culture plate handling was with a 6-axis robot (VS-087,
Denso, Kariya, Japan) mounted on an overhead gantry and
encased with a custom-made laminar flow system (Micro
CleanRoom Technology, MCRT, Heuchelheim, Germany).

The Hamilton VENUS III software was used to develop the
operating system for automated iPS cell culture and
differentiation in the LHU. The operating system is composed
of several task-specific methods. A number of specific commands
were stringed together, forming a method. Methods were edited
by the syntax-free graphical method editor. A set of files,
including ‘Deck Layout’, ‘Carrier and Labware’, ‘Sequence’,
‘Liquid Class’, and ‘Library’, were linked to the output of the
method editor. Every method was associated with several
parameters, which can be defined by the user based on the task.

Evaluation and Optimization of LHU
Operating System
MEF feeder layer generation: MEF feeder cells were seeded in 6-well
tissue culture plates by LHU (Supplementary Figures S1A,B;
Supplementary Figures S4A–C). MEF were then incubated
overnight in the automated Cytomat 2 C-LIN incubator and 6-
wells were scanned by the automated EVOS Fluorescence Digital
InvertedMicroscope on the next day. The confluence of MEF feeder
was determined by a modified “Phantast” algorithm
(Supplementary Figure S4C; see also below). iPS cell growth
monitoring: After seeding, several iPS cell colonies were
randomly chosen and their increase in size was recorded for
eight consecutive days by microscopy (EVOS Fluorescence Digital
Inverted Microscope). Collagenase IV treatment: The optimal
incubation time for collagenase IV (Gibco) treatment for
passaging iPS cells in the LHU was determined by morphology
inspection by microscopy. The optimal incubation time was set
when most colonies fully detached. Number of resuspension cycles:
After collagenase IV treatment, colonies were collected in the LHU
and transferred to a 50ml Falcon tube and broken into smaller cell
clusters by pipetting up and down 1 to 8 times (Supplementary
Figure S2A). The optimal pipetting cycle number was determined
by evaluating cell cluster size. Cell cluster size was calculated by a
custom-made Python program “SizeCal” (Supplementary Material
S1). Assessment of iPS cell pluripotency: Pluripotency of LHU
cultured iPS cells was assessed after 7 days of automatic culture

by determining TRA-1-60 expression and comparing to manually
cultured iPS cells.

Generation of iPS Cell Clusters in LHU
Five to 7 days after passaging onMEF feeder layer, iPS cells in 6-well
plates were treated in the LHU with dispase (Stem Cell
Technologies) for 10–15min or collagenase IV (Gibco) for
45–60min. Enzyme was aspirated and 1ml of IMDM culture
medium (Gibco) supplemented with 10% FCS (PAN Biotech)
and 100 U/ml penicillin, 100 μg/ml streptomycin (Thermo Fisher
Scientific) was added to each well. Colonies were harvested in LHU
with custom-made pipetting positions and gently transferred to
50ml Falcon tubes. The suspension of iPS cell clusters was
homogenized by gently pipetting (Supplementary Figure S2A)
and submitted to cell cluster sorting with large particle sorter
COPAS FP-1000 (Union Biometrica, Holliston, MA, United States).

TRA-1-60 Live Staining
Live-cell staining of iPS cells in culture with TRA-1-60-Vio488
(Miltenyi Biotec) was performed following manufacturer
instructions. Image acquisition was performed with EVOS
Fluorescence Digital Inverted Microscope. Alternatively, iPS
cells were first treated with collagenase IV for 45 min. iPS cell
colonies were gently detached and harvested into a 50 ml Falcon
tube, washed twice with KO-DMEM (Thermo Fisher Scientific),
stained with TRA-1-60-Vio488 as above and subjected to analysis
with large particle sorter COPAS FP-1000.

Immunofluorescence Staining
For determining pluripotency, iPS cells derived from sorted iPS cell
clusters were cultured as described above. Immunofluorescence
staining for the pluripotency markers TRA-1-60, TRA-1-81,
OCT4 and NANOG was performed as described (Toledo et al.,
2021). To assess trilineage iPS cell differentiation, embryoid bodies
(EB) were generated by LHU and further cultured in EB formation
medium for 5 days (Toledo et al., 2021). EB were then transferred to
gelatin coated slides and cultured for 12 days in KO-DMEM
supplemented with 20% FCS (PAN Biotech), 100 U/ml penicillin,
100 μg/ml streptomycin, 2 mM L-glutamine (all Thermo Fisher
Scientific). Medium change was performed every second day.
Immunofluorescence staining for trilineage markers α-fetoprotein
(AFP), β-tubulin III (TUJ-1) and T-box transcription factor 3
(TBX3) was performed as described (Sontag et al., 2017).
Antibodies used are listed in Supplementary Table S1.

Fluorescence-Activated Cell Sorting (FACS)
Analysis
Flow cytometry analysis was performed with FACS Canto II (BD
Bioscience) and data analysis was done with FlowJo software (Tree
Star). Antibodies used for FACS are listed in Supplementary Table S1.

Cell Cluster Sorting of iPS Cell Colonies
and EB
Analysis and sorting of cell clusters (iPS cell clusters and EB) was
performed with large particle sorter COPAS FP-1000. Key
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parameters for optimization of cell cluster collection were “Drop
Width”, “Sort Delay” and “Minimum Separation Width”.
“Minimum Time of Flight (ToF)” was set as cell cluster size
cut-off threshold. Cell clusters were characterized by optical
density and fluorescence intensity and sorted as they exit the
flow cell by an air sorting mechanism. Desired cell clusters were
collected as described for each experiment.

Automation of EB-Based Hematopoietic
Differentiation
iPS cell clusters on MEF feeder were generated manually or by
automation with the LHU and transferred to 6-well Clear Flat
Bottom Ultra-Low Attachment plates (Corning) for EB
formation. Hematopoietic differentiation was performed as
previously described (Kovarova et al., 2010; Toledo et al.,
2021). Briefly, EB were seeded in gelatin-coated (0.1%, Sigma
Aldrich) 6-well plates (30–50 EB per well) in 2 ml of StemPro-34
SFM supplemented with 100 U/ml penicillin, 100 μg/ml
streptomycin (all Thermo Fisher Scientific), 100 ng/ml stem
cell factor (SCF), 50 ng/ml fms-related tyrosine kinase 3 ligand
(FLT3L) and 30 ng/ml interleukin 3 (IL-3, all Peprotech), and
10 ng/ml interleukin 6/soluble interleukin 6 receptor fusion
protein (hyper-IL-6, Fischer et al., 1997). Complete medium
change was performed every third day. Hematopoietic cells,
which appeared as suspension cells after 2–3 weeks, were
harvested by gently rinsing the well with PBS. Alternatively,
after 5 days in suspension culture, EB were subjected to cell
cluster sorting with COPAS FP-1000. Sorted EB were then
subjected to hematopoietic differentiation as above.

Histological Analysis
iPS cell-derived hematopoietic cells were centrifuged on glass
slides with Shandon Cytospin 4 cytocentrifuge (Thermo Fisher
Scientific) followed by fixation with methanol at room
temperature. Cells were stained with Diff Quik (Medion
Diagnostics) followed by mounting with Entellan (Merck).
Image acquisition and analysis was performed with Leica
DMRX microscope (Leica) and Leica Application Suite
software (Leica Microsystems), respectively. ImageJ was used
for image handling.

Gene Expression Analysis by RT-qPCR
RNA isolation was performed with NucleoSpin RNA Kit
(Macherey-Nagel, Düren, Germany) following the
manufacturer´s instructions. cDNA was synthesized using
MultiScribe High Capacity cDNA Reverse Transcriptase Kit
(Thermo Fisher Scientific). RT-qPCR was performed on
StepOnePlus Real Time cycler with FAST SYBR Green master
mix (Thermo Fisher Scientific). Sequences of primers used in the
present study are listed in Supplementary Table S2.

Generation of EB From Micro-contact
Printed Vitronectin Arrays
EB generation from feeder-free iPS cell cultures was performed with
micro-contact printed (µprinted) vitronectin arrays and automated

by LHU. Briefly, polydimethylsiloxane stamps with circular features
of 600 µm in diameter were used to pattern the surface of 6-well
tissue culture plates with vitronectin arrays. iPS cells were seeded on
patterned plates by LHU and cultured in StemMACS iPS-Brew XF
(Miltenyi Biotech) (Elsafi Mabrouk et al., 2022). iPS cell colonies
were cultured for up to 11 days and the rate of colony detachment
from µprinted arrays was quantified daily.

Calculation of Cell Confluency
Confluency ofMEF feeder was calculated from phase contrast image
scans of the automated EVOS Fluorescence Digital Inverted
Microscope with modified PHANTAST algorithm (Jaccard et al.,
2014). The algorithm was modified to cope with large images by
implementing the core features in C++ using OpenCV. The images
are split up in tiles, processed in parallel and then merged again. The
phase contrast region in the center of wells was selected by a circular
mask and areas recognized as MEF were color-coded in red.
Confluency is defined as number of red pixels with respect to the
number of total pixels in the circular masked area (Supplementary
Figure S4C). Confluency values are provided as xml-file and the
segmentation as overlay image.

Statistical Analysis
Statistical analyses were performed in Prism 7 (GraphPad). The
statistic test used, and p-values are indicated in the respective
figure legends.

RESULTS

The reliable and robust automation of iPS cell culture is key to high
throughput application of iPS cells in disease modeling and drug
screening. This involves 1) iPS cell culture, the 2) isolation of
individual clonal iPS cell lines and 3) iPS cell differentiation into
the desired cell types (Steps 1–3, Figure 1A).

Step 1. Automated iPS cell culture maintains iPS cell
pluripotency

To this aim, we established an optimized liquid handling unit
(LHU) protocol for automated culture of iPS cells on MEF feeder
layer or on feeder-free vitronectin-coated plates (see Materials
and Methods). We developed preprogrammed modules to
automate all steps of MEF feeder layer seeding, generating
confluent and homogenous MEF feeder-coated wells with high
reproducibility (Supplementary Figures S1A,B; Supplementary
Figures S4A,B). Homogenous MEF feeder layers were readily
obtained (Supplementary Figures S4B, C) Next, we applied a
similar modular preprogramming approach for culture of iPS
cells on MEF feeder layer (Figures 1B–D; Supplementary
Figures S2A, B; Supplementary Figures S5A–E). First, we
confirmed that automation of iPS cell culture did not affect
iPS cell morphology or growth, as the increase in colony size
was comparable for automated and manual cultures throughout
three consecutive passages (Figures 1B,C, Supplementary
Figures S5A–C). Second, we demonstrated that automation of
iPS cell passaging allowed to reproducibly control iPS cell cluster
size by defining the number of resuspension cycles performed by
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the LHU (Supplementary Figures S2A; Supplementary Figures
S5D, E). Third, we verified that automated cultivation
maintained pluripotency of iPS cells, as similar surface

expression level of the pluripotency marker TRA-1-60 was
observed in automated and manual cultures (Figure 1D;
Supplementary Figures S6A, B).

FIGURE 1 | Automated iPS cell culture on MEF feeder. (A) Schematic representation of iPS cell culture on MEF feeder, iPS cell cloning with cell cluster sorter and
iPS cell differentiation through formation of EB (Steps 1, 2 and 3, respectively). (B) Representative phase contrast microscopy images of the same iPS cell colony from
automated culture at day 1, 4 and 7 after passaging. Scale bar: 650 µm. (C) The growth of iPS cell colonies cultured manually (M1, grey bars) or by the LHU (L1-L3, blue
bars) was monitored for three passages and each passage was cultured for 7 days. Bars (±SD) show the averaged fold increase in colony size of four selected
colonies in each experiment (n = 4). Colony size was determined with a custom-made python algorithm (see Supplementary Material S1 and Methods). Fold increase
of colony size was calculated as the ratio of colony size on day 7 relative to day 1. **p < 0.01, ***p < 0.001. (D) Left: Representative histogram plots of TRA-1-60
expression on iPS cells cultured by automated handling (LHU; blue) andmanual handling (Manual; gray). Empty plots show unstained cells, filled plots show stained cells.
Right: TRA-1-60mean fluorescence intensity (MFI) values obtained for iPS cells cultured by automated handing (LHU, blue, n = 3) andmanual handling (Manual, gray, n =
3) over three consecutive passages.
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FIGURE 2 | High throughput automated sorting of iPS cell clusters enables the generation of iPS cell lines without compromising pluripotency. (A) Schematic
representation of experimental design. iPS cells are cultured on MEF feeder in 10 cm dishes until a confluency of 70% is reached. iPS cell colonies are detached by
collagenase IV treatment and sorted by large particle sorter COPAS FP-1000 into a 24 well-plate. (B) Representative gating strategy (top) used to sort iPS cell clusters
and representative image of an iPS cell cluster after sorting (bottom, scale bar: 500 µm). (C) Quantification of sorting efficiency for each sorting method used
(enrichment, purity, or purity—14 ms) based on the number of iPS cell clusters (events) per well in a 24-well plate. Purity method with optimized delay time of 14 ms
resulted in most of the wells containing only one iPS cell cluster (event) allowing clonal expansion of iPS cells. Phase contrast microscopy images on the right show iPS
cell colony morphology 2 days after cluster sorting of one event per well (top) and >1 event per well (bottom). Scale bar: 1 mm. Statistical analysis was performed with
Welch´s t-test comparing the numbers of wells containing one event after sorting with different protocols: enrichment (n = 3), purity (n = 6) or purity with delay of 14 ms (n =
8). * = p< 0.0001. (D) Representative phase contrast microscopy images of iPS cells generated after sorting showing morphology of pluripotent cells after one and three
passages (Left, scale bar: 1 mm). Pluripotency of sorted iPS cells was further confirmed by immunofluorescence staining for the pluripotency surface markers TRA-1-60
and TRA-1-81 and the pluripotency associated transcription factors OCT4 and NANOG. Nuclei are stained with DAPI. n = 1. Scale bar: 100 µm.
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Step 2. iPS cell cloning is readily performed with cell cluster sorter
The establishment of iPS cell lines after reprogramming or

genetic engineering (i.e. by CRISPR-Cas9 technology) relies on
the isolation of individual iPS cell colonies, which develop from a
single cell, thus generating a colony where all cells are clonal and
share the same genetic information (Chen and Pruett-Miller,
2018; Singh, 2019). Frequently, this is accomplished by manually
picking iPS cell colonies under a microscope, a time-consuming
task (e.g., about 24 colonies can be manually picked in
30–45 min) that requires trained personnel and nevertheless
has variable outcomes (Paull et al., 2015). Automation
approaches for identification and isolation of single iPS cell
colonies have been reported but require the complex
integration of microscopic evaluation of iPS cell culture with
an automated mechanical device that performs colony picking
(Haupt et al., 2012; Elanzew et al., 2020). Here, we took advantage
of the user-friendly cell cluster sorter COPAS FP-1000 for the
isolation of clonal iPS cell lines in a bulk approach.

iPS cells were seeded as single cells on MEF feeder at low cell
density and expanded to colonies, and iPS cell colonies were
harvested by collagenase IV treatment. iPS cell clusters were

obtained by gentle mechanical agitation and individual iPS cell
clusters were sorted into 24 well plates, precoated with MEF
feeder layer, based on particle time of flight (TOF) and extinction
coefficient (Figures 2A, B). The sorting efficiency of iPS cell clusters
per well was determined by visual inspection and microscopy
(Figure 2B). We tested different sorting protocols (enrichment or
purity) and optimized sorting parameters (sort delay in purity vs.
purity-14ms), and determined settings that allowed us to achieve
over 98.4 ± 2% of wells containing an individual iPS cell cluster
(Figure 2C). Sorted iPS cell clusters successfully attached on MEF
feeder and generated iPS cell colonies (Figure 2C). Importantly, with
our automated approach 100 iPS cell lines were readily obtained
within 10 min, which outperforms the time-consuming manual iPS
cell colony picking. Additionally, the iPS cell colonies obtained by
cell cluster sorter maintained pluripotency, as assessed by
morphology and immunofluorescence staining for the
pluripotency markers TRA-1-60, TRA-1-81, OCT4 and NANOG
(Figure 2D).

Next, we proceeded to demonstrate that iPS cell clonality is
preserved during sorting. To this end, iPS cell clusters were
labeled with PKH26 (red) or CFSE (green), mixed and then

FIGURE 3 | Enrichment of TRA-1-60 positive iPS cell clusters. (A) Representative gating strategy for sorting iPS cell clusters stained with TRA-1-60 (left). TRA-1-60
positive sorted iPS cell clusters showed homogeneous TRA-1-60 staining by fluorescence microscopy (right). Scale bar: 500 µm. (B) Quality assessment of TRA-1-60
positive and negative iPS cell clusters derived from stable and unstable iPS cell lines after cell cluster sorting. Mixture: Stable and unstable iPS cell cluster were mixed in 1:
1 ratio, stained with TRA-1-60 and subjected to cell cluster sorting based on TRA-1-60 expression. Higher numbers of iPS cell colonies with iPS/ES cell
morphology are observed in TRA-1-60 positive vs. TRA-1-60 negative populations, although not statistically significant (stable, n = 3, p = 0.0874, unstable, n = 3, p =
0.3017, mixture, n = 3, p = 0.3360). Stable and unstable cell lines were defined by their morphology and level of spontaneous differentiation in culture. Representative
images of iPS cell colonies with pluripotent and unstable/differentiated morphology are shown (top and bottom images respectively, scale bar: 500 µm).
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FIGURE 4 | Automated generation and sorting of iPS cell-derived embryonic bodies (EB) for hematopoietic differentiation. (A) Schematic representation of
automated iPS cell hematopoietic differentiation pipeline. In the automated platform, iPS cells are expanded and EB are generated. Size based selection of EB is
performed with the cell cluster sorter. EB formation is performed with an initial suspension culture step in 15% FCS supplemented mesoderm inducingmedium, followed
by an adherent culture step in hematopoietic supporting medium supplemented with SCF, Flt3L, IL-3 and hyper-IL-6. (B) Representative images of EB generated
manually or by automation with the LHU. Scale bar: 1,000 µm. (C,D) Production of hematopoietic cells from EB generated manually (n = 2) or by automation (n = 2) with
the LHU for two iPS cell lines (line 1 and line 2) (C). Representative phase contrast microscopy images of suspension hematopoietic cells produced by EB generated

(Continued )
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subjected to cell cluster sorting. Individual iPS cell clusters
bearing either PKH26 (red) or CFSE (green) color code, but
not both, were obtained and sorted (Supplementary Figure S7A,
B). Thus, our protocol can also be applied to sort iPS cell clusters
labeled with different fluorochromes, a valuable tool to readily
isolate genetically engineered iPS cell lines harboring reporter
genes such as eGFP or tdTomato.

Reprogramming of somatic cells into iPS cells is a complex
process and frequently incompletely reprogrammed iPS cells are
obtained. Such incompletely reprogrammed iPS cells are unstable
and exhibit reduced staining for pluripotency markers (Cahan
and Daley, 2013; Pomeroy et al., 2016). Thus, we combined cell
cluster sorting of iPS cells with TRA-1-60 live-cell staining to
enrich for iPS cells with high expression of this pluripotency
marker. TRA-1-60-positive iPS cell clusters were efficiently
separated from TRA-1-60-negative or -low clusters and
enrichment of TRA-1-60-positive iPS cell clusters was
confirmed by fluorescence microscopy (Figure 3A). We
evaluated this approach with a stable iPS cell line (good iPS
cell morphology and high TRA-1-60 surface expression) and an
unstable iPS cell line (differentiated morphology of iPS cell
colonies and variable TRA-1-60 surface expression). After cell
cluster sorting, higher numbers of iPS cell colonies with
pluripotent morphology were observed in the TRA-1-60-
positive fraction and as expected, higher numbers of iPS cell
colonies with pluripotent morphology were obtained for the
stable iPS cell line (Figure 3B).

Step 3. Automated differentiation of iPS cells into
hematopoietic cells

iPS cells are valuable tools for disease modeling and drug
discovery since they represent an essentially unlimited cell source
and are able to differentiate into virtually any cell type of the
human body (Rowe and Daley, 2019). Frequently, a key step in
iPS cell differentiation towards the desired cell type is the
formation of embryoid bodies (EB), an aggregate of
pluripotent stem cells kept in suspension culture, where the
initial steps of lineage commitment and differentiation occur.
Following EB formation, further differentiation of cells towards a
specific tissue and/or cell type is induced by a defined cocktail of
cytokines and/or differentiation factors (Guo et al., 2020).

Therefore, we applied the same modular preprogramming
approach with the LHU for automation of EB formation
(Figure 4A). No morphological differences were observed
between EB produced by automation or manually from two

iPS cell lines (Figure 4B). EB generated by automation
differentiated towards the three germ layers showing that their
differentiation potential was fully maintained (Supplementary
Figures S8, S9). EB were then further differentiated towards the
hematopoietic lineage and no differences in endothelial/stromal
tissue development or hematopoietic cell production were
observed for manually or automatically processed EB (Figures
4C, D; Supplementary Figure S8). Gene expression profiling of
the hematopoietic cells produced confirmed their hematopoietic
identity. Importantly, unsupervised clustering indicated that
hematopoietic cells cluster by iPS cell line of origin rather
than by the method of cultivation (manually vs. LHU, Figure 4E).

EB size impacts on iPS cell differentiation potential and
efficiency (Messana et al., 2008; Hong et al., 2010; Zeevaert
et al., 2020). Thus, we investigated whether EB size has an
impact in hematopoietic differentiation of iPS cells in our
automated platform. EB were subjected to cell cluster sorting
based on TOF and extinction coefficient using a 2-gate strategy.
Phase contrast microscopy evaluation confirmed efficient size-
based separation of EB with size ranging from 0.65–2.46 ×
105 μm2 in gate 1 (G1) or 3.36–8.35 × 105 μm2 in gate 2 (G2)
(Figures 4F–H). Particles of size below 0.65 × 105 μm2 were
excluded. Further hematopoietic differentiation of G1 and G2
sorted EB showed efficient endothelial/stromal tissue
development and hematopoietic cell production (Figures 4I, J;
Supplementary Figures S10A,B).

Additionally, a novel and innovative approach to control EB
size is to use micro-contact printing (µCP) (ElsafiMabrouk et al.,
2022). iPS cell colony size and hence EB size are controlled by the
size of the vitronectin area printed on the tissue culture plate. To
this end, we adapted µCP EB formation to our automated
platform. Automated culture of iPS cells on µCP vitronectin
arrays yielded iPS cell colonies confined to the vitronectin-coated
area of 600 µm in diameter (Supplementary Figures S11A).
During culture iPS cell colonies started to detach in EB-like
structures after 7 days, with full detachment occurring after
11 days (Supplementary Figures S11A–C).

In summary, we show that our automated platform stands as
an efficient and robust system for iPS cell culture and
differentiation. Cell cluster sorting allowed for analysis and
sorting of iPS cell clusters and establishment of clonal iPS cell
lines from bulk populations. In addition, EB formation is
efficiently automated in our platform and combined with cell
cluster sorting to enrich for EB with specific size. The EB
generated by automation were successfully differentiated

FIGURE 4 |manually or by automation with the LHU (D). Scale bar: 50 µm. (E) RT-qPCR gene expression profile of hematopoietic cells derived from manually (n = 4) or
by automation (n = 3) generated EB, produced from two iPS cell lines (line 1 and line 2) as in (C). Gene expression values were subjected to bidirectional hierarchical
clustering and are shown in heatmap format (red and blue, high and low gene expression, respectively). Hematopoietic cells differentiated from the adherent cell layer
after 3–6 days of culture were used. Expression of the early mesodermal transcription factor Brachyury (T) and the early hematopoietic cytokine receptor Flk1, and a
panel of key hematopoietic transcription factors (RUNX1, GATA1, GATA2, Scl and Pu.1) and the hemoglobins beta, epsilon and zeta are shown. (F–H) Sorting of EB
based on EB size (TOF, time of flight). Representative gating strategy for sorting EB using gate 1 (G1: EBwith area range of 0.65–2.46 × 105 μm2) and gate 2 (G2: EBwith
area range of 3.36–8.35 × 105 μm2) (F). Quantification of sorted EB based on size in gates G1 and G2 (n = 4 for both, *: p = 0.0001) (G). EB size was calculated with
custom-made python algorithm (Supplementary Material S1 and Methods). Representative images of EB sorted in G1 and G2 (H). Scale bar: 500 µm. (I, J) G1 and
G2 sorted EB were subjected to hematopoietic differentiation on gelatin coated culture plates. Representative images of sorted G1 and G2 EB seeded on gelatin-coated
plates for hematopoietic differentiation right after sorting (day 0), after 2 and 14 days of culture (I). Scale bar: 500 µm. Quantification of hematopoietic cells produced from
EB sorted in G1 (dark gray, n = 3) and G2 (light gray, n = 3) (J).
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towards hematopoietic cells with efficiency and quality
indistinguishable from manual processing. Finally, our
automated platform output has high upscaling potential, as
seven 6-well plates can be handled simultaneously by the LHU
and several rounds of automated iPS cell culture and cell cluster
sorting can be performed daily (Supplementary Table S3).

DISCUSSION

Automation of iPS cell generation, culture, genetic
manipulation, and differentiation into cells/tissues of
interest is key to the large scale application of patient and
disease specific iPS cells in disease modeling and drug
screening (Daniszewski et al., 2018; De Masi et al., 2020).
Human iPS cells enable the recapitulation of patient and
disease heterogeneity, which in turn requires a large
number of iPS cell lines to faithfully model a particular
pathology (Ben Jehuda et al., 2018; McTague et al., 2021;
Toledo et al., 2021). In addition, the CRISPR/Cas9
technology stands as a precise, particularly easy and
versatile genetic engineering tool for iPS cells (Hotta and
Yamanaka, 2015), which requires the respective machinery
and workflow for downstream processing. All this asks for the
further development of automated platforms for iPS cell
culture and differentiation.

Here, we report on a user-friendly, modular preprogrammed,
automated platform for iPS cell culture on a feeder-free or MEF
based culture system. We developed a library of preprogrammed
automation steps that can be easily selected and combined by the
user to create customized protocols. This approach allowed us to
use the same platform also for blood cell differentiation.
Importantly, our modular system requires only basic training
to operate the software and almost no programming skills from
the users. Furthermore, our pipeline relies on two main
operational blocks: the liquid handling unit (LHU) and the
cell cluster sorter, thereby reducing establishment and
operational costs. The flexibility of our platform did not
compromise its robustness and sterility, as no contamination
occurred throughout the entire study.

Several studies reported on the automation of iPS cell culture,
addressing automation of iPS cell reprogramming, clonal
isolation, induced clonal stability, and differentiation towards
several tissues (Haupt et al., 2012; Konagaya et al., 2015; Paull
et al., 2015; Coston et al., 2020; Elanzew et al., 2020; Tristan et al.,
2020). Our work contributes to these efforts by providing a novel
approach for the generation and differentiation of iPS cell lines.
By combining our automated iPS cell cultivation platform with a
cell cluster sorting we demonstrate that: 1) clonal iPS cell lines are
readily generated by iPS cell cluster sorting with high efficiency
and without compromising pluripotency, a key requirement for
the generation of a large number of reprogrammed iPS cell lines
or genetically CRISPR/Cas9-engineered iPS cell lines, 2)
fluorescently labeled iPS cells are efficiently sorted as iPS cell
clusters without compromising cell viability and pluripotency
and 3) iPS cell-derived EB are efficiently sorted by size without
compromising EB viability and differentiation potential. Of note,

iPS cell-derived EB are efficiently differentiated towards the
hematopoietic lineage providing material for downstream
studies. We also envision iPS-cell derived organoids to be
generated and selected by our pipeline, a topic that will be
addressed in future studies.

Another attractive approach is the combination of our
automated pipeline for iPS cell culture and EB generation with
bioreactor-based hematopoietic differentiation strategies, which
have shown high yields of functional hematopoietic cells with
therapeutic value (Ackermann et al., 2018). In addition, our
pipeline can also be used to speed-up the clonal selection of
genetically modified iPS cell lines that are further expanded in
high density bioprocessors for downstream applications
(Manstein et al., 2021).

Our study paves the way for the future development of specific
automation protocols aiming the large-scale establishment and
CRISPR/Cas9-mediated genetic engineering of iPS cell lines. This
includes iPS cell differentiation towards desired cells and tissues,
which are most suitable for disease modeling and drug screening
studies.
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