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Proteins are some of the most fascinating and challenging molecules in the universe, and they pose a big challenge for artificial intelligence. The implementation of machine learning/AI in protein science gives rise to a world of knowledge adventures in the workhorse of the cell and proteome homeostasis, which are essential for making life possible. This opens up epistemic horizons thanks to a coupling of human tacit–explicit knowledge with machine learning power, the benefits of which are already tangible, such as important advances in protein structure prediction. Moreover, the driving force behind the protein processes of self-organization, adjustment, and fitness requires a space corresponding to gigabytes of life data in its order of magnitude. There are many tasks such as novel protein design, protein folding pathways, and synthetic metabolic routes, as well as protein-aggregation mechanisms, pathogenesis of protein misfolding and disease, and proteostasis networks that are currently unexplored or unrevealed. In this systematic review and biochemical meta-analysis, we aim to contribute to bridging the gap between what we call binomial artificial intelligence (AI) and protein science (PS), a growing research enterprise with exciting and promising biotechnological and biomedical applications. We undertake our task by exploring “the state of the art” in AI and machine learning (ML) applications to protein science in the scientific literature to address some critical research questions in this domain, including What kind of tasks are already explored by ML approaches to protein sciences? What are the most common ML algorithms and databases used? What is the situational diagnostic of the AI–PS inter-field? What do ML processing steps have in common? We also formulate novel questions such as Is it possible to discover what the rules of protein evolution are with the binomial AI–PS? How do protein folding pathways evolve? What are the rules that dictate the folds? What are the minimal nuclear protein structures? How do protein aggregates form and why do they exhibit different toxicities? What are the structural properties of amyloid proteins? How can we design an effective proteostasis network to deal with misfolded proteins? We are a cross-functional group of scientists from several academic disciplines, and we have conducted the systematic review using a variant of the PICO and PRISMA approaches. The search was carried out in four databases (PubMed, Bireme, OVID, and EBSCO Web of Science), resulting in 144 research articles. After three rounds of quality screening, 93 articles were finally selected for further analysis. A summary of our findings is as follows: regarding AI applications, there are mainly four types: 1) genomics, 2) protein structure and function, 3) protein design and evolution, and 4) drug design. In terms of the ML algorithms and databases used, supervised learning was the most common approach (85%). As for the databases used for the ML models, PDB and UniprotKB/Swissprot were the most common ones (21 and 8%, respectively). Moreover, we identified that approximately 63% of the articles organized their results into three steps, which we labeled pre-process, process, and post-process. A few studies combined data from several databases or created their own databases after the pre-process. Our main finding is that, as of today, there are no research road maps serving as guides to address gaps in our knowledge of the AI–PS binomial. All research efforts to collect, integrate multidimensional data features, and then analyze and validate them are, so far, uncoordinated and scattered throughout the scientific literature without a clear epistemic goal or connection between the studies. Therefore, our main contribution to the scientific literature is to offer a road map to help solve problems in drug design, protein structures, design, and function prediction while also presenting the “state of the art” on research in the AI–PS binomial until February 2021. Thus, we pave the way toward future advances in the synthetic redesign of novel proteins and protein networks and artificial metabolic pathways, learning lessons from nature for the welfare of humankind. Many of the novel proteins and metabolic pathways are currently non-existent in nature, nor are they used in the chemical industry or biomedical field.
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INTRODUCTION
Protein science witnesses the most exciting and demanding revolution of its own field; the magnitude of its genetic–epigenetic—molecular networks, inhibitors, activators, modulators, and metabolite information—is astronomical. It is organized in an open “protein self-organize, adjustment and fitness space”; for example, a protein of 100 amino acids would contain 20100 variants, and a process of searching–finding conformations in a protein of 100 amino acids can adopt ∼1046 conformation and a unique native state, the protein data exceeding many petabytes (1 petabyte is 1 million gigabytes) (Kauffman, 1992).
Therefore, the use of artificial intelligence in protein science is creating new avenues for understanding the ways of organizing and classifying life within its organisms to eventually design, control, and improve this organization. In this respect, protein synthesis is a case in point. Indeed, the discovery of the underlying mechanism of protein synthesis is an inter-field discovery, that is, “a significant achievement of 20th century biology that integrated results from two fields: molecular biology and biochemistry” (Baetu, 2015). More recently, the field of protein science is, in turn, another inter-field enterprise, this time between molecular biology and computer science, or better said, between a cross-functional team of researchers (biochemists, protein scientists, protein engineers, system biology scientists, bioinformatics, between others). Nowadays, it is possible to classify, share, and use a significant number of structural biology databases helping researchers throughout the world. Once the mechanism of DNA for protein synthesis is deduced, it will then be possible to replicate it via computational strategies through artificial intelligence (AI) and machine learning (ML) algorithms that can provide important information such as pattern recognition, nearest neighbors, vector profiles, back propagation, among others. AI has been used to exploit this novel knowledge to predict, design, classify, and evolve known proteins with improved and enhanced properties and applications in protein science (Paladino et al., 2017; Wardah et al., 2019;Cheng et al., 2008; Bernardes and Pedreira, 2013), which, in turn, makes its way to solve complex problems in the “fourth industrial revolution” and open new areas of protein research, growing at a very fast speed.
The techniques of machine learning are a subfield of AI, which has become popular due to the linear and non-linear processed data and the large amount of available combinatorial spaces. As a result, sophisticated algorithms have emerged, promoting the use of neural networks (Gainza et al., 2016) However, in spite of the large amount of research done in protein science, as far as we know, there are neither systematic reviews nor any biochemical meta-analysis in the scientific literature informing, illuminating, and guiding researchers on the best available ML techniques for particular tasks in protein science; albeit there have been recent reviews such as the work of AlQuraishi (2021), Dara et al. (2021), and Hie and Yang (2022), which prove that this inter-field is on evolution. By a biochemical meta-analysis, we mean an analysis resulting from two processes: identification and prediction. The former consists of identifying AI applications into the protein field where we classify and identify active and allosteric sites, molecular signatures, and molecular scaffolding not yet described in nature.
Each structural signature, pattern, or profile constitutes a singular part of the whole “lego-structure-kit” that is the protein space that includes the catalytic task space and shape space, which Kauffman (1992) defines as an abstract representation or mapping of all shapes and chemical reactions that can be catalyzed onto a space of task. The latter process is an analysis of the resulting predictions of structures, molecular signatures, regulatory sites, and ligand sites. Both processes are related to each other in the sense that the proteins in the identification process are searching targets of the 3D-structure for the prediction process that predicts the protein conformation multiple times from a template family or using model-free approach. The biochemical meta-analysis includes formulating the research question, searching and classifying protein tasks in the selected studies, gathering AI–PS information from the studies, evaluating the quality of the studies, analyzing and classifying the outcomes of studies, building up tables and figures for the interpretation of evidence, and presenting the results.
This study puts forward the use of ML classes and methods to address complex problems in protein science. Our point of departure is the state of the art of the AI–PS binomial; by binomial, we mean a biological name consisting of two terms that are partners in computational science as well as in biomedical or biotechnological science as a “two-feet principle” in order to understand, enhance, and control protein science development from an artificial intelligence perspective. Our cross-functional team aims at accelerating the steps of translating the basic scientific knowledge from protein science laboratories into AI applications. Here, we report a comprehensive, balanced systematic review for the literature in the inter-field and a biochemical meta-analysis, which includes a classification of screened articles: 1) by the ML techniques, they use and narrowing down the subareas, 2) by the classes, methods, algorithms, prediction type and programming language, 3) by some protein science queries, 4) by protein science applications, and 5) by protein science problems. Moreover, we present the main contributions of AI in several tasks, as well as a general outline of the processes that are carried out throughout the construction of the models and their applications. We outline a discussion on the best practices of validation, cross-validation, and individual control of testing ML models in order to assess the role that they play in the progress of ML techniques, integrating several data types and developing novel interpretations of computational methodology, thus enabling a wider range of protein’s-universe impacts. Finally, we provide future direction for machine learning approaches in the design of novel proteins, metabolic pathways, and synthetic redesign of protein networks.
MATERIALS AND METHODS
A systematic review of the scientific literature found in the period (until February 2021) was carried out for this study (Figures 1–3) following the PIO (participants/intervention/outcome) approach and according to PRISMA declaration (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Supplementary. No ethical approval or letter of individual consent was required for this research.
[image: Figure 1]FIGURE 1 | A representative decision diagram showing the articles retrieved using the PIO strategy in the PubMed database. P (participants): Protein, Protein Design, Scaffold, Rational protein design, Biocatalysts. I (intervention): Networks: Neural networks, Recurrent neural networks, Networks LSTM/GRU, Convolutional neural network, Deep belief networks, Deep stacking networks C5.0; Genetic algorithms; Artificial intelligence; Decision trees; Classification; Prediction C&A; Software: Weka, RapidMiner, IBM Modeler; Programming Languages: Python, Java, OpenGL, C++ Shell; Development platform: Caffe Deep Learning, TensorFlow, IBM Distributed Deep Learning (DDL); Paradigm: Supervised Learning, Unsupervised learning, Reinforced learning, new function.
[image: Figure 2]FIGURE 2 | Flowchart of article scaffold. Representation of the process throughout the entire article. The biochemical meta-analysis consists of three main steps: the systematic review, the road map design, and the road map alignment. In the systematic review, the research question is formulated in order to set the basis and objectives of the project. It also includes the observation and synthesis of information obtained from a variety of articles and the correlation made between them. The latter followed by the quality evaluation of the collected information. The road map design consists of analyzing the outcome of the studies and classifying them, thus being able to interpret the information recollected and represent it through the usage of figures and tables. This aims to include a wide range of the state of the art or artificial intelligence. Finally, the road map alignment includes the final discussion and further changes for our understanding of protein science using AI and the resolution of possible protein science application targets.
[image: Figure 3]FIGURE 3 | Flowchart of the review process. A PRISMA flowchart of the systematic review on AI for protein sciences.
PIO Strategy
One of the main objectives is to discuss new information in the latest findings about the functions of AI in protein design. Furthermore, this review and meta-analysis intend to include a wide scope of the status of artificial intelligence in protein science. The PIO (participants, intervention, and outcome) strategy was used to systematically search all databases and was the methodology to address the following research questions: What is the state of art in the use of artificial intelligence in the protein science field? What is the use of neural networks in the rational design of proteins? Which neural networks are used in the rational design of proteins? Protein design is currently considered a challenge. As artificial intelligence makes progress, this is presented as a solution to various issues toward addressing how this new branch can be used for the creation of high precision models in protein design. Following the PIO strategy, the next terms were used for the research.
Participants: articles about proteins and their MeSH terms in general were considered for inclusion; we gave special consideration to protein design and their related terms such as scaffold (as a main structure or template), rational design, and biocatalysts (as a main task target for protein evolution and design in the chemical–biotechnological industry and biomedical field):
• protein
• protein design
• scaffold
• rational protein design
• biocatalysts
Intervention: studies with any types of algorithms, software, programming language, platform, or paradigm using alone or in combination were selected.
Types of algorithms:
• neural networks
• recurrent neural networks
• network LSTM/GRU
• convolutional neural network
• deep belief networks
• deep stacking networks C5.0
• genetic algorithms
• artificial intelligence
• decision trees
• classification
• prediction C&A
Software:
• Weka
• RapidMiner
• IBM Modeler
Programming languages:
• Python
• Java
• OpenGL
• C++
• Shell
Development platform:
• Caffe
• DeepLearning4j
• TensorFlow
• IBM distributed deep learning (DDL)
Paradigm:
• supervised learning
• unsupervised learning
• reinforced learning
Outcomes:
• novel proteins
• protein structure prediction
• novel biocatalysts
• new fold
• evolved protein
• new function
Databases and Searches
The electronic databases used were PubMed, Bireme, EBSCO, and OVID. The concepts with similarity were searched with “OR,” and within the groups of each element of the PIO research, they were searched with the word “AND.” Next, a diagram was constructed in order to show the history of searches and concepts used (figure tree diagram). This figure describes in full detail the searching strategy in the PubMed database as well as all keywords used. Moreover, it includes the number of resulting articles. Subsequently, the results obtained from these searches were recorded. The references themselves were then downloaded into the Mendeley database. All references were taken, organized, and saved in Mendeley, eliminating duplicates for the final result.
Biochemical Meta-analysis
The biochemical meta-analysis included formulating the research question, searching and classifying protein tasks in the 144 selected studies, gathering AI–PS information from the 144 studies, evaluating the quality of the studies (as described in the systematic review, see flowchart of PRISMA), analyzing and classifying the intervention and outcome of studies (networks, software, programming languages, development platforms, paradigms, novel proteins, novel scaffold, new fold, etc.), and building up tables and figures for the interpretation of evidence and presenting the results.
By a biochemical meta-analysis, we mean an analysis resulting from two processes: identification and prediction. The former consists of identifying AI applications into the protein field: classify and identify active and allosteric sites, molecular signatures, and molecular scaffolding not yet described in nature, each of which constitute a single part of a grand-type Lego structure. The latter is an analysis of resulting predictions: structures, molecular signatures, regulatory and ligand sites, etc.
Biochemical Meta-Analysis and Designing the Road Map
PRELIMINARY: we determined the formulation of the problem and objectives of the research within the figure, which includes the treatment of the data and their applications. Note: the information was acquired from a list of various databases from which data were analyzed.
DATA COLLECTION: primary data: observation, research and review of articles. Secondary data: data of the reviewed articles and information shared among keywords.
DATA PRE-PROCESSING (ETL and training): identification of filtered data, curated data, and features implemented; machine learning input relationship with protein science servers.
DATA PROCESSING (training data and feature extraction): observation of input data and data encoding format. Record of machine learning algorithms and methods. Recognition of key information for processing data within databases.
DATA POST-PROCESSING: observation of post-processing treatment, rule quality processing, filtering, combination, or unification of information.
MEASURE: explanation of the process, the values of different metrics for the quantification of magnitudes, and the contribution for the completion within the process of information.
ANALYZE: identify the application of machine learning algorithm in which the input of the dataset to process data format, training set, and 3D structures.
IMPROVE: determine the set to whom these new forms will be applied in models of the researched data and contribute to future implementations in protein science.
Concerning the computational aspects as to how articles were classified, three initial divisions were made and are displayed in Table 1: Pre-process, process, and post-process, each of which contain, in turn, the following items:
TABLE 1 | An overview of the included articles on study and algorithm features based in their characteristics, strengths, limitations, and measure of precision.
[image: Table 1]pre-process
database, pretreatment, and input
process
machine learning paradigm and input, algorithm and development software, three aspects of the neural network used (characteristics, strengths, and limitations) and output.
post-process
input and web server when applied.
Most of the research reported in these articles performs a pretreatment over the protein database used, that is, processes of randomization and training, in order to leave the data prepared for the computational process itself, for when the algorithm is to be executed on a software platform and within a particular machine learning paradigm (mostly supervised, unsupervised, and deep learning, as shown in Figure 4). We also reported special characteristics as well as strengths and limitations of the neural networks used. Finally, part of the post-process, when applied, concerns the web server where research results are stored. Moreover, some of these aspects are also registered in Tables 2–6 as well as some others (programming language and software license type).
[image: Figure 4]FIGURE 4 | Machine Learning paradigms: superviser learning, unsupervised learning, reinforcement learning.
TABLE 2 | An overview of the protein and drug design articles with the quality assessment.
[image: Table 2]TABLE 3 | An overview of the protein function prediction, function prediction, and novel function articles with the quality assessment.
[image: Table 3]TABLE 4 | An overview of the fold id, physicochemical properties, and protein classification articles with the quality assessment.
[image: Table 4]TABLE 5 | An overview of the protein structure prediction articles with the quality assessment.
[image: Table 5]TABLE 6 | An overview of the protein contact map prediction, protein-binding prediction, protein site prediction, and genomics articles with the quality assessment.
[image: Table 6]RESULTS
Article Scaffolding
This article is arranged as follows (Figure 2): first, we provide a representation of the process in designing, preparing, and describing of the guideline throughout the article. Secondly, we review the presented formulation of the research question toward the determined problem formulation and objectives of the research, including the treatment of the data and the applications of it. Thirdly, the article processes the observation, research, and review of a series of articles to further study the data obtained and review similarities. Furthermore, the gathering of AI–PS information, within this processing of the identification of filtered data, curated data and features implemented, the observation of input data, data encoding format, recording of machine learning algorithms and methods, as so the post-processing treatment, quality rule processing, filtering, combination, or unification of information, which passes into the interpretation of the information recollected, and representation of it by the usage of figures and tables, portrays the results, which are focused on the latest findings of AI applications in the field of protein science as well as the usage of specific algorithms for protein design. Therefore, this aims to include a wide-scope range of the state of the art of artificial intelligence within protein science; this leads us to a latter analysis and discussion regarding the identification and prediction of AI applications into the protein field, by classification and identification of main protein structures, and other components not found or described yet in nature, and the resolution of possible protein prediction structures and other components of them are plausible outcomes of future research.
Toward an Innovative Cross-Functional AI–PS Binomial Inter-field
This systematic review and meta-analysis are focused on the latest findings of AI applications to the field of protein science as well as specific algorithms used for protein design. Furthermore, it aims to include a wide scope of the state of the art of artificial intelligence in protein science. PIO is the methodology used to address the following research question: What is the state of the art in the use of artificial intelligence in the protein science field? Figure 1 shows the total number of articles retrieved using the PIO strategy in the PubMed database.
The systematic review process began with 541 references obtained from five electronic databases: 42 were from PubMed, 74 were from Ebsco, 48 were from Bireme, 38 were from OVID, and 339 were from Web of Science. In the first screening, 403 articles were removed: 250 articles with a double reference; 2 not written in Spanish or English; 149 whose topic was irrelevant to the review; and two newspapers, letters, or reviews. This election process left 138 references, and manually we added 6, thus getting a total of 144 articles for the review (Figure 3).
A second screening (eligibility) was performed using the following set of quality criteria:
1. Clear research questions and objectives.
2. Definition of the measured concepts.
3. Reliability and feasibility of the instruments to be measured.
4. Detailed description of the method.
5. Scaffolding and enhanced protein information.
6. Characteristics of scaffolding and its realization.
7. Appropriate system and learning approach.
8. Journal impact.
A total of 93 articles were included for further analysis, and 51 studies were removed based on quality criteria.
Machine Learning Approach to Protein Science
Proteins are influenced by epigenetic phenomena (cellular stress, aging, etc.) because of their multiple structure-folding-function within protein science (PS), phenomena that can be challenged through the use of artificial intelligence (AI).There are several questions within this interdisciplinary approach such as How do proteins evolve? How do proteins fold and get their tridimensional structure? What are their networks within proteins? Given the astronomical numbers of possibilities for protein structures, configurations, and functions that require the use of AI as a tool to fully understand protein behavior.
A total of 144 articles were assessed for quality (Tables 2–6) resulting in 93 articles (Table 1), those articles that were greater or equal to 75 in the quality percentage qualifications were kept for the final biochemical meta-analysis. For this review and meta-analysis, we identified five main applications of AI into PS (Tables 2–6 and Figures 4–6)
I. Protein design and drug design (Table 2)
a) De novo protein design.
b) Novel biocatalyst design.
c) Novel function and ligand interaction.
d) Evolution of non-existent proteins in nature.
e) Chemical structure and properties.
f) Drug–drug interaction.
g) Drug–receptor interaction.
h) Drug effects.
II. Protein function, function prediction, and novel function (Table 3)
a) Protein–ligand interactions.
b) Hydroxylation site prediction.
c) Prediction of the local properties in proteins.
d) Enzymatic function prediction.
e) Predicting protein–protein interactions.
f) Function prediction.
g) Molecular property prediction.
III. Fold ID, physicochemical properties, and protein classification (Table 4)
a) Fold Id.
b) Glycation site predictor.
c) Phosphorylation site predictor.
d) Protein–protein interaction.
e) Intrinsically disordered protein prediction.
IV. Protein structure prediction (Table 5)
a) Protein structure prediction: primary, secondary, and 3D-structures; domains, active sites, allosteric sites, and structural feature prediction.
b) Protein structure classification: folds, structural families, intrinsically disorder proteins, etc.
c) Protein–protein interactions and protein networks.
d) Protein–ligand interactions: substrates, inhibitors, activators, ions, etc.
V. Protein contact map prediction, protein-binding prediction, protein site prediction, and genomics (Table 6)
1) Contact map prediction.
2) Protein sub-mitochondrial site prediction.
3) Genomics.
[image: Figure 5]FIGURE 5 | Machine learning and artificial intelligence applications to protein sciences. Information includes the number of studies, applications, databases, methods, and validation used.
[image: Figure 6]FIGURE 6 | Representation of the specific case for protein structure prediction in the supervised learning framework. Revealing the most common flow followed by the studies analyzed. From extraction, training data, feature extraction procedures and data continuity. Including the PDB database, the most common supervised algorithms, SVM, SVR, 3DCNN.
The 40% (57/144) of the protein studies by AI applications were the following ones: myoglobin, silk protein, amyloid proteins, Rab family, cathepsin S family, kinases family, K proteinase, barnase, apolipoprotein family, protein DND_4HB, and antimicrobial peptides. Studies in enzymes should be pointed out, oxidoreductases, transferases, hydrolases, lyases, isomerases, ligases, NOS (nitric oxide synthase), lysozyme, which are included in the columns of the initial scaffold (Tables 2–6). These proteins are very useful in the industry as well as in the biomedical fields. With respect to the type of organisms, the more explored are the following ones: E. coli, Drosophila, Caenorhabditis elegans, Homo sapiens, S. cerevisiae yeast, Mus musculus (mouse), Geobacillus, and Coronavirus.
Tables 2–6 present the lists of the most commonly used databases in AI applications on PS. Of all the studies reviewed, the single use of main databases and datasets used is as follows:
1) PDB (30/144) 21%.
2) Author’s dataset construction (21/144)15%.
3) UniProt either UniProtKB or UniProtKB/SwissProt (12/144)8%.
4) CASP (critical assessment of protein structure prediction) database (5/144)3%.
5) SCOP (structural classification of proteins) (4/144)3%.
6) N/A, GenBank (4/144) 3%.
7) Protherm (3/144) 2%.
8) BioLip (biologically relevant ligand–protein) (2/144) 1%.
9) PLMD (protein lysine modifications database) (2/144) 1%.
10) And each of the next databases ChEMBL, eSol, GEO, DSSP, Drugbank, BioCreative, Transfac, STRING, BRENDA, SPINE, PISCES, NCBI, D3R Grand challenge 3, and KEGG with a (1/144)1%.
From the studies reviewed, (23/144), 16% use two databases. Of these, the latter (11/23) 48% uses a combination of the PDB and HSPP, PISCES, ProTherm, MOAD, SPx dataset, ChEMBL, DisProt, and UniProt/SwissProt; (4/23)17% use a combination of the GO database with UniProt or STRING; (4/23)17% uses a combination of the UniProt/SwissProt database with ENZYME, DIP, TrEMBL, and CAFA database; and a (2/23)9% combination among DIP, HPRD, SKEMPI database, and SPx dataset. The rest (24/144)17% belongs to a combination of three or more databases with PDB, UniProt, among others.
Moreover, several authors (Shamim et al., 2007; Simha et al., 2015; Yang et al., 2015; Li et al., 2018; Torng and Altman, 2019) focused on using previously constructed datasets, while others chose the creation of their own, based on their own design and outcome, for example, NOS, PPI’s, SPX, DBMLoc, D-B, and Extended D-B (Tables 2–6 and Figure 5).
The following tables show the principal protein categories that were found in this study. Table 2 shows the result of each of the 38 articles that were considered in the protein and drug design category.
Table 3 shows 26 studies that are related to protein function prediction and 6 studies related to function prediction and novel function.
Table 4 shows 19 studies that are related to fold ID and physicochemical properties and 8 studies related to protein classification.
Table 5 shows 26 studies that are related to protein structure prediction.
Table 6 shows five studies for protein contact map prediction, five studies for protein-binding prediction, nine studies for protein site prediction, and two studies for genomics.
Table 1 shows the overview of the extracted information of the selected studies based on the quality criteria.
Machine Learning Paradigms and AI Algorithm Roles
The most applied approach we found as a result of our review and meta-analysis corresponds to supervised learning (123/144)85%, which focuses on classification algorithms (CNN, NB, KNN, RF, SVM, etc.) and regression algorithms (SVR, RFR, DT, ANN, DNN, etc.) that are used for a variety of tasks: detection of functional sites, hydroxylation sites, amino acid composition, DNA expression sequences, protein interaction, biomarker finding, protein design, drug design, 3D structure prediction, and protein folding (Tables 2–6 and Figures 4, 5). Within supervised machine learning (123), we found that classification techniques overrule, by far, regression ones (31/123) (for reference, see Tables 2–6). On a closer look, we see that these methods are generally very good at prediction tasks, although complexity may be significantly increased by the execution time required, something that is often reported as a drawback of this method (AlQuraishi, 2021).
In contrast to supervised learning, it is only (17/144)12% focusing on unsupervised learning, using clustering algorithms (CNN, FFNN, LSDR, DL, HMM, MRF, NN, etc.) for various purposes, such as protein solubility prediction, protein prediction of new functions, discovery of DNA motifs, detection of protein structures, and prediction of the nuclear Overhauser effect at low energies. Of the eight articles using this approach, two of them report an improvement in performance as an advantage, one of them in time reduction (Frasca et al., 2018) and the other one in the acceleration of automated protein function prediction methods in general (Makrodimitris et al., 2019). At the same time, however, a disadvantage reported is that time execution may be increased, a fact that should not surprise us, for it is well known that unsupervised learning algorithms are characterized by being computationally very complex methods (Table 1 and Figures 4–7).
On the other hand, supervised machine learning is used just a little more than deep learning techniques. Moreover, it is interesting to note that roughly (77/144)53% of the deep learning articles combine two clustering algorithms: CNN (47/77)61% and LSTM (16/77)21%. Of course, some articles put forward optimization procedures in an algorithmic genetic fashion (Figures 4–7).
Regarding hybrid algorithms using neural networks, we found that all 11 articles explicitly stating their use of hybrid algorithms belong to the deep learning paradigm, combining CNN and LSTM or RNN and CNN. One of them (Almagro Armenteros et al., 2017) goes even further; in that, it uses a combination of these two neural networks to predict protein subcellular localization and then an attention mechanism to identify protein regions important for subcellular localization (Table 1 and Figures 4–6).
It is interesting to note as well that nine articles are used for prediction (glycation product prediction (Chen et al., 2019), protein secondary structure (Guo et al., 2019), prediction of metal binding in proteins (Haberal and Ogul, 2019), compound–protein affinity prediction (Karimi et al., 2019), prediction of protein structural features (Klausen et al., 2019), protein contact map prediction (Hanson et al., 2018), prediction of protein interactions (Huang et al., 2018), predicting hydroxylation sites (Long et al., 2018), and predicting protein subcellular localization (Almagro Armenteros et al., 2017)), of which two perform prediction from original sequences (Almagro Armenteros et al., 2017;Li et al., 2018).
Moreover, one of them highlights that one of its applications is for the design of new drugs and one of them performs this task (Karimi et al., 2019).
It is tempting to put forward the claim that hybrid algorithms in deep learning are very good for prediction tasks as well as for applications in the new drug design. It is noteworthy to mention that these articles belong to the last 3 years of our revision, something that suggests that there is a tendency for the use of hybrid methods in the near future (Table 1).
AI Training, Validation, and Performance
Validation process allows obtaining a quantitative measure of the models’ efficiency. In this systematic review, several methodologies were used to train and validate in the machine and deep learning proposed by means of hold-out and k-fold cross-validation; The most utilized was the k-fold cross-validation, each one with a different folding proposal, e.g., 2-, 3-, 5-, and 10-fold (Szalkai and Grolmusz, 2018a), trained and validated its algorithm utilizing two validations: 3- and 5-fold cross-validations. Several articles used a graphics processing unit (GPU) that was employed to accelerate the deep learning training and validation process. The most utilized AI algorithm in these articles was CNN, with a 33% occurrence, followed by DNN with 9%, both programmed with Python. The performance of the AI algorithms for protein design was evaluated using parameters such as sensitivity, specificity, true-positive rate, false-positive rate, accuracy, recall, precision, F1-score, area under the curve (AUC), receiver operating characteristic (ROC) curve, and Matthew’s correlation coefficient (MCC). For the case of the hold-out validation, a percentage of the data that is taken and that percentage is randomly removed from the dataset is selected. This methodology, in particular, is computationally very simple; however, it suffers from a high variance because it is not known that data will end up in the test set or in the training one and of the importance that these data might have. In hold-out validation, datasets, which for this review are the databases of proteins, genes, peptides, etc. (see Tables 2–6 and Figures 4–6), are randomly divided into two partitions with different proportions (50, 70, or 75% training—50, 30, or 25% validation), which are mutually exclusive. The first part of the database is used to feed the input vectors of the methods and train the machine or deep learning algorithms, while the rest is used to evaluate and validate the results obtained with their proposed algorithms. In contrast, with this type of validation technique, hold-out takes a long time for computational processing, especially for large datasets, in particular case, the large protein databases. As a result of our meta-analysis, we found the use of the hold-out methodology to train and validate their AI proposals, as CNN, RNN, LSTM, and FFNN (Tables 1–6 and Figures 4–6) in the prediction of expressions, interactions, and subcellular localization of proteins and also in the prediction of the peptide binding.
Another technique for evaluating the performance of AI methods, particularly for large databases such as protein design, is cross-validation. Cross-validation is a technique used to (generally) obtain the ability of a model to fit an unknown dataset given a collected dataset. In this context, the k-fold cross-validation is an iterative process that consists of dividing the dataset randomly into k groups of approximately the same size. In this sense, although not all possible combinations of sets are examined, an estimate of the average accuracy more than acceptable can be obtained by training the model only k-fold. The first set is used to train the AI models and the other is used to test and validate them, doing this process k times using a different group for validation in the iteration. Although cross-validation is computationally an intensive method of training and validation, its advantages are the reduction of computational time because the process is repeated k times, where all the data are tested once and used for training, maintaining a reduced variance and bias. Of the total 93 articles in this review, 41 of them (47%) used the following cross-validation schemes: leave-one-out, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 10-fold, and 20-fold cross-validations. For most of them, the use of 5-fold and 10-fold cross-validations to analyze the performance of their AI proposals predominated, with 16 and 17 articles, respectively. This method was preferred for the evaluation to the performance of CNN and SVM algorithms, with databases such as PBD, ProTherm, UniProt, GO, and ChEMBL. Additionally, in seven articles (17%), they carried out various types of cross-validations to obtain more information on the performance of their proposals. Another variant to evaluate performance was observed in three articles (7%), which combined the use of both hold-out and cross-validation methodologies in their proposals, which provide them more effective comparison of results in terms of validation schemes.
In contrast, in 22 articles of this review, 25% did not mention neither their training methods nor the validation performed to evaluate the performance of their algorithms used. Likewise, 7% of the articles evaluated their methods using various types of cross-validations at the same time to obtain more information on the performance of their proposals, e.g., 4-fold, 6-fold, 8-fold, and 1-fold, or 3-fold, 5-fold, 7-fold, and 1-fold, or 10- and 20-fold, for databases of PDB, UniProt, GO, ChEMBL, ProTherm, PISCES, GenBank, STRING, and new databases as NOS, SPx, D-B, and Ext D-B.
In general, the performance of all proposed AI algorithms was evaluated using several parameters such as sensitivity, specificity, true-positive rate, false-positive rate, accuracy, recall, precision, root-mean-square error (RMSE), R2, F1-score, area under the curve (AUC), receiver operating characteristic (ROC) curve, and Matthew’s correlation coefficient (MCC) (Table 1).
Of the 87 articles selected as finalists, we have the following: 32 use one single algorithm and 55 use a combination of two or three algorithms sequentially. In machine learning, we found 30; in deep learning, we found 20 applying machine learning (SVM); 11 deep learning (RNN); and 6 using optimization through genetic algorithms.
Regarding the programming language in which each study was developed, we found 47 articles do not specify what language they are based on, 75 articles are based on the Python language, of which 57 are based entirely on Python and 18 are in combination with other software; see Tables 2–6.
Twelve articles are based on the C++ language of which only three are based exclusively on that language and nine in combination with Python, with C, R, and CUDA and C++ language in the Linux environment.
Other nine articles are based on MATLAB of which only four are based exclusively on that language and five in combination in conjunction with Python and Bioinformatics and with Python and C++.
Six articles are based on the C language of which three are based exclusively on that language and three in combination in conjunction with C++, R, and CUDA, with Java and Python and one with Linux and Windows environment.
Finally, seven articles are based on the Java language of which two are written exclusively in this language and five in combination with TensorFlow and with C and Python.
Regarding software licenses, 90 articles were found to be Open Source. An article is licensed by Neural Power version 2.5. One article specifies an open license type belonging to IBM and GNU, respectively. Unfortunately, 45 items did not specify the type of license they own.
Road Map of Artificial Intelligence in Protein Science
The goal of this analysis is to provide a road map to apply machine learning and AI techniques in protein science. One of the results of our meta-analysis, for example, in protein structure prediction, is shown in Figure 6 in which we can observe the two main strategies for protein structure prediction. In Figure 2, we show the scaffold-template-based modeling that is the most commonly used for the scientist in this field with very good results. However, recently Senior and collaborators using a free modeling approach successfully developed an AlphaFold algorithm using a deep neural network. They generated an outstanding accuracy of the 3D structure of a protein with an unknown fold in CASP14 (Senior et al., 2020). This led to an unsolved big question about the importance of the starting point in protein structure prediction, in particular, and in protein science, in general.
The road map of this research is an evolving and a dynamic process (Figure 7). It begins by obtaining information from a list of several databases, followed by a pre-treatment step over the extracted data, including those steps for eliminating redundancies within sequences, structure threshold based on RMSD values, and the like. Further steps contribute to the required pre-processing to complete the reporting process, and then proceed to the data process of the information itself, which includes the input data and the application of the machine learning algorithm, in which the input data are set to be processed into FASTA sequences, training sets, or 3D structures, depending on the function of algorithm in turn. The algorithms used fall into four categories: supervised learning, unsupervised learning, deep learning, and optimization, where each of these categories include a set of their own subparts, which are then combined and configured to predict new ways to model previous data and contribute to future implementations in protein science. The post-processing of data and the support of the new data acquired are made up of models and sequences that were loaded on the platforms to servers such as “DeepUbi, DeepSol, COSNet, Gnina, among others”, in which these servers are used for the storage or implementation of their respective methods. Figure 7 shows that more than half of the reported research completed the three pre-process, process and post-process steps we set forward, so this sequence may be applied to protein science including protein design, classification, physicochemical properties, functionalities, folding properties, and new functions such as homology prediction, domain prediction, subcellular localization, drug design, sensitivity, and other enhancers that can provide new catalysts and new functions, all of which provide any future development for biomolecular enhancement within protein science through machine learning. Model development is intrinsically related to the protein application to be developed. Data extraction varies depending on the architecture of the model to be developed since the data become more complex as the transformation, training, and feature extraction process unfold. The extraction ranges from obtaining the amino acid sequence, secondary structure to the 3D atomic model, using the atomic coordinates. Transforming data emphasizes on performing an adequate filtering for the use of the information for the training of the model, which leads to the feature extraction for the use of machine learning model and finally generating a final output. The process road map includes the fusion of these different applied AI learnings, models, and classifications into a connected deep learning layer that will be included in future research and test datasets to cover the terms of AI science, proteins, and their applications.
[image: Figure 7]FIGURE 7 | Representation of the whole AI process based on the selected protein application. The process amalgams several steps: protein application (protein design, protein classification, protein prediction, etc.), extraction (selection of database), transform (code development and filtering), and load (input of the training data) (ETL) for the training data and the feature extraction procedure is the building of the machine learning network. Outcome step and a proposal server application.
FINAL DISCUSSION AND FURTHER CHALLENGES FOR OUR UNDERSTANDING OF PROTEIN SCIENCE USING AI
Novelties and Future Direction in the Binomial PS-IA Research
The protein science field has great expectations on ML methods as indispensable tools for the biomedical sciences as well as for the chemical and biotechnology industry, for applied research is moving toward synthetic organisms with artificial metabolic networks, regulators, and so on, creating synthetic molecular factories. The binomial PS-IA research is evolving and strengthening, as shown in the Results section (Tables 1–6 and Figures 4–7). Our research reveals that road maps are most needed to solve complex problems in PS, guiding the exploration into the protein universe. As depicted in Table 1, ML techniques, which are used nowadays, are tailored to the expected results; Tables 1–6 display an array of networks of several solving problem methods, hence showing that guidance is needed in the form of road maps.
It is important to emphasize that in order to design a model algorithm bank functioning as a kit-tool, it is essential to understand the source from which the data are obtained and then used to train each model. The studies analyzed solve classification, regression, and optimization problems. As depicted in Table 1, models providing a solution make use of probabilistic inference, functions, activation functions, reduction of the hierarchical order, and logical inference. These results support the fact that machine learning models are heterogeneous, time demanding to design, and correctly evaluate complex models—since the result may not always be as expected or the method may not be carried out successfully. As illustrated in Table 3, there are some physical limitations blocking the full execution of the various models or algorithms, for example, when there is no appropriate computational equipment. Not surprisingly, several authors report that executing a model requires a high demand on execution time, computational power, extensive time to correctly evaluate the model, large memory consumption, and optimization toward GPUs (Frasca et al., 2018; Almagro Armenteros et al., 2017; Yeh et al., 2018; Jiménez et al., 2017; Lin et al., 2010). Another crucial aspect mentioned in Table 1 is the lack of input data to train the model, something that influences the model’s precision and accuracy (Pagès et al., 2019; Cuperus et al., 2017; Folkman et al., 2014; Qi et al., 2012). Moreover, there are also limitations in model construction, such as errors in the training process, manual intervention of data, overadjustment of the model, and an inadequate algorithm construction. In the studies analyzed, there are cases in which there is no description regarding the performance of the comprehensive models, generating gaps in the understanding of the behavior of the algorithms or models, like whether they are deterministic (Long et al., 2018; Ragoza et al., 2017; Makrodimitris et al., 2019). As stated in the ML and AI Algorithm section, supervised learning is the most used method, something that highlights the use of classification algorithms. Moreover, there seems to be a current trend to solve problems in protein science using techniques that require a cross-functional group of scientists, something that, in turn, highlights the fact that there is plenty of unexplored terrain in the use of unsupervised machine learning.
An interesting finding is the implementation of free code and software, as shown in the AI Training, Validation, and Performance section. Our results exhibit a tendency to create models with transparency, which means that every study implemented in a public server has access to all new models created. Another crucial result is the one depicted in the Road Map of Artificial Intelligence in Protein Science section, which is an abstraction that reduces the design of an artificial intelligence model to be used in the resolution of a specific problem in protein science. The whole process follows three steps directed to build a competent model; these steps are 1) the procedure to obtain raw data and which type of processing should be followed for the model to be adequate, 2) the type of algorithm that may be used depending on the complexity of the problem, and finally, 3) the interpretation of results.
Overall, AI displays a window of opportunities to solve complex problems in PS because of its potential in finding patterns and correlating information that requires the integration of protein data exceeding many petabytes. However, we are still far away from solving all the protein tasks computationally. As a result of our biochemical meta-analysis, we showed that AI applications are strongly directed to function identification and protein classification (Tables 1–6), for machine learning models and methods are heterogeneous and do not always draw a clear line as to whether a process should go in a certain sequence (Table 1 and Figures 4–7). It should also be noted that there is no optimal method, which is why applications have different purposes and conditions, suggesting that algorithms must be customized based on the expected outcome or query (Table 1).
The evaluation accuracy horizon is an open epistemic horizon, as shown in Table 1: the metrics for ML methods used in several applications are limited; there are no reported research articles using random forest, in which the cross-validation is unnecessary. In summary, none of the studies reported explicitly use robustly validated methods.
We end by commenting on a key problem in the binomial AI–PS. As well known, it is not possible to work directly with the protein sequences. To tackle this challenge, several studies address this limitation by representing the sequence of a protein as an input to the deep learning model (Almagro Armenteros et al., 2017; Long et al., 2018; Fu et al., 2019). Moreover, given some featured procedures comprising what may be called the coding architecture, which is based on creating a specific-weight matrix or a bit vector that represents the sample. This practice was observed in some articles (Cuperus et al., 2017; Jiménez et al., 2017; Khurana et al., 2018; Le et al., 2018) that work with 2D convolutional neural networks in which the authors reported an increase in sensitivity and precision when using indexed datasets. A similar abstraction was observed in 3D convolutional neural networks since the structural representation of a protein is not a rotational invariant; several authors (Jiménez et al., 2017; Ragoza et al., 2017; Hochuli et al., 2018; Pagès et al., 2019; Sunseri et al., 2019; Torng and Altman, 2019) propose using a volumetric map divided into voxels centered on the backbone atoms, representing the physicochemical properties of proteins.
Regarding other review articles along the lines we have followed, the closest we found is the one by Dara et al. (2021). This review article is restricted to drug discovery, one of the five applications we analyzed (genomics, protein structure and function, protein design and evolution, and drug design).
Of a total of 38 articles we presented in Table 2 concerning protein and drug design, only 11 of them were about protein design, so the comparison is not at all fair between these two articles, as far as the analysis of the bibliography analyzed is concerned. However, we share with these authors part of the challenges for researchers in this area: data quality as well as the heterogeneity of databases to be searched for.
Optimization and the characteristics of a prediction must be carried out with a few design considerations, including how to represent the protein data and what type of learning algorithm to use. These form the establishment of a priority acquisition, standard acquisition, etc., and the generation of a protein based on a base model, with the aim that one day it would be possible to have controllable predictive models that can read and generate outputs in a consensual terminology, as revised in Hie and Yang (2022). Clearly showing a replacement of conventional methods to the use of machine learning algorithms (neural networks), attributed to improvements in design, computational power, etc., the result of a machine learning algorithm is not deterministic, but rather, it is intended to perform transformation functions in relation to the complexity of the data, as depicted in AlQuraishi (2021). There are volumes and volumes of empirical protein data. It is extremely difficult to synthesize such data for correct use in existing algorithms; however, machine learning has helped to compile a large number of methodologies, considering specific assumptions. Nevertheless, most of the empirical methodologies to demonstrate that drugs are safe and effectively continue to be used since there is a gap in the understanding of how the learning transmission of the data to the model is carried out (Dara et al., 2021).
In order to close our reflection as a research team, we believe that a landmark for the epistemic horizon in research is the reassurance that cross-functional groups of scientists from several academic disciplines, in this case including the participation of experts from the natural sciences (organic chemistry, physics and chemistry of proteins, molecular and structural biology, protein engineering, systems biology, microfluid chip engineering, and nanobiotechnology), together with those in computer science (artificial intelligence, knowledge engineering) promote the innovation process in tecno-sciences by combining tacit and explicit knowledge, sharing skills, methodologies, tools, ideas, concepts, experiences, and challenges to fully explore the binomial AI–PS promising area of research (Hey et al., 2019; Mataeimoghadam et al., 2020; Senior et al., 2020; Tsuchiya and Tomii, 2020). A very recent successful case study that highlights this approach is the team of creators of system Alphafold (Senior et al., 2020; AlQuraishi, 2021), one which in the CASP (Critical Assessment of Protein Structure Prediction) competition of three-dimensional protein structure modeling were able to determine the 3D structure of a protein from its amino acid sequence. By doing so, this group of researchers solved one of natural science’s open (until now) and most challenging problems using a deep learning approach combining template-based modeling (TBM) and free modeling (FM). The key point is that the neural network prediction encompasses backbone torsion angles and pairwise distances between residues (Senior et al., 2020). At the dawn of the year 2021, this peak of the iceberg brings fresh air and a great power to the protein science field, in particular, and to the life-sciences more broadly, encouraging the new generation of scientists to work as cross-functional teams in order to tackle novel tasks toward the understanding of nature.
One challenge for the binomial AI–PS research area is to tackle the representation of tacit knowledge and include it in the ML algorithms. The relevance of tacit knowledge in the building up of protein science knowledge has come a long way since Polanyi first noted it, extending to different fields in the search for an improvement of their practical skills. In AI, the predominant way of knowledge acquisition and performance is a formal one in which the machine learns and expresses explicitly through guidelines and that works in a focalized mean; the new task alludes to a tacit dimension (Polanyi, 1962), which remains in the edge of attention and incorporates aspects that are taught and learned mostly through practice and in a comprehensive manner (it is context-specific, spreads in the laboratory environment, and comes into play in decision-making.
Some Conclusions
To sum up, the systematic review and the biochemical meta-analysis offered in this article focused on the enormous innovation that has been made in the binomial AI–PS research, both in its applications and its road maps to solve protein structures and function prediction, protein and drug design, among other tasks. The contribution of this study is 3-fold: firstly, the setup of a cross-functional group in which computer scientists, professionals in biomedicine, and a philosopher constructed a common language and together identified relevant literature in the inter-field of AI–PS and constructed a bridge between the two fields, which can serve as a framework for further research in either area.
Secondly, we stressed the importance of a finer-grain understanding of training and validation methods of ML models and their outcomes, combining databases from several areas of knowledge (life-science experiments, in silico simulations, ML, direct evolution approach, etc.) that allowed us to classify, stratify, and contribute to the evolving protein science field. Thirdly, we showed that the binomial AI–PS, a progressive research program, as Lakatos would say and has still several challenges to tackle, such as the development of a comprehensive machine learning benchmarking enterprise, the experimental confirmation of the structure of the 3D modeling in laboratories, the classification, etc., controls the vulnerability of the neural networks, the development of a tool-kit to design novel biocatalysts not found in nature using reverse engineering, human-made metabolic routes, the design of new antibody molecular factory, novel proteostasis systems, the understanding of protein folding and protein-aggregation mechanisms, etc. Finally, we suggested that there may be a paradigm shift in the AI–PS research as a result of the recent great outcome of Alphafold, encouraging its use to the new generation of scientists.
In any case, what is clear is that a cross-functional group of scientists from several knowledge domains is required to work in coordination for sharing ideas, methodologies, and challenges toward the development of road maps and computational tools, paradigms, tacit, and explicit knowledge to fully explore and close the gap of the binomial AI–PS, a promising research area.
DATA AVAILABILITY STATEMENT
The raw data supporting the conclusions of this article will be made available by the authors without undue reservation.
AUTHOR CONTRIBUTIONS
Conceived and designed the experiments: MA-B and NA-B. Performed the systematic review: JV-A, MVA, FO-F, RZ-S, NA-B, and MA-B. Analyzed the data: JV-A, LO-T, MVA, FP-E, AA, FO-F, RZ-S, NA-B, NK-V, SVA, and MA-B. Contributed to reagents/materials/analysis tools: NK-V, NA-B, CR-M, and MA-B. Wrote the article: JV-A, LO-T, MVA, AA, FP-E, NA-B, and MA-B. Contributed to helpful discussions: JV-A, LO-T, MVA, FP-E, AA, FO-F, RZ-S, NA-B, NK-V, CR-M, SVA, and MA-B.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
ACKNOWLEDGMENTS
The authors would like to acknowledge the experimental support and fruitful discussions provided by Dr. Elsa de la Chesnaye. We also wish to thank Dr. Laura Bonifaz for her support. The contributions made by the assigned pre-graduate research fellows at the Universidad lberoamericana and UNAM are greatly appreciated. We are also thankful for the contributions of Perla Sueiras, Daniela Monroy, Maria Fernanda Frlas, Pablo Cardenas and Mattea Cussel for translation and proofread the manuscript, and Rogelio Ezequiel and Alonso Loyo for the artwork.
REFERENCES
 Adhikari, B., Hou, J., and Cheng, J. (2018). DNCON2: Improved Protein Contact Prediction Using Two-Level Deep Convolutional Neural Networks. BioInformatics 34, 1466–1472. doi:10.1093/bioinformatics/btx781
 Al-Gharabli, S. I., Agtash, S. A., Rawashdeh, N. A., and Barqawi, K. R. (2015). Artificial Neural Networks for Dihedral Angles Prediction in Enzyme Loops: A Novel Approach. Ijbra 11, 153–161. doi:10.1504/IJBRA.2015.068090
 Alakuş, T. B., and Türkoğlu, İ. (2021). A Novel Fibonacci Hash Method for Protein Family Identification by Using Recurrent Neural Networks. Turk. J. Electr. Eng. Comput. Sci. 29, 370–386. Available at: http://10.0.15.66/elk-2003-116. doi:10.0.15.66/elk-2003-116
 Almagro Armenteros, J. J., Sønderby, C. K., Sønderby, S. K., Nielsen, H., and Winther, O. (2017). DeepLoc: Prediction of Protein Subcellular Localization Using Deep Learning. Bioinformatics 33, 3387–3395. doi:10.1093/bioinformatics/btx431
 AlQuraishi, M. (2021). Machine Learning in Protein Structure Prediction. Curr. Opin. Chem. Biol. 65, 1–8. doi:10.1016/j.cbpa.2021.04.005
 Armstrong, K. A., and Tidor, B. (2008). Computationally Mapping Sequence Space to Understand Evolutionary Protein Engineering. Biotechnol. Prog. 24, 62–73. doi:10.1021/bp070134h
 Ashkenazy, H., Unger, R., and Kliger, Y. (2011). Hidden Conformations in Protein Structures. Bioinformatics 27, 1941–1947. doi:10.1093/bioinformatics/btr292
 Baetu, T. (2015). Carl F, Craver and Lindley Darden: In Search of Mechanisms: Discoveries across the Life Sciences. Hpls 36, 459–461. doi:10.1007/s40656-014-0038-6
 Bernardes, J., and Pedreira, C. (2013). A Review of Protein Function Prediction under Machine Learning Perspective. Biot 7, 122–141. doi:10.2174/18722083113079990006
 Bindslev-Jensen, C., Sten, E., Earl, L. K., Crevel, R. W. R., Bindslev-Jensen, U., Hansen, T. K., et al. (2003). Assessment of the Potential Allergenicity of Ice Structuring Protein Type III HPLC 12 Using the FAO/WHO 2001 Decision Tree for Novel Foods. Food Chem. Toxicol. 41, 81–87. doi:10.1016/S0278-6915(02)00212-0
 Bond, P. S., Wilson, K. S., and Cowtan, K. D. (2020). Predicting Protein Model Correctness in Coot Using Machine Learning. Acta Cryst. Sect. D. Struct. Biol. 76, 713–723. doi:10.1107/S2059798320009080
 Bostan, B., Greiner, R., Szafron, D., and Lu, P. (2009). Predicting Homologous Signaling Pathways Using Machine Learning. Bioinformatics 25, 2913–2920. doi:10.1093/bioinformatics/btp532
 Briesemeister, S., Rahnenführer, J., and Kohlbacher, O. (2010). Going from where to Why-Interpretable Prediction of Protein Subcellular Localization. Bioinformatics 26, 1232–1238. doi:10.1093/bioinformatics/btq115
 Cao, R., Freitas, C., Chan, L., Sun, M., Jiang, H., and Chen, Z. (2017). ProLanGO: Protein Function Prediction Using Neural Machine Translation Based on a Recurrent Neural Network. Molecules 22, 1732. doi:10.3390/molecules22101732
 Capriotti, E., Fariselli, P., and Casadio, R. (2005). I-Mutant2.0: Predicting Stability Changes upon Mutation from the Protein Sequence or Structure. Nucleic Acids Res. 33, W306–W310. doi:10.1093/nar/gki375
 Chen, J., Yang, R., Zhang, C., Zhang, L., and Zhang, Q. (2019). DeepGly: A Deep Learning Framework with Recurrent and Convolutional Neural Networks to Identify Protein Glycation Sites from Imbalanced Data. IEEE ACCESS 7, 142368–142378. doi:10.1109/ACCESS.2019.2944411
 Cheng, J., Tegge, A. N., and Baldi, P. (2008). Machine Learning Methods for Protein Structure Prediction. IEEE Rev. Biomed. Eng. 1, 41–49. doi:10.1109/RBME.2008.2008239
 Cui, Y., Dong, Q., Hong, D., and Wang, X. (2019). Predicting Protein-Ligand Binding Residues with Deep Convolutional Neural Networks. BMC Bioinforma. 20, 93. doi:10.1186/s12859-019-2672-1
 Cuperus, J. T., Groves, B., Kuchina, A., Rosenberg, A. B., Jojic, N., Fields, S., et al. (2017). Deep Learning of the Regulatory Grammar of Yeast 5′ Untranslated Regions from 500,000 Random Sequences. Genome Res. 27, 2015–2024. doi:10.1101/gr.224964.117
 Dai, W., Chang, Q., Peng, W., Zhong, J., and Li, Y. (2020). Network Embedding the Protein-Protein Interaction Network for Human Essential Genes Identification. Genes. 11, 153. doi:10.3390/genes11020153
 Daniels, N. M., Hosur, R., Berger, B., and Cowen, L. J. (2012). SMURFLite: Combining Simplified Markov Random Fields with Simulated Evolution Improves Remote Homology Detection for Beta-Structural Proteins into the Twilight Zone. Bioinformatics 28, 1216–1222. doi:10.1093/bioinformatics/bts110
 Dara, S., Dhamercherla, S., Jadav, S. S., Babu, C. H., and Ahsan, M. J. (2021). Machine Learning in Drug Discovery: A Review. Artif. Intell. Rev. 55 (3), 1947–1999. doi:10.1007/s10462-021-10058-4
 Degiacomi, M. T. (2019). Coupling Molecular Dynamics and Deep Learning to Mine Protein Conformational Space. Structure 27, 1034–1040. doi:10.1016/j.str.2019.03.018
 Du, Z., He, Y., Li, J., and Uversky, V. N. (2020). DeepAdd: Protein Function Prediction from K-Mer Embedding and Additional Features. Comput. Biol. Chem. 89, 107379. N.PAG--N.PAG. Available at: http://10.0.3.248/j.compbiolchem.2020.107379. doi:10.1016/j.compbiolchem.2020.107379
 Durrant, J. D., and McCammon, J. A. (2011). NNScore 2.0: A Neural-Network Receptor-Ligand Scoring Function. J. Chem. Inf. Model.. 51, 2897–2903. doi:10.1021/ci2003889
 Ebina, T., Toh, H., and Kuroda, Y. (2011). DROP: An SVM Domain Linker Predictor Trained with Optimal Features Selected by Random Forest. Bioinformatics 27, 487–494. doi:10.1093/bioinformatics/btq700
 Ebrahimpour, A., Rahman, R. N. Z. R. A., Ean Ch'ng, D. H., Basri, M., and Salleh, A. B. (2008). A Modeling Study by Response Surface Methodology and Artificial Neural Network on Culture Parameters Optimization for Thermostable Lipase Production from a Newly Isolated Thermophilic Geobacillus Sp. Strain ARM. BMC Biotechnol. 8, 96. doi:10.1186/1472-6750-8-96
 Eisenbeis, S., Proffitt, W., Coles, M., Truffault, V., Shanmugaratnam, S., Meiler, J., et al. (2012). Potential of Fragment Recombination for Rational Design of Proteins. J. Am. Chem. Soc. 134, 4019–4022. doi:10.1021/ja211657k
 Fang, C., Moriwaki, Y., Tian, A., Li, C., and Shimizu, K. (2019). Identifying Short Disorder-To-Order Binding Regions in Disordered Proteins with a Deep Convolutional Neural Network Method. J. Bioinform. Comput. Biol. 17, 1950004. doi:10.1142/S0219720019500045
 Fang, C., Shang, Y., and Xu, D. (2020). A Deep Dense Inception Network for Protein Beta‐turn Prediction. Proteins 88, 143–151. doi:10.1002/prot.25780
 Fang, C., Shang, Y., and Xu, D. (2018). MUFOLD-SS: New Deep Inception-Inside-Inception Networks for Protein Secondary Structure Prediction. Proteins 86, 592–598. doi:10.1002/prot.25487
 Feger, G., Angelov, B., and Angelova, A. (2020). Prediction of Amphiphilic Cell-Penetrating Peptide Building Blocks from Protein-Derived Amino Acid Sequences for Engineering of Drug Delivery Nanoassemblies. J. Phys. Chem. B 124, 4069–4078. doi:10.1021/acs.jpcb.0c01618
 Feinberg, E. N., Sur, D., Wu, Z., Husic, B. E., Mai, H., Li, Y., et al. (2018). PotentialNet for Molecular Property Prediction. ACS Cent. Sci. 4, 1520–1530. doi:10.1021/acscentsci.8b00507
 Folkman, L., Stantic, B., and Sattar, A. (2014). Feature-based Multiple Models Improve Classification of Mutation-Induced Stability Changes. BMC Genomics 15, 96. doi:10.1186/1471-2164-15-S4-S6
 Frasca, M., Grossi, G., Gliozzo, J., Mesiti, M., Notaro, M., Perlasca, P., et al. (2018). A GPU-Based Algorithm for Fast Node Label Learning in Large and Unbalanced Biomolecular Networks. BMC Bioinforma. 19, 353. doi:10.1186/s12859-018-2301-4
 Fu, H., Yang, Y., Wang, X., Wang, H., and Xu, Y. (2019). DeepUbi: A Deep Learning Framework for Prediction of Ubiquitination Sites in Proteins. BMC Bioinforma. 20, 86. doi:10.1186/s12859-019-2677-9
 Gainza, P., Nisonoff, H. M., and Donald, B. R. (2016). Algorithms for Protein Design. Curr. Opin. Struct. Biol. 39, 16–26. doi:10.1016/j.sbi.2016.03.006
 Guo, Y., Li, W., Wang, B., Liu, H., and Zhou, D. (2019). DeepACLSTM: Deep Asymmetric Convolutional Long Short-Term Memory Neural Models for Protein Secondary Structure Prediction. BMC Bioinforma. 20, 341. doi:10.1186/s12859-019-2940-0
 Gutteridge, A., Bartlett, G. J., and Thornton, J. M. (2003). Using a Neural Network and Spatial Clustering to Predict the Location of Active Sites in Enzymes. J. Mol. Biol. 330, 719–734. doi:10.1016/S0022-2836(03)00515-1
 Haberal, İ., and Oğul, H. (2019). Prediction of Protein Metal Binding Sites Using Deep Neural Networks. Mol. Inf. 38, 1800169. doi:10.1002/minf.201800169
 Han, X., Zhang, L., Zhou, K., and Wang, X. (2019). ProGAN: Protein Solubility Generative Adversarial Nets for Data Augmentation in DNN Framework. Comput. Chem. Eng. 131, 106533. N.PAG--N.PAG. Available at: http://10.0.3.248/j.compchemeng.2019.106533. doi:10.1016/j.compchemeng.2019.106533
 Hanson, J., Paliwal, K., Litfin, T., Yang, Y., and Zhou, Y. (2018). Accurate Prediction of Protein Contact Maps by Coupling Residual Two-Dimensional Bidirectional Long Short-Term Memory with Convolutional Neural Networks. Bioinformatics 34, 4039–4045. Available at: http://10.0.4.69/bioinformatics/bty481. doi:10.1093/bioinformatics/bty481
 Hanson, J., Paliwal, K., Litfin, T., Yang, Y., and Zhou, Y. (2019). Improving Prediction of Protein Secondary Structure, Backbone Angles, Solvent Accessibility and Contact Numbers by Using Predicted Contact Maps and an Ensemble of Recurrent and Residual Convolutional Neural Networks. Bioinformatics 35, 2403–2410. doi:10.1093/bioinformatics/bty1006
 He, H., Liu, B., Luo, H., Zhang, T., and Jiang, J. (2020). Big Data and Artificial Intelligence Discover Novel Drugs Targeting Proteins without 3D Structure and Overcome the Undruggable Targets. STROKE Vasc. Neurol. 5, 381–387. doi:10.1136/svn-2019-000323
 Heinzinger, M., Elnaggar, A., Wang, Y., Dallago, C., Nechaev, D., Matthes, F., et al. (2019). Modeling Aspects of the Language of Life through Transfer-Learning Protein Sequences. BMC Bioinforma. 20, 723. doi:10.1186/s12859-019-3220-8
 Hey, T., Butler, K., Jackson, S., and Thiyagalingam, J. (2019). Machine Learning and Big Scientific Data. Philos. Trans. A Math. Phys. Eng. Sci. 378 (2166), 20190054. arXiv. Available at: file:///Users/Myriam/Documents/2020/manuscritos. doi:10.1098/rsta.2019.0054
 Hie, B. L., and Yang, K. K. (2022). Adaptive Machine Learning for Protein Engineering. Curr. Opin. Struct. Biol. 72, 145–152. doi:10.1016/j.sbi.2021.11.002
 Hochuli, J., Helbling, A., Skaist, T., Ragoza, M., and Koes, D. R. (2018). Visualizing Convolutional Neural Network Protein-Ligand Scoring. J. Mol. Graph. Model. 84, 96–108. doi:10.1016/j.jmgm.2018.06.005
 Hong, E.-J., Lippow, S. M., Tidor, B., and Lozano-Pérez, T. (2009). Rotamer Optimization for Protein Design through MAP Estimation and Problem-Size Reduction. J. Comput. Chem. 30, 1923–1945. doi:10.1002/jcc.21188
 Hu, B., Wang, H., Wang, L., and Yuan, W. (2018). Adverse Drug Reaction Predictions Using Stacking Deep Heterogeneous Information Network Embedding Approach. Molecules 23, 3193. doi:10.3390/molecules23123193
 Hu, C., Li, X., and Liang, J. (2004). Developing Optimal Non-linear Scoring Function for Protein Design. Bioinformatics 20, 3080–3098. doi:10.1093/bioinformatics/bth369
 Huang, L., Liao, L., and Wu, C. H. (2018). Completing Sparse and Disconnected Protein-Protein Network by Deep Learning. BMC Bioinforma. 19, 103. doi:10.1186/s12859-018-2112-7
 Huang, W.-L., Tung, C.-W., Ho, S.-W., Hwang, S.-F., and Ho, S.-Y. (2008). ProLoc-GO: Utilizing Informative Gene Ontology Terms for Sequence-Based Prediction of Protein Subcellular Localization. BMC Bioinforma. 9, 80. doi:10.1186/1471-2105-9-80
 Hung, C.-M., Huang, Y.-M., and Chang, M.-S. (2006). Alignment Using Genetic Programming with Causal Trees for Identification of Protein Functions. Nonlinear Analysis Theory, Methods & Appl. 65, 1070–1093. doi:10.1016/j.na.2005.09.048
 Jiménez, J., Doerr, S., Martínez-Rosell, G., Rose, A. S., and De Fabritiis, G. (2017). DeepSite: Protein-Binding Site Predictor Using 3D-Convolutional Neural Networks. Bioinformatics 33, 3036–3042. doi:10.1093/bioinformatics/btx350
 Kaleel, M., Torrisi, M., Mooney, C., and Pollastri, G. (2019). PaleAle 5.0: Prediction of Protein Relative Solvent Accessibility by Deep Learning. Amino Acids 51, 1289–1296. Available at: http://10.0.3.239/s00726-019-02767-6. doi:10.1007/s00726-019-02767-6
 Karimi, M., Wu, D., Wang, Z., and Shen, Y. (2019). DeepAffinity: Interpretable Deep Learning of Compound-Protein Affinity through Unified Recurrent and Convolutional Neural Networks. Bioinformatics 35, 3329–3338. Available at: http://10.0.4.69/bioinformatics/btz111. doi:10.1093/bioinformatics/btz111
 Katzman, S., Barrett, C., Thiltgen, G., Karchin, R., and Karplus, K. (2008). Predict-2nd: A Tool for Generalized Protein Local Structure Prediction. Bioinformatics 24, 2453–2459. doi:10.1093/bioinformatics/btn438
 Kauffman, S. A. (1992). “Origins of Order in Evolution: Self-Organization and Selection,” in Understanding Origins (Netherlands: Springer), 153–181. doi:10.1007/978-94-015-8054-0_8
 Khan, Z. U., Hayat, M., and Khan, M. A. (2015). Discrimination of Acidic and Alkaline Enzyme Using Chou's Pseudo Amino Acid Composition in Conjunction with Probabilistic Neural Network Model. J. Theor. Biol. 365, 197–203. doi:10.1016/j.jtbi.2014.10.014
 Khurana, S., Rawi, R., Kunji, K., Chuang, G.-Y., Bensmail, H., and Mall, R. (2018). DeepSol: A Deep Learning Framework for Sequence-Based Protein Solubility Prediction. Bioinformatics 34, 2605–2613. doi:10.1093/bioinformatics/bty166
 Klausen, M. S., Jespersen, M. C., Nielsen, H., Jensen, K. K., Jurtz, V. I., Sønderby, C. K., et al. (2019). NetSurfP‐2.0: Improved Prediction of Protein Structural Features by Integrated Deep Learning. Proteins 87, 520–527. doi:10.1002/prot.25674
 Kwon, Y., Shin, W.-H., Ko, J., and Lee, J. (2020). AK-score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks. Ijms 21, 8424. doi:10.3390/ijms21228424
 Ladunga, I., Czakó, F., Csabai, I., and Geszti, T. (1991). Improving Signal Peptide Prediction Accuracy by Simulated Neural Network. Bioinformatics 7, 485–487. doi:10.1093/bioinformatics/7.4.485
 Latek, D., and Kolinski, A. (2011). CABS-NMR-De Novo Tool for Rapid Global Fold Determination from Chemical Shifts, Residual Dipolar Couplings and Sparse Methyl-Methyl Noes. J. Comput. Chem. 32, 536–544. doi:10.1002/jcc.21640
 Le, N.-Q. -K., Ho, Q.-T., and Ou, Y.-Y. (2018). Classifying the Molecular Functions of Rab GTPases in Membrane Trafficking Using Deep Convolutional Neural Networks. Anal. Biochem. 555, 33–41. doi:10.1016/j.ab.2018.06.011
 Li, C.-C., and Liu, B. (2020). MotifCNN-fold: Protein Fold Recognition Based on Fold-specific Features Extracted by Motif-Based Convolutional Neural Networks. Brief. Bioinform. 21, 2133–2141. doi:10.1093/bib/bbz133
 Li, H., Gong, X.-J., Yu, H., and Zhou, C. (2018). Deep Neural Network Based Predictions of Protein Interactions Using Primary Sequences. Molecules 23, 1923. doi:10.3390/molecules23081923
 Li, H., Sze, K. H., Lu, G., and Ballester, P. J. (2021). Machine‐learning Scoring Functions for Structure‐based Virtual Screening. WIREs Comput. Mol. Sci. 11. doi:10.1002/wcms.1478
 Li, Y., and Cirino, P. C. (2014). Recent Advances in Engineering Proteins for Biocatalysis. Biotechnol. Bioeng. 111, 1273–1287. doi:10.1002/bit.25240
 Li, Z., Yang, Y., Faraggi, E., Zhan, J., and Zhou, Y. (2014). Direct Prediction of Profiles of Sequences Compatible with a Protein Structure by Neural Networks with Fragment-Based Local and Energy-Based Nonlocal Profiles. Proteins 82, 2565–2573. doi:10.1002/prot.24620
 Liang, M., and Nie, J. (2020). Prediction of Enzyme Function Based on a Structure Relation Network. IEEE ACCESS 8, 132360–132366. doi:10.1109/ACCESS.2020.3010028
 Liao, J., Warmuth, M. K., Govindarajan, S., Ness, J. E., Wang, R. P., Gustafsson, C., et al. (2007). Engineering Proteinase K Using Machine Learning and Synthetic Genes. BMC Biotechnol. 7, 16. doi:10.1186/1472-6750-7-16
 Lin, G. N., Wang, Z., Xu, D., and Cheng, J. (2010). SeqRate: Sequence-Based Protein Folding Type Classification and Rates Prediction. BMC Bioinforma. 11, S1. doi:10.1186/1471-2105-11-S3-S1
 Lin, J., Chen, H., Li, S., Liu, Y., Li, X., and Yu, B. (2019). Accurate Prediction of Potential Druggable Proteins Based on Genetic Algorithm and Bagging-SVM Ensemble Classifier. Artif. Intell. Med. 98, 35–47. Available at: http://10.0.3.248/j.artmed.2019.07.005. doi:10.1016/j.artmed.2019.07.005
 Long, H., Liao, B., Xu, X., and Yang, J. (2018). A Hybrid Deep Learning Model for Predicting Protein Hydroxylation Sites. Ijms 19, 2817. doi:10.3390/ijms19092817
 Long, S., and Tian, P. (2019). Protein Secondary Structure Prediction with Context Convolutional Neural Network. RSC Adv. 9, 38391–38396. doi:10.1039/c9ra05218f
 Luo, F., Wang, M., Liu, Y., Zhao, X.-M., and Li, A. (2019). DeepPhos: Prediction of Protein Phosphorylation Sites with Deep Learning. Bioinformatics 35, 2766–2773. doi:10.1093/bioinformatics/bty1051
 Luo, L., Yang, Z., Wang, L., Zhang, Y., Lin, H., and Wang, J. (2019). KeSACNN: a Protein-Protein Interaction Article Classification Approach Based on Deep Neural Network. Ijdmb 22, 131–148. doi:10.1504/ijdmb.2019.099724
 Luo, X., Tu, X., Ding, Y., Gao, G., and Deng, M. (2020). Expectation Pooling: an Effective and Interpretable Pooling Method for Predicting DNA-Protein Binding. Bioinformatics 36, 1405–1412. doi:10.1093/bioinformatics/btz768
 Mahmoud, A. H., Masters, M. R., Yang, Y., and Lill, M. A. (2020). Elucidating the Multiple Roles of Hydration for Accurate Protein-Ligand Binding Prediction via Deep Learning. Commun. Chem. 3, 19. doi:10.1038/s42004-020-0261-x
 Maia, E. H. B., Assis, L. C., de Oliveira, T. A., da Silva, A. M., and Taranto, A. G. (2020). Structure-Based Virtual Screening: From Classical to Artificial Intelligence. Front. Chem. 8. doi:10.3389/fchem.2020.00343
 Makrodimitris, S., Van Ham, R. C. H. J., and Reinders, M. J. T. (2019). Improving Protein Function Prediction Using Protein Sequence and GO-Term Similarities. Bioinformatics 35, 1116–1124. doi:10.1093/bioinformatics/bty751
 Mataeimoghadam, F., Newton, M. A. H., Dehzangi, A., Karim, A., Jayaram, B., Ranganathan, S., et al. (2020). Enhancing Protein Backbone Angle Prediction by Using Simpler Models of Deep Neural Networks. Sci. Rep. 10, 1–12. doi:10.1038/s41598-020-76317-6
 Mirabello, C., and Wallner, B. (2019). rawMSA: End-To-End Deep Learning Using Raw Multiple Sequence Alignments. PLoS One 14, e0220182. doi:10.1371/journal.pone.0220182
 Müller, A. T., Hiss, J. A., and Schneider, G. (2018). Recurrent Neural Network Model for Constructive Peptide Design. J. Chem. Inf. Model.. 58, 472–479. doi:10.1021/acs.jcim.7b00414
 Murphy, G. S., Sathyamoorthy, B., Der, B. S., Machius, M. C., Pulavarti, S. V., Szyperski, T., et al. (2015). Computational De Novo Design of a Four-Helix Bundle Protein-Dnd_4hb. Protein Sci. 24, 434–445. doi:10.1002/pro.2577
 O'Connell, J., Li, Z., Hanson, J., Heffernan, R., Lyons, J., Paliwal, K., et al. (2018). SPIN2: Predicting Sequence Profiles from Protein Structures Using Deep Neural Networks. Proteins 86, 629–633. doi:10.1002/prot.25489
 Özen, A., Gönen, M., Alpaydın, E., and Haliloğlu, T. (2009). Machine Learning Integration for Predicting the Effect of Single Amino Acid Substitutions on Protein Stability. BMC Struct. Biol. 9. doi:10.1186/1472-6807-9-66
 Pagès, G., Charmettant, B., Grudinin, S., and Valencia, A. (2019). Protein Model Quality Assessment Using 3D Oriented Convolutional Neural Networks. Bioinformatics 35, 3313–3319. doi:10.1093/bioinformatics/btz122
 Paladino, A., Marchetti, F., Rinaldi, S., and Colombo, G. (2017). Protein Design: from Computer Models to Artificial Intelligence. WIREs Comput. Mol. Sci. 7, e1318. doi:10.1002/wcms.1318
 Picart-Armada, S., Barrett, S. J., Willé, D. R., Perera-Lluna, A., Gutteridge, A., and Dessailly, B. H. (2019). Benchmarking Network Propagation Methods for Disease Gene Identification. PLoS Comput. Biol. 15, e1007276–24. Available at: http://10.0.5.91/journal.pcbi.1007276. doi:10.1371/journal.pcbi.1007276
 Polanyi, M. (1962). Personal Knowledge. Towards a Post-Critical Philosophy. 2nd ed.. London: Routledge & Kegan Paul. 
 Popova, M., Isayev, O., and Tropsha, A. (2018). Deep Reinforcement Learning for De Novo Drug Design. Sci. Adv. 4, eaap7885. doi:10.1126/sciadv.aap7885
 Qi, Y., Oja, M., Weston, J., and Noble, W. S. (2012). A Unified Multitask Architecture for Predicting Local Protein Properties. PLoS One 7, e32235. doi:10.1371/journal.pone.0032235
 Qin, Z., Wu, L., Sun, H., Huo, S., Ma, T., Lim, E., et al. (2020). Artificial Intelligence Method to Design and Fold Alpha-Helical Structural Proteins from the Primary Amino Acid Sequence. Extreme Mech. Lett. 36, 100652. doi:10.1016/j.eml.2020.100652
 Ragoza, M., Hochuli, J., Idrobo, E., Sunseri, J., and Koes, D. R. (2017). Protein-Ligand Scoring with Convolutional Neural Networks. J. Chem. Inf. Model.. 57, 942–957. doi:10.1021/acs.jcim.6b00740
 Raveh, B., Rahat, O., Basri, R., and Schreiber, G. (2007). Rediscovering Secondary Structures as Network Motifs-Aan Unsupervised Learning Approach. Bioinformatics 23, e163–e169. doi:10.1093/bioinformatics/btl290
 Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J., et al. (2021). Biological Structure and Function Emerge from Scaling Unsupervised Learning to 250 Million Protein Sequences. Proc. Natl. Acad. Sci. U. S. A. 118, e2016239118. doi:10.1073/pnas.2016239118
 Rossi, A., Micheletti, C., Seno, F., and Maritan, A. (2001). A Self-Consistent Knowledge-Based Approach to Protein Design. Biophysical J. 80, 480–490. doi:10.1016/S0006-3495(01)76030-4
 Russ, W. P., and Ranganathan, R. (2002). Knowledge-based Potential Functions in Protein Design. Curr. Opin. Struct. Biol. 12, 447–452. doi:10.1016/S0959-440X(02)00346-9
 Savojardo, C., Martelli, P. L., Tartari, G., and Casadio, R. (2020b). Large-scale Prediction and Analysis of Protein Sub-mitochondrial Localization with DeepMito. BMC Bioinforma. 21, 266. N.PAG--N.PAG. Available at: http://10.0.4.162/s12859-020-03617-z. doi:10.1186/s12859-020-03617-z
 Savojardo, C., Bruciaferri, N., Tartari, G., Martelli, P. L., and Casadio, R. (2020a). DeepMito: Accurate Prediction of Protein Sub-mitochondrial Localization Using Convolutional Neural Networks. Bioinformatics 36, 56–64. Available at: http://10.0.4.69/bioinformatics/btz512. doi:10.1093/bioinformatics/btz512
 Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., et al. (2020). Improved Protein Structure Prediction Using Potentials from Deep Learning. Nature 577, 706–710. doi:10.1038/s41586-019-1923-7
 Shah, A. R., Oehmen, C. S., and Webb-Robertson, B.-J. (2008). SVM-HUSTLE--an Iterative Semi-supervised Machine Learning Approach for Pairwise Protein Remote Homology Detection. Bioinformatics 24, 783–790. doi:10.1093/bioinformatics/btn028
 Shamim, M. T. A., Anwaruddin, M., and Nagarajaram, H. A. (2007). Support Vector Machine-Based Classification of Protein Folds Using the Structural Properties of Amino Acid Residues and Amino Acid Residue Pairs. Bioinformatics 23, 3320–3327. doi:10.1093/bioinformatics/btm527
 Shroff, R., Cole, A. W., Diaz, D. J., Morrow, B. R., Donnell, I., Annapareddy, A., et al. (2020). Discovery of Novel Gain-Of-Function Mutations Guided by Structure-Based Deep Learning. ACS Synth. Biol. 9, 2927–2935. doi:10.1021/acssynbio.0c00345
 Sidhu, A., and Yang, Z. R. (2006). Prediction of Signal Peptides Using Bio-Basis Function Neural Networks and Decision Trees. Appl. Bioinforma. 5, 13–19. doi:10.2165/00822942-200605010-00002
 Simha, R., Briesemeister, S., Kohlbacher, O., and Shatkay, H. (2015). Protein (Multi-)location Prediction: Utilizing Interdependencies via a Generative Model. Bioinformatics 31, i365–i374. doi:10.1093/bioinformatics/btv264
 Song, J., Liu, G., Jiang, J., Zhang, P., and Liang, Y. (2021). Prediction of Protein-ATP Binding Residues Based on Ensemble of Deep Convolutional Neural Networks and LightGBM Algorithm. Ijms 22, 939. doi:10.3390/ijms22020939
 Sua, J. N., Lim, S. Y., Yulius, M. H., Su, X., Yapp, E. K. Y., Le, N. Q. K., et al. (2020). Incorporating Convolutional Neural Networks and Sequence Graph Transform for Identifying Multilabel Protein Lysine PTM Sites. Chemom. Intelligent Laboratory Syst. 206, 104171. doi:10.1016/j.chemolab.2020.104171
 Sunseri, J., King, J. E., Francoeur, P. G., and Koes, D. R. (2019). Convolutional Neural Network Scoring and Minimization in the D3R 2017 Community Challenge. J. Comput. Aided. Mol. Des. 33, 19–34. doi:10.1007/s10822-018-0133-y
 Sureyya Rifaioglu, A., Doğan, T., Jesus Martin, M., Cetin-Atalay, R., and Atalay, V. (2019). DEEPred: Automated Protein Function Prediction with Multi-Task Feed-Forward Deep Neural Networks. Sci. Rep. 9, 7344. doi:10.1038/s41598-019-43708-3
 Szalkai, B., and Grolmusz, V. (2018a). Near Perfect Protein Multi-Label Classification with Deep Neural Networks. METHODS 132, 50–56. doi:10.1016/j.ymeth.2017.06.034
 Szalkai, B., and Grolmusz, V. (2018b). SECLAF: A Webserver and Deep Neural Network Design Tool for Hierarchical Biological Sequence Classification. Bioinformatics 34, 2487–2489. doi:10.1093/bioinformatics/bty116
 Taherzadeh, G., Dehzangi, A., Golchin, M., Zhou, Y., and Campbell, M. P. (2019). SPRINT-gly: Predicting N- and O-Linked Glycosylation Sites of Human and Mouse Proteins by Using Sequence and Predicted Structural Properties. Bioinformatics 35, 4140–4146. doi:10.1093/bioinformatics/btz215
 Tian, J., Wu, N., Chu, X., and Fan, Y. (2010). Predicting Changes in Protein Thermostability Brought about by Single- or Multi-Site Mutations. BMC Bioinforma. 11, 370. doi:10.1186/1471-2105-11-370
 Torng, W., and Altman, R. B. (2019). High Precision Protein Functional Site Detection Using 3D Convolutional Neural Networks. Bioinformatics 35, 1503–1512. doi:10.1093/bioinformatics/bty813
 Traoré, S., Allouche, D., André, I., De Givry, S., Katsirelos, G., Schiex, T., et al. (2013). A New Framework for Computational Protein Design through Cost Function Network Optimization. Bioinformatics 29, 2129–2136. doi:10.1093/bioinformatics/btt374
 Tsou, L. K., Yeh, S.-H., Ueng, S.-H., Chang, C.-P., Song, J.-S., Wu, M.-H., et al. (2020). Comparative Study between Deep Learning and QSAR Classifications for TNBC Inhibitors and Novel GPCR Agonist Discovery. Sci. Rep. 10, 16771. doi:10.1038/s41598-020-73681-1
 Tsuchiya, Y., and Tomii, K. (2020). Neural Networks for Protein Structure and Function Prediction and Dynamic Analysis. Biophys. Rev. 12, 569–573. doi:10.1007/s12551-020-00685-6
 Vang, Y. S., and Xie, X. (2017). HLA Class I Binding Prediction via Convolutional Neural Networks. Bioinformatics 33, 2658–2665. doi:10.1093/bioinformatics/btx264
 Verma, N., Qu, X., Trozzi, F., Elsaied, M., Karki, N., Tao, Y., et al. (2021). SSnet: A Deep Learning Approach for Protein-Ligand Interaction Prediction. Ijms 22, 1392. doi:10.3390/ijms22031392
 Volpato, V., Adelfio, A., and Pollastri, G. (2013). Accurate Prediction of Protein Enzymatic Class by N-To-1 Neural Networks. BMC Bioinforma. 14, S11. doi:10.1186/1471-2105-14-S1-S11
 Wan, C., Cozzetto, D., Fa, R., and Jones, D. T. (2019). Using Deep Maxout Neural Networks to Improve the Accuracy of Function Prediction from Protein Interaction Networks. PLoS One 14, e0209958–21. Available at: http://10.0.5.91/journal.pone.0209958. doi:10.1371/journal.pone.0209958
 Wang, D., Geng, L., Zhao, Y.-J., Yang, Y., Huang, Y., Zhang, Y., et al. (2020). Artificial Intelligence-Based Multi-Objective Optimization Protocol for Protein Structure Refinement. Bioinformatics 36, 437–448. doi:10.1093/bioinformatics/btz544
 Wang, M., Cang, Z., and Wei, G.-W. (2020a). A Topology-Based Network Tree for the Prediction of Protein-Protein Binding Affinity Changes Following Mutation. Nat. Mach. Intell. 2, 116–123. doi:10.1038/s42256-020-0149-6
 Wang, M., Cui, X., Li, S., Yang, X., Ma, A., Zhang, Y., et al. (2020b). DeepMal: Accurate Prediction of Protein Malonylation Sites by Deep Neural Networks. Chemom. Intelligent Laboratory Syst. 207, 104175. doi:10.1016/j.chemolab.2020.104175
 Wang, X., Liu, Y., Lu, F., Li, H., Gao, P., and Wei, D. (2020). Dipeptide Frequency of Word Frequency and Graph Convolutional Networks for DTA Prediction. Front. Bioeng. Biotechnol. 8. doi:10.3389/fbioe.2020.00267
 Wang, S., Sun, S., Li, Z., Zhang, R., and Xu, J. (2017). Accurate De Novo Prediction of Protein Contact Map by Ultra-deep Learning Model. PLoS Comput. Biol. 13, e1005324. doi:10.1371/journal.pcbi.1005324
 Wardah, W., Dehzangi, A., Taherzadeh, G., Rashid, M. A., Khan, M. G. M., Tsunoda, T., et al. (2020). Predicting Protein-Peptide Binding Sites with a Deep Convolutional Neural Network. J. Theor. Biol. 496, 110278. doi:10.1016/j.jtbi.2020.110278
 Wardah, W., Khan, M. G. M., Sharma, A., and Rashid, M. A. (2019). Protein Secondary Structure Prediction Using Neural Networks and Deep Learning: A Review. Comput. Biol. Chem. 81, 1–8. doi:10.1016/j.compbiolchem.2019.107093
 Wong, K.-C., Chan, T.-M., Peng, C., Li, Y., and Zhang, Z. (2013). DNA Motif Elucidation Using Belief Propagation. Nucleic Acids Res. 41, e153. doi:10.1093/nar/gkt574
 Wu, S., and Zhang, Y. (2008). A Comprehensive Assessment of Sequence-Based and Template-Based Methods for Protein Contact Prediction. Bioinformatics 24, 924–931. doi:10.1093/bioinformatics/btn069
 Xu, J., Mcpartlon, M., and Li, J. (2021). Improved Protein Structure Prediction by Deep Learning Irrespective of Co-evolution Information. Nat. Mach. Intell. 3, 601–609. doi:10.1038/s42256-021-00348-5
 Xue, L., Tang, B., Chen, W., and Luo, J. (2019). DeepT3: Deep Convolutional Neural Networks Accurately Identify Gram-Negative Bacterial Type III Secreted Effectors Using the N-Terminal Sequence. Bioinformatics 35, 2051–2057. doi:10.1093/bioinformatics/bty931
 Yang, H., Wang, M., Yu, Z., Zhao, X.-M., and Li, A. (2020). GANcon: Protein Contact Map Prediction with Deep Generative Adversarial Network. IEEE ACCESS 8, 80899–80907. doi:10.1109/ACCESS.2020.2991605
 Yang, J., Anishchenko, I., Park, H., Peng, Z., Ovchinnikov, S., and Baker, D. (2020). Improved Protein Structure Prediction Using Predicted Interresidue Orientations. Proc. Natl. Acad. Sci. U.S.A. 117, 1496–1503. doi:10.1073/pnas.1914677117
 Yang, J., He, B.-J., Jang, R., Zhang, Y., and Shen, H.-B. (2015). Accurate Disulfide-Bonding Network Predictions Improveab Initiostructure Prediction of Cysteine-Rich Proteins. Bioinformatics 31, btv459–3781. doi:10.1093/bioinformatics/btv459
 Yang, Y., Faraggi, E., Zhao, H., and Zhou, Y. (2011). Improving Protein Fold Recognition and Template-Based Modeling by Employing Probabilistic-Based Matching between Predicted One-Dimensional Structural Properties of Query and Corresponding Native Properties of Templates. Bioinformatics 27, 2076–2082. doi:10.1093/bioinformatics/btr350
 Yeh, C.-T., Brunette, T., Baker, D., McIntosh-Smith, S., and Parmeggiani, F. (2018). Elfin: An Algorithm for the Computational Design of Custom Three-Dimensional Structures from Modular Repeat Protein Building Blocks. J. Struct. Biol. 201, 100–107. doi:10.1016/j.jsb.2017.09.001
 Yu, C.-H., and Buehler, M. J. (2020). Sonification Based De Novo Protein Design Using Artificial Intelligence, Structure Prediction, and Analysis Using Molecular Modeling. Apl. Bioeng. 4, 016108. doi:10.1063/1.5133026
 Yu, C.-H., Qin, Z., Martin-Martinez, F. J., and Buehler, M. J. (2019). A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence. ACS Nano 13, 7471–7482. doi:10.1021/acsnano.9b02180
 Zafeiris, D., Rutella, S., and Ball, G. R. (2018). An Artificial Neural Network Integrated Pipeline for Biomarker Discovery Using Alzheimer's Disease as a Case Study. Comput. Struct. Biotechnol. J. 16, 77–87. doi:10.1016/j.csbj.2018.02.001
 Zhang, B., Li, J., and Lü, Q. (2018). Prediction of 8-state Protein Secondary Structures by a Novel Deep Learning Architecture. BMC Bioinforma. 19, 293. Available at: http://10.0.4.162/s12859-018-2280-5. doi:10.1186/s12859-018-2280-5
 Zhang, D., and Kabuka, M. (2019). Multimodal Deep Representation Learning for Protein Interaction Identification and Protein Family Classification. BMC Bioinforma. 20, 531. doi:10.1186/s12859-019-3084-y
 Zhang, L., Yu, G., Guo, M., and Wang, J. (2018). Predicting Protein-Protein Interactions Using High-Quality Non-interacting Pairs. BMC Bioinforma. 19, 525. doi:10.1186/s12859-018-2525-3
 Zhang, Y., Qiao, S., Ji, S., Han, N., Liu, D., and Zhou, J. (2019). Identification of DNA-Protein Binding Sites by Bootstrap Multiple Convolutional Neural Networks on Sequence Information. Eng. Appl. Artif. Intell. 79, 58–66. doi:10.1016/j.engappai.2019.01.003
 Zhao, B., and Xue, B. (2018). Decision-tree Based Meta-Strategy Improved Accuracy of Disorder Prediction and Identified Novel Disordered Residues inside Binding Motifs. Ijms 19, 3052. doi:10.3390/ijms19103052
 Zhao, F., Peng, J., and Xu, J. (2010). Fragment-free Approach to Protein Folding Using Conditional Neural Fields. Bioinformatics 26, i310–i317. doi:10.1093/bioinformatics/btq193
 Zhao, X., Li, J., Wang, R., He, F., Yue, L., and Yin, M. (2018). General and Species-specific Lysine Acetylation Site Prediction Using a Bi-modal Deep Architecture. IEEE ACCESS 6, 63560–63569. doi:10.1109/ACCESS.2018.2874882
 Zhao, Z., and Gong, X. (2019). Protein-Protein Interaction Interface Residue Pair Prediction Based on Deep Learning Architecture. IEEE/ACM Trans. Comput. Biol. Bioinf. 16, 1753–1759. doi:10.1109/TCBB.2017.2706682
 Zheng, W., Li, Y., Zhang, C., Pearce, R., Mortuza, S. M., and Zhang, Y. (2019). Deep‐learning Contact‐map Guided Protein Structure Prediction in CASP13. Proteins 87, 1149–1164. doi:10.1002/prot.25792
 Zheng, W., Zhou, X., Wuyun, Q., Pearce, R., Li, Y., and Zhang, Y. (2020). FUpred: Detecting Protein Domains through Deep-Learning-Based Contact Map Prediction. Bioinformatics 36, 3749–3757. doi:10.1093/bioinformatics/btaa217
 Zhu, X., and Lai, L. (2009). A Novel Method for Enzyme Design. J. Comput. Chem. 30, 256–267. doi:10.1002/jcc.21050
 Zimmermann, O., and Hansmann, U. H. E. (2006). Support Vector Machines for Prediction of Dihedral Angle Regions. Bioinformatics 22, 3009–3015. doi:10.1093/bioinformatics/btl489
GLOSSARY
1D-CNN one-dimensional convolutional neural network
2D-BRLSTM two-dimensional bidirectional recurrent long short-term memory
2D-CNN Two-dimensional convolutional neural network
3D-CNN Three-dimensional convolutional neural network
ACNN Asymmetric convolutional neural network
ADASYN Adaptive synthetic sampling
AGCT Alignment genetic causal tree
ANN Artificial neural network
BBFNN Biobasis function neural network
BBP Back back propagation
BLSTM Bidirectional long short-term memory
BN Bayesian network
BRNN Bidirectional recurrent neural network
BroMap Branch and bound map estimation
BRT Booster regression tree
CABS C-alpha–beta side
CFN Cost function network
CNF Conditional neural field
CNN Convolutional neural network
COSNet Cost-sensitive neural network
DCNN Deep convolutional neural network
DeepDIN Deep dense inception network
Deep3I Deep inception-inside-inception network
DFS Depth first search
DL Deep learning
DMNN Deep mahout neural network
DNN Deep neural network
DRNN Deep residual neural network
DROP Domain linker prediction using optimal feature
DT Decision tree
DTNN Deep tensor neural network
EASE-MM Evolutionary amino acid and structural encodings with multiple models
ELMO Embeddings from language models
ENN-RL Evolution neural network-based regularized Laplacian kernel
FFNN Feed forward neural network
FIBHASH Fibonacci numbers and hashing table
GA Genetic algorithms
GAN Generative adversarial network
GBT Gradient boost tree
GBDT Gradient boosted decision tree
GCN Graph convolutional network
GR Genetic recombination
HDL Hybrid deep learning
HMM Hidden Markov model
HNN Hopfield neural network
IBP Incremental back propagation
KeSCANN Knowledge-enriched self-attention convolutional neural network
K-merHMM K.mer Hidden Markov model
KNN k-nearest neighbor
Lasso Least absolute shrinkage and selection operator
LightGBM Light gradient boosting machine
LM Levenberg–Marquardt
LPBoostR Linear programming boosting regression
LPSVMR Linear programming support vector machine regression
LR Logistic regression
LSDR Label-space dimensionality reduction
LSTM Long short-term memory
MC Monte Carlo
ME Max entropy
ML Model
MLP Multilayer perceptron
MNB Multinomial naïve bayes
MNNN Multi-scale neighborhood-based neural network
MNPP Message passing neural network
MotifCNN Motif convolutional neural network
Motif DNN Motif deep neural network
MR Matching loss regression
MRF Markov random forest
Multimodal DNN Multimodal deep neural network
NB Naïve Bayes
NLP Natural language processing
ORMR One-norm regularization matching-loss regression
ParCOSNet Parallel COSNet
PLSR Partial least-squares regression
PNN Probabilistic neural network
PS Protein science
PSO Particle swarm optimization
PSP Predict signal pathway
QP quick prob
ReLeaSE Reinforcement learning for structural evolution
RF Random forest
RN Relational network
RNN Recurrent neural network
RNN 2 Residual neural network
RR Ridge regression
SDHINE Meta path-based heterogeneous information embedding approach
SFFS Sequential forward floating selection
SGD Stochastic gradient descent
SPARK-X Probabilistic-based matching
SPIN Sequence profiles by integrated neural network
SVM Support vector machine
SVMR Support vector machine regression
SVR Support vector regression
UDNN Ultradeep neural network
VSA Virtual screening algorithms
WMC Weighted multiple conformations
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Villalobos-Alva, Ochoa-Toledo, Villalobos-Alva, Aliseda, Pérez-Escamirosa, Altamirano-Bustamante, Ochoa-Fernández, Zamora-Solís, Villalobos-Alva, Revilla-Monsalve, Kemper-Valverde and Altamirano-Bustamante. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
OPS/images/fbioe-10-788300-t006.jpg
First
Author/Year
of Publication/
Country

Vang H, 2020,
China (Yang H. et a.
2020)

Hanson J., 2018,
Austalia, China
(Hanson et al, 2018)
Ashkenazy H, 2011,
srasl (Ashkenazy

ot al, 2011)
Durant J., 2011, US.
(Durant and
4cCammon, 2011)

LinG., 2010, US (Un
et al, 2010)

Song.., 2021, China.
(Song et al., 2021)

iwon Y., 2020,
Korea (Kwon et a
2020)

Mahmoud A., 2020,
Switzerand, US.
(Mahmoud et a
2020)

Wang M. 2020, US
(Wang M. et al
2020¢)

Zheng W., 2020,
China, US (Zneng
al, 2020)

Cui Y., 2019, China
(Cui et al, 2019)

Fu H. 2019, China
(Fu et al, 2019)

Haberal | 2019,
Norway, Turkey
(Haberal and Ogu,
2019)

Savojardo C., 2019,
haly Savojardoet al
20200)

Simha R, 2015,
Canada, Germany,
US (Simha ot ol
2015)

Briesemeister S,
2010, Gerrmany
(Briesemesster et a.
2010)

Huang W., 2008,
Taiwan (Huang et o
2008)

Ladungal., 1991,
Hungary (Ladunga
etal. 1991)

Dai W., China, 2020
(Dai et al, 2020)

Picart-Amada S.,
2019, Beiguim, UK,
Spain
(Prcart-Ammada et al
2019)

Database

Initial
scafold
(1)

Protein Contact Map Prediction

SCOPe 207

PDB UniProt

POB

PDB MOAD

OB

NA

Primary amino acid
sequence, proteins from
casPi2

3D protein structure

Crystal structure data

Protein Folding Rates.
Predicting protein folding
rates from geometric
contact and amino acid
sequence

Protein-Binding Prediction

PDB Swiss-
Prot

PDBING-2016

OB

SKEMP1 1.0,
2.0 dataset
AB-Bind 5845
dataset
Transtac

ATP-binding proteins

VEGFR? kinase domain

and adenosine deaminase

HIV-1 protease,
diydrofolate reductase

Protein-protein
complexes.

DNA sequences.

Protein Ste Preciction

SCOPe2.07

Biolip

PLVMD

OB

Uniproti®/
SwissProt

DBMLoC
dataset

UniProt

UnProt GO

UnProt

Genormics
Reactome OB
and InBio
Map DB
STANG

NA

Fourteen binding residues

Sequences and
physicochemical
properties of protein

Metal binding of histcine
and Cysteine amino acids

Mitochondial proteins.

NA

Protein sequence

scLiz,

SCL16 Sequence-based,
GO tems, protein
sequence

Signal peptide

Human essential gene

Gene-disease data from
22 common non-
cancerous diseases

Designed
Protein

‘Contact map protein
preciction

Protein contact map.
preciction

Contact map
preciction

Identification of smal-
‘molecule ligands.

Protein foding kinetic
rate and rea-value
folding rate

Protein-ATP-Binding
Residues

Prediction of affnty-
binding of a
protein-iigand
complex
Hydration ste
‘ocoupancy and
themodynamics
predictions
Protein-ligand-
binding affnity
predictions

precioting
DNA-protein binding

Protein domain
boundaries.

Protein-igand-
binding residue
preciotion

Predict Lysine
ubiquitination stes in
large scale.

Prediction of metal
binding in proteins.

‘Sub-mitochondrial
celuiar localzation

Protein mul-location
preciction

Predict protein
suboeluiar localization

Prediction method for
precicting subcelldar
locaiization of novel
proteins.

Novel precicted signal
peptides

Predict human
essential genes

Target disease gene
identifcation

ML model

CNN, 2D-BALSTM

wme

ANN scoring
function map.

SVM, SVR

DONN, LightGBM

3D-ONN

oNN

Ste-speciic
persistent homology,
ONN, GBT

oNN

DANN

DONN

NN, DL Deeplbi

2D-CNN,
LSTM, RNN

NN

MDLoc, BN

Ne

GA, S\WM

NN (Ting algorithm)

Network
embedding, SVM

PR, Random
Randomraw EGAD,
PPR, Raw, GM, MC,
Z-scores, KNN,
WSLD, COSNet,
bagS\M, RF, S\M

Software/Sever

Keras, Tensorlow
hitps/github.
commelissaya/
GANcon
hitp:/sparks-lab.
orgfiack/server/
SPOTContact/
hitp:/Aau ac.i/
~haimashWMC

NNScore
20 htps/fumew.
nbor neysofware!
nnscore!
SeaRate hitpy/
caspmet.
missour ecfoid_
ate/ndex himl

TensorFlow, Keras
hitps/github.
comtsiz/
ATPensamble

Keras, Tensoriow

hitps/nb.
docker.com/
Wlab/watsited

TopNetTree, Keras
hitps://oi.org/10.
24433/C0.
05374871
Keras, Tensorfow.
hitpsy/github.
com/gao-lab/
ePooling

hitps//zhanglab.
comb.med.umich,
eduFUpred/

TensorFlow,
hitps/github.
comiyCuiFaih/
DeepCSeqSite
TensorFlow,
DespUbi: hitps/
github.com/
‘Sunmile/DeepUbi
Keras, TensorFlow

hitp://ousca.
biocomp.uribo.it
deepmito
MDLoc hitpi/
v eecis udel.
educompbiol
mdloc

Yioc Weka ww.
multioc.org/VLoc

UBSVM ProlocGO
hitp://ciabe.
nctu.edutw/
prolocgo

NA

NA

hitps/github.
comb2siabl
genedise

Programming

Platform

Python

NA

Python

Java

Python

Python

NA

Matab, java,
python

NA

Python,
MATLAB, Linix

Python

Python

Python

Python, Java,

Linux

NA

NA

License

Open

NA

Open
Source.

Open
Source.
Open

Source.

Open
Source.

Open
Source.

Open
Source.

Open
Source.

Open
Source.

Open
Source

Open

Open
Source.

Open

Open
Source

Open

Source.

Open
source

NA

NA

NA

Open
Source

Quality
)

45

7

i

100

100

100

75

7

75

Machine
learning

Supervised
Learing:
Regression

Supervised
Learing:
Prediction
NA

Supervised
Learing:
Classifcation

Supervised
Learing:
Classifcation

Supervised
Learning:
Regression
Preciction
Classifcation
Supervised
Leaming:
Preciction

Supenvised
Learing:
Regression
Classifcation
Supervised
Learing:
Preciction

Supenvised
Learing:
Regression
Precsction

Supervised
Learning:
Classifcation

Supenvised
Leaming
Preciction

Supervised
Learning:
Classifcation

Supenvised
Learing:
Preciction

‘Supervised
Leaming
Regrossion
‘Supervised
Learming:
Classification

Supervised
Leaming
Classifcation

Supervised
Leaming:
Classifcation

Supenvsed
Learning:
Classifcation

Supervised
Leaming:
Classifcation
Semi-
supenvised,
Supervised
Learing:
Classifcation

Protein
application

Contact map
prediction

Protein contact
map prediction

Protein map.
prediction

Protein map.
prediction

Protein map.
prediction

Prediction of
Protein-ATP
Binding Residues

Protein affiniy-
binding prediction

Protein-igand-
binding prediction

Protein-protein-
binding affinity

Protein-binding
prediction

Protein domain
dentifcation

Protein site
prediction

Protein site
prediction

Protein site
prediction

Protein sub-
mitochondrial site
prediction
Protein site
prediction

Protein site
prediction

Protein site
prediction

Protein site
prediction

Human gene
prediction

Target gene
identifcation,
target drug
discovery

2D-BALSTM, two-dimensional bidirectional Aes-long short-term memary; 20-CNN, Two-dimensional convolutional neural ubcel; SD-GNN, Three-dimensional convolutional neural ubcel; AN, Artifial neural network; BN, Bayesian
Network: CN, Convolutionaineuralnetwork; DCNN, Deep Convolutonalnecralnetwork; DL, Deep leaming; GAs, Genetic aigorthms; GBT, Gradient boostres; KN, k-nearest neighbor; LightGBM, Light Gradfent B0osting Machine; LSTM,
Long short-term memory: NB, Naive Bayes: NN, Neural network: RNIN, Recurrent neural network: SVM, Support vector machine: SVR, Support vector regression; WMC, Weighted multiole conformation.





OPS/xhtml/nav.xhtml
Contents

		Cover

		Protein Science Meets Artificial Intelligence: A Systematic Review and a Biochemical Meta-Analysis of an Inter-Field		Introduction

		Materials and Methods		PIO Strategy

		Databases and Searches

		Biochemical Meta-analysis

		Biochemical Meta-Analysis and Designing the Road Map





		Results		Article Scaffolding

		Toward an Innovative Cross-Functional AI–PS Binomial Inter-field

		Machine Learning Approach to Protein Science

		Machine Learning Paradigms and AI Algorithm Roles

		AI Training, Validation, and Performance

		Road Map of Artificial Intelligence in Protein Science





		Final Discussion and Further Challenges for Our Understanding of Protein Science Using AI		Novelties and Future Direction in the Binomial PS-IA Research

		Some Conclusions





		Data Availability Statement

		Author Contributions

		Publisher’s Note

		Acknowledgments

		References

		Glossary









OPS/images/fbioe-10-788300-t005.jpg
First
Author/Year
of Publication/
Country

XuJ, 2022, USA (X
et al, 2021)

ALQuraishi M.,
2021, USA
(AQuraishi, 2021)
Bond P., 2020, UK.
(Bond et al, 2020)

Wardah W., 2020,
Austraiia, Fi, Japan,
US (Wardah et a
2020)

Yang J., 2019,
China, USA (Yang
J. et al, 2020)

DegiacomiM., 2019,
UK (Degiacorm
2019)

Guo Y., 2019, US
(Guo et al, 2019)

Long S., 2019,
China (Long and
Tian, 2019)

Miabelo C. 2019,
Sweden (Mirabelo
and Walier, 2019)
Pagés G., 2019,
France (Pages ot a.
2019)

Schantz M., 2019,
Avgentina, Denrmark,
Malaysa (Causen

ot al 2019)

Wang D.. 2019,
China (Wang D.

ot al 2020)

YuG. 2019, US (Yu
ot al 2019)

Zheng W., 2019, US
(Zheng et al., 2019)

Fang C., 2018, US
(Fang ot al, 2018)

O'Connel J., 2018,
Australa, China, US.
(O'Connel et al.
2018)

Sunseri J., 2018, US
(Sunseri et al. 2019)

Zhang B., 2018,
China (Zhang .

et al, 2016)
Armenteros J.,
2017, Denmark
(Amagro
Armenteros et
2017)

Vang Y., 2017, US
(Vang and Xie, 2017)

Wang S., 2017, US
(Wang et o, 2017)

Yang J., 2015,
China, US (Yang
ot al, 2015)

iz, 2014, US (U
et al, 2014)

Wong K, 201,
Canada, US, Saudi
Arabia (Wong et al
3

Katzman S., 2008,
US (Katzman et al
2008)

Bindslev C., 2002,
Denmark
(Bindslev-Jensen
et al, 2000)

Database

Initial
scaffold
(1D)

Protein Structure Prediction

CASP13, PDB,
PISCES, CATH

PDB, CASP14

BioliP

CASP13,
Uniclustao

8513,
CASP10,
CASP11

Jpred dataset
cullpdb dataset
UniRefo0
UniProt

POB

CASP.

PDB, PISCES

CASP11, 12

POB

CASP13

PDB JPRED
CASP CB513

SPIN dataset

D3R Grand
challenge 3
Grand
challenge 3
PDB, PISCES,
TR5534 Dataset

UniProt

IEDB MHCBN
SYFPEITHI

Plam CASP
CAMEO

PDB SPx
dataset
PDBCYS
dataset
PISCES.

Protein-Binding
Microarray
dataset

PDB PISCES

20 Patients with
allergy to
Macrozoarces
americanus

Discrete probabiity
over cistance for
three backbone atom
pair and inter-esidue
orientation

Primary protein
sequence

Only resicues with
side chains longer
than beta-carbon
Posiive (binding) or
negative (non-
binding). protein
sequence
clssifcation
Representation of the
igic-body transforn
fom one residue to
another; angles and
distances

Malate
denydrogenase
(IMLD), o8 crystain
wur)
Phospholpase A2
(1POA), Envelope
gycoprotein (1SVE),
MurD, Closed (QUAG),
MurD, open (1E0D),
MurD, closed + open
(GUAG, 1EQD), HIV-1
(1E6)

Protsin sequences

Multile superfamiles

NA

Model QA

Crystal structures

Caspase 14

1941 (ysozyme).
107m (myoglobin),
60gz (p-bare, a sik
protein, amyoid
protein, and others

Query sequence
profies

Different super-
families, CASP10,
11,12

NA

Input igand SMILES
protein FASTA CSAR

CASP10, 11, 12
and 18

Protein sequence,
Sequence information

Human leukocyte
antigen (HLA)
complex

150 Pam famls 105
CASP 1 testproteins
76 hard CAMEO

Amino acid sequence

TL2282 dataset
TS500 dataset
TR1532 dataset
DNA sequence

Amino acid sequence
of a protein of
unknown structure
Macrozoarces
americanus

Designed
Protein

Structure prediction

Structure prediction

Predicting the
correctness of
protein residues
Predicting Protein-
pepide-binding
sites

Predicted inter-
residue orientations.

Enhancement of
molecular
conformational
space generator

Protein secondary
structure

Protein secondary
structure prediction

Method prediction

Protein model
qualty assessment

Prediction of
protein structural
features

Protein structure
refinement

Generation of
audible sound from
amino acid
sequence for
applcation on
designer materials
Automated
structure prediction
pipeline

Protein secondary
structure prediction

Sequence profie
compatiole

Cathepsin S model
ligand protein

Prediction of
performance of
protein

Predict protein
suboelular
locaiization

HLA class.
-peptide-binding
prediction

sfspH

Structure prediction
of oysteine-rich
proteins

Sequence profie
prediction

DNAmott
discovery

Local structure
prediction

Investigate
potental
alergenicty of Ice
Stucturing
Protein (SP)

ML model

Convolutional
residual neural
network

Markov random
fild, Attention
networks.

NN, MLP.

o

Deep residual

‘convolutional
neural network

Molecular

dynamics, RF,
auto encoder

ACNN, BLSTM

o

NLP, DNN

ONN, LSTM

M-
objective PSO

ANN, LSTM

ZnangServer
and QUARK
pipelines.
Deepd network

DNN

o

CNN, RN,
BRNN

NN, RNN
BLSTM, FFNN,
Attention
models

NLP, CNN

DANN

HMM, SVR

SPIN, NN

Kamer-HMM

Multi-tayer NN

ot

‘Software/Sever

hitps/githuo.com/
j3xugtRaptor-
‘aDModeling!

NA

ccpa

PyTorch, https/github.
com/WafaaWardat/
Visual

hitps:/
yangab.narkai.edu.cr/
trRosettal

Keras, Tensorflow

Keras, Tensorflow,
hitps/githuio.com/
GYBTADALSTM/

TensorFlow N/A

Keras, TensorFlow
hitps:/bitoucket.org/
lami6B/rawmsa
TensorFlow, Omate
hitps:/Aeam invia.fi
nanod/software/Omate/
Keras

AIR 2.0 www.cSbi0 S
edu.cvbionYAR/

Magenta TensorFlow,
Melody RNN

Zhang and Quark server

MUFOLD-SS TensorFiow
and Keras

hitp://sparks-1ab.org.
SPIN

Gnina, Caffe, https://
github.comvgnina

Keras

Lasagne, Theano, Deep
Loc: ittp:/Awww.cbs.dtu.
di/senvices/Deepl.oc

Keras, Theano, https:/
github com/uci-cbol/
HUA-bind

TensorFiow, Theano
hitp://raptorx.uchicago.
edu/ContactMap/

‘GYSCON hitp:/Awww.
‘osbio.stu.edu.cnvbiont/
Cyscon/

SPIN hitp:/sparks-
tab.org

KemerHMM hitp:/wvi.
cs.toronto.eduwke/
kmerHMM

PREDICT-2"° http//
W 508.ucsC.edu/
~karplus/prediot-2nd/
NA

Programming
language/
Platform

python

NA

e+, Python

Python

Python

Python

Python

Ce+, Python

Java, Python

NA

Python

NA

Ce+, Python

Python

Python

NA

Python, Linux

NA

Ces

NA

License  Quality

Open
source

NA
Open
Source

Open
Source

Open
source

Open
Source

Open
Source

Open
Source

Open
Source

Open
Source

Open
source
Open
Source

Open
Source

Open
Source

Open
Source
Open
Source

Open
Source

Open
Source

Lcense
M

Open
Source

Apache
20

NA

Open
Source

NA

Open
source

NA

(%)

50%

100

70

8

70

8

100

%

100

&

EY

100

100

100

75

75

50

8

a5

Machine
learning

Supenvised
Leaming;
Preciction

Supenvised
Leaming:
Prediction
Supenvised
Leaming:
Regression
Supenvised
Leaming:
Preciction
Classifcation

Supervised
Leaming;
Prediction

Unsupenvised
Leaming:
Classification

Supenvised
Leaming:
Prediction
Glassiication
Supenvised
Learning:
Unsupervised
Learning:
Prediction
Supervised
Learning:
Prediction
‘Supervised
Learning:
Regression
Supenvised
Learning:
Prediction

Supervised
Leaming:
Optimization
Supervised
Leaming:
Regression

Supenvised
Learing:
Classification
Regression
Supervised
Learing:
Classifcation
Supenvised
Leaming:
Preciction

Supervised
Leaming:
Regression

Supervised
Leaming,
Prediction
Supenvised
Leaming:
Classifcation

Supervised
Learning:
Regression
Supenvised
Learning:
Glassiication
Regression
Supenised
Learning:
Regression

Supervised
Learning:
Glassifcation
Supenised
Learning:
Classifcation.
Unsupervised
Learning:
Clustering
Unsuperised
Learing:
Glustering
Supenvised
Learring:
Regression

Protein
application

Protein structure
prediction

Protein structure
prediction

Protein structure
prediction

Protein structure
prediction

Protein structure
prediction

Protein
conformational
space.

Protein
secondary.
structure
prediction
Protein structure

prediction

Proten structure
prediction

Model protein
prediction

Protein structure
prediction

Proten structure
prediction

Protein
sequence
prediction

Proten structure
prediction

Protein structure
prediction

Protein
sequence
prediction

Protein model
prediction
Proten structure
prediction

Protein structure
prediction

Proten structure
prediction

Proten structure
prediction

Protein structure
prediction

Protein structure
prediction

Model Discovery

Proten structure
prediction

Protein structure
prediction

3D-CNN, throe-dimensional convolutional neural network; ACNN, Asymmetric convolutionalneural petwork; BLSTM, Bidiectionatlong short-torm memory; BRI, Bidrectionalrecurent neural network: GNN, Convolutonal neural network:
Do, Deep inception-inside-inception network: DN, Deep neural network; DRNN, Deep residual neural network; DT, Decision Tree; FFIN, Feed forward neural network; MMM, Hidden Markov mode; K-merHMM, K mer Hidden Markov
model; LSTM, Long short-term memory; MC, Monte Cario; ML, Modil; MLP, Multiayer perceptron; NN, Neural network; PSO, Partice swarm optimization; RNN, Recurrent neural network; NN 2, Resicual neuralnetwork; SPIN, Sequence
Profiles by Intearated Neural network: SVR, Support vector regression: UDNN, Ultradeen neural network.





OPS/images/fbioe-10-788300-t004.jpg
First
Author/Year
of Publication/
Country

Rives A., 2020,
UK, USA (Rives
et al, 2021)

LiH., 2020,
France, Hong
Kong (Hongjan
ot al 2021)

Shroff R., 2020,
US (Strof et a
2020)

Wang M. 2020,
China, US (Wang
M. et al, 20200)
Chen J., 2019,
China (Chen et a
2019)

Han X, 2019,
Singapore, US
(Han et al, 2019)

Heinzinger M.,
2019, Germany
(Heinzinger et al
2019)

Kaleel M., 2019,
reland (Kalee!

et al, 2019)

Li C., 2019, China
(U and Liu, 2020)

Luo L., 2019,
China (Luo L.

et al, 2019)
Taherzadeh T.,
2019, Australia,
US (Taherzadeh
et al, 2019)
Zhang D., 2019,
US (Zhang and
Kabuka, 2019)

Cuperus J., 2018,
US (Cuperus
et al, 2017)

Hochui J., 2018,
US (Hochul et al.
2018)

LwoF., 2018,
China (Luo .

ot al, 2019)

Zhao X., 2018,
China (Zhao et a
2018)

Zhao ., 2010, US.
(Zhao et al. 2010)

Amstrong K.,
2008, US
(Armstrong and
Tidor, 2008)
Shamim M., 2007,
india (Shamim

et al,, 2007)

Burak T., 2021,
Turkey (Alakus
and Tirkoglu,
2021)

Zhao Z., 2019,
China (Zhao and
Gong, 2019)

Huang L., 2016,

US (Huang ot ol

2018)

LeN, 2018,

Taiwan (e et al.
01)

Xue L., 2018,
China, US (<ue
et al, 2019)

Zhao B., 2018, US
2heo and Xus
2018)

Szalkai B., 2017,
Hungary(Szalkei
and Grolmusz.
2018a)

Szakai 8., 2017,
Hungary (Szalkai
and Groimusz,
0180)

Database

Initial
scaffold
(1D)

Fold ID and physicochemical properties

SCOPe

PDB, PubChem,
2ZINC, ChEMB.L.
BindingDB, HTS

PDB

UniProt

ACPLMBC

UniProt, POB

POB

LE dataset from
scoP

BioCreative Il
BioCreative i,
BioCreative IL.5
Uniprot, doPTM,
Uniprep, UnicarkB,
GlycoProlDB

DIP, HPRD, UriProt

' UTRibrary of 50-
ntiong random
sequences.

PDB

Phospho ELM,
PhosphostePus,
HPRD, doPTM,
SysPTM

PLVD

CAsP

D-B dataset Ext.
D-B dataset

Protein Classifcation
UniProt

Monomers and
dimers from the
author

DIP, HPRD

UniProt GO

Swiss-Prot,

TIEMBL

DisProt PDB

Swiss-Prot,
UnProt, GO

UniProt GO

Protein data in the form
of unlabeled amino acid
sequences. Small
vocabulary of 20
canonical elements

Chemical Estrogen
recsplor a (Era)
Anapiastic hymphoma
Kinase Neuraminidase
(NA) Reducig the level
of Dmito protein n fies
Acetychainesterase
(Ach)

NA

€. coll, M. musculus, H.
sapiens

Proteins and reducing
sugars

Cell-free protein
expression from E. ool

TS115 CB513 CASP12

Amino acids are
suboellar into four

classes invohing RSA
Mutiple superfamiies

PPl protein artices

Giycoprotein

D. melanogaster, S
cerevisiae, E. ool C.
elegans, H. sapiens, H.
pylor, M. musculus, R.
nonvegious

Yeast Saccharomyces.
corevisiae

Ligands SMILE Protein
FASTA

Kinase protein family

Lysine

(PSSM) Positon-specifc
scoring matrx
generated by PSI-
BLAST

Protein sequence

Structural information of
amino acid residue and
amino acid residue pairs

Protein sequence from
60 diferent families.

Monomers and dimers.
from the author

PPl network graph

Rab GGT activity Rab
GD! actiity Rab GTPase
binding Rab GEF activty

Secretory protein

Intrinsicaly disordered
proteins (DP),
intinsicaly disordered
regions (DRs), and
intinsicaly disordered
amino acids (DAAS)
Tryroid hormone,
phenol-containing
compound, celuar
modified amino acd
protein kinase
supertamily
Casses.re

Designed
Protein

Predicted model
contains
information about
biological
properties inits
representations
Protein-iigand
‘complex

‘amino acid
‘association guide
mutation

Protein
malonyiation site
prediction
Giycation product
prediction

Protein solubiity

Protein sequence.
representation

Prediction of
relative sovent
accessibity
Detect the
structural mofs
related with the
protein folds
Protein-protein
interaction

N-and O-inked
ghycosyiation

Protein-protein
interactions and
protein famiy
prediction

Predict protein
expression

denty
protein-iigand
scoring

Protein
phosphonyation

Lysine acstyfation
stes

Protein folding

Protein
engineering space
of foldable
sequences
Protein fold
prediction

Protein famiy
dassication/
identiication

Protein-protein
interaction

Protein-protein
interaction

Classiy Rab
protein molecules

Protein sequence.
into TaSes or non-
Tases

NA

protein
dassication by
‘amino acid
sequence

Hierarchical
Biological
Sequence
Classifcation

ML model

Deep contextual
language model

RF, BAT, kNN,
NN, SWM,
GBDT, muti-
task DNN
XGBoost

3D ONN

DL-CNN

ANN, CNN

GAN

NLP, ELMo

BANN

MotCNN and

MotfDCNN
SVMCNN

KeSACNN

DNN SvM

Muitimodal ONN

ONN

NN

NN DNN

CNF

Computational

mapping

s

FIBHASH

ENN-RL.

2DONN

DONN

ANN, OT

DNN

Software/Sever

hitps/github, com/
facebookresearchy’
esm

Descriptor databank
ODDT BINANA RF-
Score-v1 RF-Score-
3 MIEC-SVM

“Theano www.
Mutcompute.com

Keras, https://
github.com/QUST-
AIBBDRC/DeepMal/
NA

NA

Pytorch, https://
embed.protein.
properties/

hitp://distildesp.
uedie/paleale/

TensorFlow

Keras

TensorFlow, https:/
sparks-iab.org/
server/sprint-gly/

NA

Keras, Thearo,
fttps2/github com/
Seclglab/2017---
Deeplearming-
yeast-UTRs.

Grina, Caffe
Github.com/grina

hitps:/github.com/
USTCHIab/
DeepPhos

Keras, Theano,
hitps:/github.com/
jageniee/Deephce

oNF

NA

UBSM-iorary

NA

NA

TensorFlow, https:/
www eecis.udel
edu/~Hiao/enn/
Keras, Theano
DespRab; http://
bio216.bicinfo.yzu.
edu.tw/deeprab/
Keras, hitps://
github.com/
1600006/DeepT3.

DISEMBL, IUPred,
VSL2, Dban, and
Espritz

TensorFlow

SECLAF,
TensorFlow htps://
pitgroup.org/seciat/

Programming
language/
Platform

Python

Python

Python

Python, Matiab

NA

NA

Python

Python

Python

Python

Python

NA

Python

Ce+, Python

NA

Python

NA

[

Cos, Java,
Python
Windows, Linux

NA

NA

Python

Python

Python

NA

Python

Pytnon

License

Open
source

Open
Source

Open
Source

Open
Source

NA

NA

Open
Source

Open
Source
Open
source
Open
Source

Open
Source

NA

Open
Source

Open
source

NA

Open
Source

NA

source

Open
source

NA

NA

Open
Source

Open
Source

Open
Source

NA

Open
Source

Source

Quality
(%)

70

100

70

8

EY

100

50

EY

75

8

50

EY

8

50

70

75

50

8

Machine
learning

Supenvised
leaming;
prediction

Supervised
Learning;
Unsupervised
Learning;
Prediction
Classifcation
Regression

‘Supervised
Learming: Gass
Prediction
Supervised
Learning
Glassifcation
Supenvised
Learning:
Glassifcation
Supenvised
Learning
Regression
Predicton
Supenvised
Learning:
Classifcation

Supervised
Learning:
Prediction
Supenvised
Learning:
Classiication

Supervised
Learning:
Glassiication
Supenvised
Learming:
Regression
Prediction
Supenvised
Learning:
Classifcation

Supenvised
Leaming:
Regression

Supervised
Leaming:
Glassication
Supenvised
Leaming:
Regression
Prediction
Supervised
Leaming:
Regression
Cassiicaton
Prediction
Supervised
Leaming
Cassiication

NA

Supenvised
Leaming:
Classifcation

Supenvised
Leaming:
Classifcation

Supenvised
Learing
Unsupervised
Learning:
Regression
Supervised
Learning
Predicton
Supenised
Learning
Regression

Supenvised
Learning
Regression
Gassifcation
Supenvised
Learing:
Regression

Supenvised
Leaming:
Classifcation

Supervised
Learning:
Glassiication

Protein
application

Physicochermical
‘and biological
properties

Physicochermical
properties

Microenvironment
mutation
identiication
Malonyiation site
prediction

Giycation site
predictor

Protein solubilty
prediction

Fold ID

Protein relative
sovent accessiily
preciction

Fod D

Prysicochermical
properties

Giycosytation site
identiication

Prysicochermical
properties

Fold ID

Protei Scoring

Phosphoryiation
ste predictor

Acstytation site
prediction

Fold ID

Fold ID

Fold D

Protein
dassication

Interface residue
pai prediction

Protein-protein
interaction

Protein
Cassiication

Protein
dassication

Intrinsically
disordered protein
prediction

Protein
Cassification

Protein
Cassication

3D-CNN, three-gimensional convolutional neural network: ANN, Artifcil neuralnetwork: BLSTM, Bidrectional ong short-tern memory; BRNN, Bidirectional recurrent neural etwork; BRT, Boosterregression tres; CNF, Conitional neural
fed: DN, Dogp neural network DT, Decision Tree; ELMO, Embeddings from language models; ENN-AL, Evolution neural network-basect Requiarized Lapiacian kerne: FIBHASH, Fibonacol numbers and hashing table; GAN, Generative
ackersavial network; GBDT, Gradient boosted decision tres; GR, Geneti recombination; KN, k-nearest neighbor; KeSCANN, Knowleige-enrched Saif-Attention convolutional neural network: LSTM, Long short-ter mermory; MOtICNN,
Molif convolutional neural network; Motif DN, Mot deep neural network; Muttimodal DNN, Mattimodal desp neural network; NLP, Naturallanguage processing; NN, Neural network; R, Random forest; RNN, Recurrent neural network:
SPARK-X. Probabilistic-based matching: SVM, Support vector machine.





OPS/images/fbioe-10-788300-t003.jpg
First
Author/Year
of Publication/
Country

Verma N, 2021,
US (Verma et a

China, Russia, US
(Du et al., 2020)
Liang M., 2020,
China (Lang and
N, 2020)
RisiogluA. 2019,
Turkey, UK
(Ricioglu et al.
2019)

Tomg W., 2019,
US (Tomg and
Atman, 2019)
Wan C., 2019, UK
(Wan et a, 2019)

Feinberg E.,
2018, China, US
(Feinberg et .
2018)

Frasca M., 2018,
faly (Frasca et .
2018)

Khurana
S., 2018, Qatar,
US (Knurana
et al, 2018)

LiH, 2018, China
(et al, 2018)

Long H, 2018,
China, US (Long
otal, 2016)

Makodimis S.,
2016,
Netherands
Makrodimiis

4., 2019)
Zhang L., 2018,
Crina (Zhang L
ot al 2018)
Adhkeri 8., 2017,
US (Adhiari et a
2018)

Cao R, 2017, US
(Cao et al, 2017)

A-Gharabii .,
2015, Jordan
(A-Gharabii et a
2015)

QY. 2012, US
(@ietal, 2012)

Yang Y., 2011,
US (Yang et al
2011)

Latek D., 2010,
Poland (Latek and
Kolinski, 2011)

Tian J., 2010,
China, US (Tian
et al, 2010)

Wu'S., 2008, US
(W and Zhang,
2008)
Hung C., 2006,
Taiwan (Hung

et al, 2006)
Sidhu A., 2006,
UK (Sidhu and
Zheng, 2006)

Capriott €., 2005,
aly (Capriot
et al., 2005)

Hu C., 2004, US.
(Hu et al, 2004)

Gutteridge A.,
2008, UK
(Gutteridge et al
2003)

Nie J., Singapore
2020 (Sua et .
2020)

Savojardo C..,
2020, haly
(Savojardo et a
20201

Fang C., 2019,
China, Japan
(Fang et al. 2019)
Znang Y., 2019,
China Zhang

et al. 2019)
Hanson J, 2018,
Australa, China
(Hanson et al
2019)

Shah R., 2008,
US (shah et al.
2008)

Database Initial
scaffold
(D)

Protein function prediction
DrugBank Human, C. Elegans
matador
PDB
CAFA3, Human, C. Elegans
SwissProt
OB Retative angle of (C -

Ca - O) principal
plane

UniProtkB/ NA

Swiss-Prot

PROSITE Protein structure as.

NOS dataset 3D images

UniProtkB/ Human proteins

Swiss-Prot

PDB Bind Scafold spit for

2007 grouping ligands in
‘common frameworks.

STANGGO  Organisms: Homo
sapiens (huma) S.
cerevisiae (yeast) Mus
musculus (mouse)

PepcDB femer structure and

database addtional sequence
and structural
features extracted
from the protein
sequence

HPRD DIP Primary sequence

HIPPIE Escherichia coll
Drosophia,
Caenorhabis
elegans, Pan's PP
datasets

UniProt PseAAC
Hydroxyproline and
hydroxyysine

Avabidopsis Avabidopsis thaliana

thaana protein

proteins.

UnProt, DP S, cerevisiae, H.
sapiens, and M.
musculus

DNCON NA

Dataset

UniProt Protein sequence

OB Amino acid sequence
hydrophobicity

Standard PSI-BLAST amino

benchmark, ‘acid embedding

cBs13

DssP

SPINE Protein sequence

10 globuar 10 gobular proteins

proteins, and S100A1 protein

216

residues,

and $100A1

protein

ProThern 3D structures:

PDB

POB PDB protein
sequence

NeBI Nucleocapsid (nsp1)
‘ofacoronavirus famiy

Swiss-Prot ‘Signal peptides and
non-secretory
proteins from Human,
E. coli,prokaryotic

ProTherm Protein tertary
structure

WhatlF 9D coarse-grained

database structure from protein

UnProt ‘sequences

POB Amino acid sequence
of quinolate
phosphoribosyl
transferase

Designed
Protein

Protein-igand
interactions

Automated function
prediction

Enzymatic function
prediction

GO term prediction

Protein functional site
detection

Function prediction

Molecular Property
Prediction

AFP (Automated
Protein Function
Predicton)

Solubilty prediction

Predicton of protein
interactions

Predicting
hydroxylation sites

Protein function
prediction

Predicting
Protein-Protein
interactions

Contact map protein
predition

Protein function
prediction

Predicton of dihedral
angles
physiochemical
properties, enzyme
loops

Predicton of the local
properties in proteins

Single-method fold
recogrition

Predicted Nuciear
Overhauser Effect
signals on thelbasis of
low-energy structures.
from CABS-NMR

Eflect on single- o
mult-site mutation on
protein
thermostabiity
Protein contact
predictor

Predict protein
functions

Precict signal peptide.

Protein stabiity
prediotion

Optimal nonvinear
scoring

Precict active site

Function Prediction and Novel Function

UniProt acetyysine (S1),
“crotonylysine” (82),
“methyl-ysine” (S3),
or “succinyl-
Iysine’ (54)

UnProtkB Human, mouse, fly,

GOA, yeast, and

DeepMitoDB  Arabidopsis thaliana.

OB MoRF-containing
mermbrane protein
chains

POB PDNA-543, PONA-
224 and PDNA-316

PISCES SNSEA 6FI2A 6FQ3A

casP1Z

DB

D Dataset Protein sequence

Identifcation of
Lysine PTM sites

protein sub-
mitochondial
localization

Molecular recognition
features MoRFs
prediotion
Identifcation of
DNA-protein-binding
ste
Sequence-based
prediction of one-
dimensional
structural propertes.
of proteins.
Homology detection

ML model

DNN

NLP, CNN

AN, LSTM

DN

oL, 30-
CNN, SVM

DMNN, SVM

GONN

COSNet,
ParCOSNet,
HNN

CNN, DL,
FPNN

DNN, CNN,
Ls™

CNN, LSTM

KNN, LSDR

DNN, Adam
Algorithm

o

ANN

ONN

SPARKS X
Algorithm

CABS, MC

PR, RF, SIM

MUSTER

AGcT

BBFNN, DT

SVMnoninear
Gaussian
kemel
functions
FANN

RF, SWM,
MNB, LR, ME,
KNN,

CNN, MLP

Desphiito,

1D-CNN

DONN

ADASYN

CNN, 2D-
BALSTM

Software/Sever

Github (tps://github.
comvekraka/Ssnet)

Keras, TensorFlow.
TensorFiow

Tensorfiow, https//
github.comvcansy/
DEEPred

N/A https:/fsimtiorg/
projects/fsenn

Keras, https//github.
com/psipred/
STRING2GO

PyTorch, NumPy and
scPy

COSNet, ParCOSNet

PROSO Il htpsy/zenodo.
org/record/11628364.
XSP2BfPZ0Q DeepSol:
hitps/github.com/
sameerkhurana10/
DSOL n0:2

Keras, Theano,
TensorFiow, NA

MXNet, /A

SciPy hitpsy/github.
Com/stamakro/SSP-
LSOR.

TensorFiow

TensorFiow, Keras http/
sysbio.met.missouredu/
ancon2/

ProLanGO Model N/A

NA

Torchs

SPARKS X hitps://
sparks-lab org/server/
sparks-x/

CABS- NMR tookit
hitp:/biocomp.chem.
uw.edu pliservices php

Prethermut hitp//www.
mobioinfor.ca/
prethermut/

MUSTER http//zhang.
bioinformatics.ku.edu’
MUSTER

NA

NA

Mutant2.0 http/gpcr.
biocomp.uribo.cg/
predictors/-Mutant2. 0/
Mutant2.0.cgi

NA

NA

Tensorfiow, https://
github comvkhanhiee/
IysineSGT

NA

NA

NA

SVM-HUSTLE http:
W sysbio.0rg/Sysbio/
networkbio/svm_hust!

Programming
language/
Platform

Python

Python

C.C++,R,CUDA

Python, Linux

Python, MATLAB
Bioinformatics
toolbox

Python

Python

NA

NA

Shel script

NA

R, Per, Linux

NA

NA

NA

Python

NA

NA

Python.

NA

NA

NA

NA

License

source

Source

Source

Source

NA

Source

Source

Open
Source

Open
source

Source

Apache 2.0

Open
source,
Mathworks,

Source

Source

A

NA

Source

Source

NA

Source

NA

NA

NA

Source

NA

NA

NA

NA

NA

Source

NA

NA

Quality
(%)

75

0

0

7

100

7

8

EY

50

7

70

s

50

75

5

75

50

100

75

75

8

70

Machine
learning

Supenised
learing:
Prediction
Supervised
Learning:
Glassiication
Supervised
Learning:
Preciction
Supervised
Learming:
Regression

Supenvised
Learming:
Cassfication
Supervised
Learning:
Prediction
Classiication
Supervised
Learning:
Prediction

Unsupenised
Learing;
Clustering

Unsupenised
Learing:
Clustering

Supervised
Learing:
Regression

Supenvised
Learning:
Classifcation

Unsupenised
Learning:
Clustering

Supervised
Learning:
Prediction
Supervised
Learning:
Regression
Predection
Supervised
Learning:
Classiication
Supervised
Learming:
Glassfication

Supervised
Leaming;
Classifcation

Supervised
Learing:
Regression
Unsupenvsed
Leaming:
Clustering

Supervised
Learing:
Classifcation

Supervised
Learing:
Classifcation
Supervised
Learing:
Classifcation

Supenised
Leaming:
Regression

Supenvised
Learing:
Cassification

Supenvised
Learing:
Cassification

Unsupenised
Learing:
Custering

Supenised
Leaming:
Classification

Supenised
learning:
Preciction

‘Supenvised
Learning:
Classification
Supervised
Learning:
Classifcation
Supervised
Learning;
Cassifcation

Supervised
Leaming:
Cassification

Protein
application

Protein-igand
nteraction
prediction
Protein function
prediction
Protein function
prediction,
Function ID
Protein function
prediction

Protein function
preciction
Protein function

prediction

Protein function
preciction

Protein function
prediction

Protein function
prediction

Protein function
prediction

Protein function
prediction

Protein function
preciction

Protein function
prediction
Protein
residue-residue
contacts

Protein function
prediction

Protein function
prediction

Protein function
prediction

Protein function
preciction

Protein function
preciction

Protein function
prediction

Protein function
prediction

Protein function
prediction

Protein function
preciction

Protein function
preciction

Protein function
prediction

Protein function
prediction

Function ID

Function ID

Function ID and
Fold D

Function ID and
Fold D

Function ID

Function ID and
Fold D

1D-CN, one-dimensional convolutional neural etwork; 20-BRLSTM, two-dimensional bicrectional recurrentlong short-torm memory; 3D-CAIN, three-cimensional convolutonal neural network; ADASYN, Adaptive Synthetic Samping:
ANN, Avtiicil neural network: AGCT, Algnment genefic causal tree; BBFNN, Biobasis function neural network; CABS, C-alphasbeta side; CNN, Convolutional neural nefwork; COSNet, Cost-sensitve neural network; DCNN, Deep

Convolutonal neurai network; DMNN, Deep mahout neural network; DFS, Depth fst search; DL, Deep earning: DNN, Deep neurai network; DTN, Deep tensor neural network; FFIN, Feed forward neuralnetwork; GA, Genetic algorithms;
HOL, Hybric Deep laming; HMM, Hidden Markoy model; HNN, Hopfield neurai network; KN, k-nearest neighbor; LR, Logisti regression LSDR, Labe-Space dimensionalty reduction; LSTM, Long short-term memory; MC, Monte Caro;
ME, Max Entropy; MLP, Mutiayer; MNB, Multnomial Naive Bayes; MNPP, Message passing neural network; NLP, Naturallanguage processing; NN, Neuralnetwork ParCOSNet, Paralel COSNt; R, Random forest; RN, Relatonal network:
RNN, Recurrent neural network: SPARK-X, Probabilistic-based matching: SVM, Support vector machine.









OPS/images/crossmark.jpg
©

|





OPS/images/logo.jpg
P frontiers | Frontiers i

Bioengineering and Biotechnology





OPS/images/fbioe-10-788300-g005.gif





OPS/images/fbioe-10-788300-g006.gif





OPS/images/fbioe-10-788300-g003.gif
bt Wl
i
T

i

it

I #.J 7 T
I by ? '
H i i
_ | i

(Cvowowonr | [ buweons | [ awmdm | [ poprou |






OPS/images/fbioe-10-788300-g004.gif





OPS/images/fbioe-10-788300-t002.jpg
First
Author/Year
of Publication/
Country

Hie B, 2022,
USA (Hie and
Vang, 2022)

Dara ., 2021,
india (Daraetal
2021)

Feger G., 2020,
Czech
Republic,
France (Feger
ot al, 2020)

He H., 2020,
China (He ot a
0

Maia E., 2020,
Brazi (\Viaia
et al, 2020)

Qin Z., 2020,
US (Qin et a
2020)

Tsou L., 2020,
Taivan (Tso
et al, 2020)

Wang X., 2020,
China (Wang X
et al, 2020)

Yu C., 2020,
Taiwan, US (Yu
and Buehier,
2020)

Fang C. 2019,
US (Fang et al
2020)

arimi M.,
2019, US
(Karimi e al
2019)

Lin J., 2019,
China (Ui et a
019)

Hu B, 2018,
China (Hu et a
2018)

Popova M.,
2018, Russia,
US
et al, 2018)

Zateits D.,
2018, UK
ateirs ot al
2018)

Jimenez J..
2017, Spain
Uiménez et al
2017)

Miler A., 2017,
Switzerand
(Mier et al.,
2018)

Ragoza M.,
2017, US
(Ragoza et a.
N

Yen C., 2017,
UK, US (ven
et al, 2018)

Fokman L.,
2014, Austraia
(Folkman et al.
2014)

Khan Z., 2014,
Pakistan (<an
et al, 2015)
LiY. 2014, US
(L and Giino,
2014)

Murphy G.,
2014, US
(Murphy et
2015)

Traoré S., 2013,
France (Traoré
et al, 2013)
Volpato V.,
2013, Ireland
(Volpato et a.
018)

Danies N.,
2012, US
(Daries et
2012)

Eisenbeis S.,
2012, Germany
(Eisenbeis ot al.,
2012)

Ebina T., 2011,
Japan (Ebina

ot al, 2011)

Bostan 8.,
2009, US
Bostan et a
2009)

Hong E., 2009,
US (Hong et
2009)

Ozen A., 2009,
Turkey (Ozen
et al, 2009)

Ebrahimpour A,
2008, Malaysia
(Ebrahimpour
ot al, 2008)

Zhu X., 2008,
China (Zhu and
Lai, 2009)

Lo J., 2007,
US (Lizo et al.
007)

Raveh B., 2007,
Israel (Raveh
et al. 2007)

Zromermann
0. 2006,
Germany
@rmmermann
and

2006)

Russ W., 2002,
US (Russ and
Ranganathan
2002)

Rossi A, 2001,
Haly (Rossietal.
2001)

Database

Initial
scaffold
(D)

Protein and drug design

NA

2ZING, BindingD8B,
PUBCHEM,
Drugbank, REAL,
Genomic Database,
‘Adaptable Clinical
‘Trai Database,
DataFoundry,
SWISS-PROT,
SCoP, dbEST.
Genome
Information
Management
System,
BIOMOLQUEST,
PDB, SWISS-
PORT, ENZIVE
POB

Mutiple databases

Mutiple databases

PDB

ChEMBL

KIBA, Davis dataset

PDB

Unirot

BindingDB,
STITCH, Uniref

DrugBank
DDI, SIDER,
TWOSIDES, HPRD,
Drug Bank, Offsides
PubChem

PHYSPROP,
ChEMBL, KKB

GEO, Aray
Expression

ScPDB.

ADAM, APD DADP.

PDB ChEMBL

JSON database:
conters of mass and
geometric
relationship data

ProThem

BRENDA

PDB

DND_4HB protein

POB

ENZYME UniProt

PDB

DS-Al dataset

KEGG

Standard rotamer
iorary Expanded
rotamer forary

ProTher

GenBank

PDB

GenBank

POB

NA

PDB, HSSP

‘Sequence-to-
function machine
learning surrogate
model t

Target
dentifcation, hit
discovery. hit to
lead, lead
optimization

Peptide amphiphie
scaffolds

Mutiple organisms

structure-based
vitual screening
(sBVS)

Phi-psi angle and
sequence of natural
protein, ony of
standard amino
acids

In-house database
of 165,000
compounds

Kinase protein
family

ahelcrich
proteins

Proteins from
datasets BT426
and BT6376
containing at least
one beta-tum

Various protein
classes

Druggable proteins
and non-druggable
proteins

Semantic meta-
paths ADR

SMILE string

Amyloid beta-
precursor proten,
microtubule-
associated protein
tau,
apolipoprotein E
PDB ID File o
PDB fie

Antimicrobial
peptide Amino acid
sequences.

Spatial and
chemical features.
of protein-igand
complex

Helical repeat
proteins, Genter of
mass (CoM) using
Ga protein
sequence

Protein sequence
and amino acid
substitution

Amino Acid
sequence and

akaline enzyme
E.col

DND_4HB protein

3D protein
structure

Ovidoreductase,
wansferase,
hycroiase, lase,
isomerase, and
igase

Protein sequence,
207 beta structural
SCOP super
familes

(Bae-barre and the
Tavodovin-ke fold,
CheY, HisF

Protein sequence

Given a species
proteome

Fnd: Derived from
protein Fn3, 10th
human fioronectin-
type Il domain
Structure-basedt
features: amino.
acid substituion
likeihood
equibrium
fuctuations a, B,
packing density
Geobacilus sp.
Strain

223 scaffold
proteins

Proteinase
K-catalyzed
hydrolysis of the.
tetrapeptide
N-Succiny-Ala-
Aa-Pro-Leu
prnitroaniide
Tiu-barel foid
1YPL Whole p-
sheet global
structures

Protein sequence.

‘SHB domain GroEL.
minichaperone WW
‘domain prototype

20i2 Bamase

Designed
Protein

Protein engineering
design

PPI prediction, protein
folding, drug
repurposing, vitual
screening, activty
scoring, QSAR, drug
design, evaluation of
ADME/T properties

Amphiphilc peptide
scaffold design

Review of novel drug.
discovery techniques.

Drug development

Protein design of fold
alpha-heical structure.

TNBC infibitors and
GPCR cassifcation
prediotion

Predict drug-target-
binding affinty

'Denovo protein design

Beta-tum prediction

Compound-protein
affniy prediction

Drug target prediction

meta-path-based
proximities ADR

Drug design (g6 novo
design)

Biomarker discovery
for Alzheimer's disease

Predict protein-ligand-
binding sites Drug
design

Design of new peptide.
combinatorial de novo.
peptide design

Protein-iigand score
for drug discovery

Designed helcal
repeat proteins (DHRs)

Model designed for a
speciic type of
mutation

Enzyme catalys's

Designs of improved
enzymes and enzymes
with new functions and
activites

Design an up-down
four-helix bundie

Structure-based
‘computational protein
design framework
Acid-residue
frequency derived from
multiple sequence
alignments extracted
from uniret90
Detection for beta-
structural proteins into
the twiight zone, make
over a 100-new-fold
prediction genome of
. martima

Enzyme design

Domain predictor

Precict homologous
signaiing patfway

Tenth human
fibronectin, D44.1 and
DL3 antibodes,
Human erythropoetin
Single-site amino acid
substitution

Lipase producion
‘Syncephalastum
racemosum,
Psaudomonas sp.
Stran S5 and
Psudomonas
aenuginosa

Pocket residues of
ibose-bindng protein
(2ak), tyrosy-URNA
synthetase (4ts1), and
tryptophan synthase
(1250). No metal on-
binding stes
Proteinase K varants

Existence of a-hefces,
paralel f-sheets, ant-
paralel sheats and
loops. Non-
conventional hybrid
structures

Prediction of dhedral
regions

Thermostable
consensus phytase,
84.5 kDa protein

Bamase and
chymotrypsin inhibitor

ML model

Machine learming
optimization

AutoEncoder,
ANN.CNN, DL,
MLPNB, RF, NN,
CNN, SWM, LR

SWM, RF

Mutiple methods for
structure prediction,
igand-binding site,
undruggabe to drug
rabbe targets, hidden
alosteric site

vsA

MNNN

ONN, RF

CNN, GCN

RANN, LSTM

HMM, ONN, DeepDIN

ANN, CNN

SWM, GA

SDHINE, Network
embedding

Stack-RNN, LSTM,

ReleaSE

ANN

3D-DCNN

ANN, LSTM

CNN, SGD

GA multthreaded
processing

EASE-MM, SWM

DT, KNN, MLP,
PNN, SVM

Computational design
and scaffolding and
compartmentalzation

Computationl folding

CFN

N-to-1 Newral Network

HMM, MRF

Rational recombination

DROP, SWM, RF

PP

BrovAP

SVM, KNN, OT, SVR

ANN, FFNN, 18P, BBP,
QP, GA, LM

Vector matching

RR, Lasso, PLSR,
SVMR, LPSVMR,
LPBoosR, MR, ORMR

Kemeans clustering

cswm

Knowiedge-base
potentil functions

Perceptron

Software/Sever

NA

NA

Sasfit

NA

NA

Tensorlow https:/
github.comiBM/

NA

NA

TensorFiow,
hitps/githuio.com/
tensorflow/
magenta/issues/
1438

Tensorflow, Keras
hitp://dsisnB.cs.
missouri.edu/
~ct797/
MUFoidBetaTum/
download htmi
hitps//github.com/
ShenLab/
DeepAfiinity

hitps://github.com/
QUST-AIBBDRC/
GA-Bagging-SVM
TensorFlow, N/A

PyTorch,
TensorFlow
ReLeaSE htips://
github.comvisayev/
ReLeaSE

NA

Keras, Theano

playmolecule.org

mOdIAMP Python
package https:/
github.com/
alexamimuslier/
LSTM _peptides
Grina Caffe https/
github comvgrina,

ELFIN https://
github.com/
joy13975/elin

EASE-MM LISVM
to:/fww i,
grifigr-edu.au/
bioinf/ease
MATLAB Bioweka
Weka

NA

NA

CPD http://
‘genoweb toulouse.
inva.frAschiex/CPD
NA

SMURFLe http://
‘smurf.cs.tufts.edu/
smurfite/

hitp://pubs.acs.org
Modeller, Rosatta

DROP http://web.
tuatac.jp/
~domserv/DROP.
huml

NA

BroMAP

MOSEK http://
www.pre.boun.
edu.tr/appserv/pro/
mista

CPCX Software
NA

NA

NA

Matiab

UBSVM-ibrary
DHPRED http://
. fz- uelich.de/
nicicbb

NA

NA

Programming  License
language/
Platiorm
NA NA
A NA
c Open
source
NA NA
Mutile NA
languages
Python Open
Source
NA NA
NA NA
Python Open
Source
Python. Open
Source
A NA
Matiab MatnWorks
. Gus, Python  Apache 2.0
Pyihon, CUDA ~ Open
Source
NA NA
Python Open
Source
Python. Open
Source
C+ Open
Source
Python, G+, Apache 20
MATLAB open
source 3-
Clause BSD
Python, Linox ~ Open
Source
Java Open
Source
Mathiorks
NA NA
NA NA
Perl Open
source
NA NA
NA Open
Source
Python B,
Academic
‘nonprofit
freeware.
Bashserpt  Open
source
NA NA
o linx  Open
Source
A Open
Source
Java Newral
Power
verson 2.5
A NA
Matiab MathWorks
Mate MathWorks
C.Pyhon,  Open
Linux, Windows ~ source
NA NA
NA NA

Quality
(%)

50%

50%

50

o

EY

%

75

EY

6

75

50

100

&

75

50

50

50

75

75

50

100

8

75

75

75

65

Machine
learning

Supenvised
learning;
optimization

Supenvised
learning;
prediotion

Supervised
Leaming:
Prediction

NA

Supervised
Learing:
Unsupenvised
Leaming
Supenvised
Learing:
Preciction
Regression

Supervised
Learing:
Classification

Supervised
Leaming,
Semi-
Supervised
Leaming:

Semi-
supenvised,
Unsupervised
Learing:
Regression
Supenvised
Learing:
Preciction
Supervised
Learing:
Regression

Reinforced
Learing,
Unsupenvised
Learing:
Regression
Supervised
Learing:
Classification

Supervised
Leaming:
Regression

Supenvised
Learing:
Regression

Supervised
Learing:
Classification

Supenvised
Learing:
Optimization

Supenvised
Learing:
Classifcation

Supervised
Learing:
Classification
NA

NA

Supervised
Learing:
Classification
Supenvised
Learing:
Classification

Unsupervised
Learing:
Clustering

NA

Supervised
Learing:
Classification

Supervised
Leaming:
Optimization

Supervised
Learing:
Classification
Regression

Supenvised
Learing:
Classification

NA

Supervised
Learing:
Classifcation
Regression

Unsupervised
Learning:
Clustering

Supenvised
Learning:
Classifcation

NA

Supenised
Leaming:
Regression

Protein
‘application

Protein
design

Orug
discovery

Protein
design

Dg

discovery

development
design

Protein
design

Drug design

Drug-target
binding-
affinity

Protein
design

Protein
design

Orug design

Drug design

Drug design

Drug design

Enzyme.
design

Drug design

Drug design

Drug design

Drug design

Model design

Drug design

Drug design

Drug design

Protein
design

Drug design

Drug design

Drug design

Drug design

Model design

Drug design

Model design

Protein
design

Drug design

Protein
design

Protein
design

Protein
design

Protein
design

Drug design

3D-CNN, Thee-clmensional convolutional neural network: ANN, Artcial neural network: BEBP, Back Back propagation; BroMap, Branch and bound map estimation; CFN, Cost function network; CNN, Convolutional neural network;
DeepDIN, Deep dense inception network: DT, Decision tres; DROP, Domain nker precicton using optimal eature; EASE-MM, Evolutionary Armino aci, and Structural Encodings with Multole Modls: FENN, Feed forward neural network:
GA, Genetic aigonithms; GCN, Graph convolutonal network; HIM, Hidden Markov mode IEP, Incremental back propagation; KN, k- nearest neighbor; Lasso, Least absolute shrinkage and selction operator; LI, Levenberg-Marquarct;
LPBoostR, Linear programming boosting regression; LPSVMR, Linear programiming support vector machine regression; LSTM, Long short-term memory; MLP, Multiayer percepiron; MR, Matching 0ss regression; MRF, Markow random
foret; MNNN, Muti-scale neighbormood-based neral network: ORMR, One-norm reguarization matching-loss regression; PLSR, Partialleast-squares regression; PNN, Probabistic neuralnetwork: PSP, Predict Signal Pattway; P, quick
prob; ReLeaSE, Reinforcement Leaming for Structural Evolution; RF, Rando forest; ANN, Recurrent neural network: RR, Ridge regression; SDHINE, Meta path-based heterogeneous infornation embedding approach; SFFS, Sequential
forward floating selection: SGD, Stochastic gradient descent: SVM, Support vector machine: SYMR, Suport vector machine regression: SVR, Support vector regression: VSA, Virtual screening algorithms,
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Author/Year Classes Methods

of Publication/  of machine

Setting learning

Study characteristics and aigorithm aspects

Song J. 2021, Comnectionist An ensemble predictor
China (Song etal. and Symboist  with a deep
2021) convolutional neural

network and LightGBM
with ensemble learing
aigorithm

VermaN., 2021, Connectionist A DNN framework
US (Verma et (Ssna), for the
2021) protein-ligand

interaction predicton,
which utize the
secondary structure of
proteins extracted as a
1D representation based
on the cunvature and
torsion of the protein
backbone

Bond. S, 2020, Comectionist  CCPAi2 Buccaneer
US (Bond et al automated model-
2020) buiding pipeline

Kwon Y., 2020, Connectionist A new neural network
Korea (Kwon e al. model for binding afinity
2020) prediction of a

protein-igand complex
structure

LiH,202,  Gonnectionist,  Anlyzed machine
France, Hong  Symboistand  leaming scoring
Kong (Hongian  Analogist functions for structure-
ctal, 2021) based vitual screening

Liang M., 2020, Gomectionist  Method that uses the
China (Liang and relation betuween amino
Ne, 2020) acids directly to predict

enzyme function

NeJ,2020,  Probabiistic  Identiication of sine
Singapore, Taiwan  inference, PTM ste flom a
Suactal, 2020)  symboist, and  convolutonal neural

analogist network and sequence
graph transfom
techniques

QinZ,2020,US  Gomnectionist  Learn method on amino
(@i et a, 2020) acid sequence folds into

aprotein structure, along
with the phi-psi angle
information for high
resolution of protein
structure

Savojardo G, Connectionist A method for protein
2020, taly subcelular localzation
(Savojardo et al. prediction
20202)

Wang M., 2020, Symbolist A topology-based
US Wang M. et a. network tree,

20202) constructed by
integrating the
topological
representation and
NetTree for predicting
protein-protein
interaction (PP)

Wardeh W.,  Pattem A comvolutional neural
2020, Australa,  recogniion network to identiy the.
i, Japan, US peptide-binding stes in
(Wardah et al protens
2020)

YuC. 2020,  Connectionist A deep neural network
Taivian, US (Yu mode is based on

Buehier, 2020) ransiating protein
sequences and
structural information
into a musical score,
reflecting secondary
structure information
and information about
the chain lengih and
diferent protein
molecuies

CuiY. 2019,  Pattem A deep learring model
China (Cui et 2l recogniton sequence-based for ab
2019) iniio protein-iigand-

binding residue
prediction
Degiacomi M., Deep machine  Conformational space
2019,UK  leaming generator

(Degiacomi, 2019)

Fang C. 2019,  Comnectionist  Protein sequence
China, Japan descriptor, position-
Fang et al. 2019) specific scoring matri,

en DONNMORF

Fang C. 2019, Comectionist  Deep dense inception
US (Fang et al. network for betartum
2020) prediction

FuH, 2019,  Analogist Cassfication Natural
China (Fu et & language preciction
2019) (NLP) task

G Y. 2019,  Comectionist  Asymmetric
US (Guo et a and Symbolst  Convolutional neural
2019) networks and

bidirectionallong short-
term memory

Haberall, 2019, Connectionist  Thvee different deep
Nonway, Turkey leaming architectures for
(Haberal and Ogu, predicton of metal-
2019) binding of Histidne (HIS)

and Oysteine (GYS)
amino acids

Heizinger M., Connectionist  Natural language.
2019, Germany processing with Deep
(Heinzinger et a. learing
2019)

Kaleel M., 2019, Connectionist  Deep neural network
reland (<aleel  and Symbolst  architecture composed
ot al, 2019) of stacks of bidvectional

recurent neural
networks and
comvolutional layers

KarimiM., 2019, ~ Pattem Interpretable deep.

US (Karimi et &l recogniion learing of

2019) ‘compound-protein
affnity

uic, 2019, Constrained  Feature extractor
China (U andi L, optimization and  techniques for protei-
2020) Connectonist  foid recognition

LnJ, 2019,  Andlogstand A drug target prediction
China (Un et al,  evoling method based on
2019) structures genetic aigorthm and

Bagging-SVM ensemble
dlassifer

Pages G, 2019, Comnectionist  Regression structure:
France (Pagés atomic depiction with a
otal, 2019) densty function

Picart-Amada  Pattem Network propagation
S., 2019, Beigum,  recogition machine learning
UK, Spain methods
Picart-Amada
ot al, 2019)

Savoiardo G, Gonnectionist A convolutional neural
2019, haly network architecture to
(Savojerdo et al. extract relevant pattems
20200) from primary features

SchantzM.,  Connectionist  NetSurfP-2.0
2019, Argentina,

Denmark, Malaysia

(Kausen et .

2019)

Gonstrained  Precictor method of N-
optimization and  and mucin-type O-linked
Connectionist  glycosylation sites in

et al. 2019) mammalan
gycoproteins

Tomg W., 2019, Andlogist Classfication Softmax
US (Tomg and classiler for cass
Altman, 2019) probabilties

WanC, 2019, Comectionist A novel method
UK (Wan et a. (STRING2GO), with a
2019) deep maxout neural

networks for protein
functional predictive
information

Wang D, 2019, Evoluionary ~ An Arificil Iteligence-
China (Wang D. based protein structure
ot al, 2020) Refinement method

YuC. 2019,US  Gomnectionist  Regression musical
(u et al, 2019) patterns by the

extension of protein
designed

Zhang D, 2019, Connectionist  Protein sequence pre-
US (zhang and processing,

Kabuka, 2019) unsupenvised learming.
supenised, and deep
feature extraction

Zhang Y., 2019, Connectionist A new prediction
China Zhang et approach appropriate for
2019) imbalanced

DNA-protein-binding
stes data

Zheng W, Probabiistic  Two full deep leaming
2019, US (Zheng  inference, automated structure
ot al, 2019) ‘Symbolst prediction pipeines for

‘guided protein structure
prediction

CuperusJ,  Connectionist  Regression dropout
2018, US probabilty distribution
(Cuperus et a.

2017)

FangC.US,  Patiem A deep learning network
2018 (Fang et el recognition architecture for both
2018) local and global

interactions between
amino acids for
secondary structure
prediction

Fanberg £, Comectionist A PotentiaNet family of
2018, China, US graph convolutions
(Fenberg et al,

8

Frasca M., Analogist Clstering Hopfied
2018, Halia (Frasca model
et al. 2018)

Hanson J., Pattem A sequence-based
Australa, China,  recogiton prediction of one-
2018 (Hanson dimensional sructural
etal, 2019) propertes of proteins

Hanson J., Connectionist  Method by stacking
Australa, China, residual 2D-CNN with
2018 (Hanson residual bidrectional
etal, 2018) recurrent LSTM

networks, with 2D
evolutionary couping-
based information

Huang L, 2018, Connectionist A novel PP prediction
US (Huang et a. method based on deep

) learming neural network
and requiarized
Lapiacian kemel

KhuanaS,  Andogst Clustering Natural
2018, Qatar, USA language processing
(Khurana et o task
2018)

LeN. 2018, Andogst Regression Softmax
Taiwan (L et ol layer for classifcation
2018)

LiH.2018,  Constained  Regression Adam
China (Huang optimization  optimizer
etal, 2018)

Long H. 2018,  Connectionist  lassiication sigmoid
China, US (Long function
otal. 2018)

Makeodimitis  Analogist Clustering constrained
S..2018, optimization
Netherlands
(Vekrodimitrs
ot al, 2019)

PopovaM.  Constaned  Regression Stack NN
2018, Russia, US  optimization as a generative model
(Popova et a,

2018)

Sunseri J., Connectionist  Regression dstributed
2018, US (Sunseri atom densites
otal. 2019)

Znang B.,2018, Comnectonist A novel deep leaming
China (Zhang B. architecture to improve
ot al, 2018) synergy protein

secondary structure
prediction

Znang L., 2018, Connectionist  Two novel approaches
China (Zhang L that separately generate
ot al. 2018) reiable noninteracting

pais, based on
sequence simiarity and
on random walk in the
PP network

Znao X, 2018,  Comectionist  Bimodal deep
Ghina (Zhao e dl architecture with sub-
2018) nets handing two parts

(raw protein sequence
and physicochemical
properies)

Armenteros J.,  Analogist Classifcation
2017, Denmark optimization
(Aimagro
Ammenteros et al
2017)

Jimenez J., Bayesian Regression sigmoid
2017, Spain activation function,
iménez et al. depicting the probabilty
2017)

Miler A, 2017, Analogist Regression SoftMax
Switzeriand (Miler function for temperature-
ot al, 2018) controlled probabilty

Ragoza M. Comectionist ~ Glassificaton distributed
2017, US (Ragoza atom densities
otal. 2017)

Sealkal B., Pattern A cassfication by amino
2017, Hungary  recogition acid sequence mult-
(Szakai and Iabel classifcation abifty
Grolmusz, 20182)

Szalkal B., Logicallnference ~ Classication
2017, Hungary Herarchical
(Szakai and dlassication tree
Grolmusz, 20186)

Vang Y., 2017, Analogist Rogression Distributed
US (Vang and Xe, representation with NLP
2017)

Wang S., 2017, Andlogist Gassfication
US (Wang et a. Regression
2017) Regularization and

optimization

YenC. 2017, Evoling Optimization GA
UK, US (Yeh et al,  structures

2018)

SmhaR, 2015, Bayesian Gassfication
Canada, Germany, Probabistc generative
US (Simha et al. model Bayesian
2015) networks

Yang J. 2015 Analogist Rogression hierarchical
China, US (Yang order reduction
ot al, 2015)

FokmanL,  Bayesian Gassfication predicted
2014, Australa  Constrained  probabilty of the
Fokmaneta,  optimzatn  mutation
2014)

LiZ,2014,US  Bayesian Gassification Probabilty
(U etal, 2014 output prediction

Esenbeis S, NA NA
2012, Germany
Eisenteis et al
2012)

QiY.,2012,US  Gonnectionist  Classffcation Back
(Gietal, 2012) propagation in deep.

layers

EbinaT. 2011,  Analogst Glassifcation Domain
Japan (Ebina ot ol finker prediction SVM
2011)

Yang Y., 2011, Probabifty Regression probabilstic-
US (Vang et el Inference based matching
2011)

Briesemeister  Bayesian Glassifcation
S., 2010, Germany probabiistc approach
@resemeister
ot al, 2010)

LinG. 2010,US ~ Analogist Gassifcation
uin et al, 2010) Optimization

Tian J., 2010, Andlogist Glassifcation
China (Tian et al, Optimization

010)

Znao F. 2010,  Bayesian Cassiication
US (Zhao et al probabiistc graphical
2010) model

Hong E., 2009, Symbolist Glassification Branch
US (Hong et a and bound tree Logical

009) inference

Ozen A, 2000, Andogists Classification
Turkey (Ozen etal Regression Constrained
2009) optimization

Ebrahimpour A, Connectionist  Classiication Back and
2008, Malaysia batch back propagation
(Eorahimpour
ot al. 2008)

Huang W., Andlogist Glustering Gombinatorial
2008, Tawan optimization
(Huang et al
2008)

KazmanS,  Bayesian Classifcation
2008, US Probabiistic
(<atzrman et al
2008)

Lo J. 2007, Supervised Classification
US (Lao et al. Leaming Regression
2007)

Raven'B.,, 2007, Comectionist  Clustering Patter
srael (Raveh et al. recognition
2007)

ShamimM.,  Andogst Glassification
2007, India Regression
(Sharmim ot al
2007)

Hung C., 2006, Symbolist Regression Genetic:
Taiwan (Hung aigorithm casual tree
et l., 2006)

Sidhu A, 2006, Symbolist Classification Logical
UK (Sichu and Inference
Zheng. 2006)

Zmmermann  Andlogist Classification
0., 2006,

Germany, US

@Zmmermann and

Hansmann, 2006)

Caprotti €, Andlogist Classification
2005, ltaly
(Capritti et a.

005)

Rossi A, 2001, Connectionist  Regression Perceptron
taly (Rossi e al aigorthm

2001)

CNN, LightGBM

ONN

POB

3D-CNN

RF, BRT, kNN, NN,
SVM, GBOT, multi-
task DNN XGBoost

AN, LSTM

RF, SVM, MNB, LR,
Max Entropy, KNN,
CNN, MLP

MNNN

DeepMITO,
1D-ONN

TopNetTree,
CNN, GBT

N

ANN, LSTM

DONN

Molecular
dynamics, random
forests and
autoencoder
aigorthms

DONN

DeepDIN

CNN DL

ACNNs, BLSTM,
DeepACLSTM

2D ONN,
LSTM, ANN

ELMo CharCNN
LSTM

RSA.

RANN-CNN models

MotCNN and
MotiDCNN
SVM NN

GA SW

3D ONN

PR, Random
Randomraw EGAD,
PPR, Raw, GM,
MC, Z-scores,
KNN, WSLD,
COSNet, bagSVM,
RF, S\M

NN

NetSufP-2.0

DNN, SV

3D CNN SVM

DMNN, SV

Muit-objective PSO

ANN LSTM

Muitimodal DNN

ADASYN

Zhang-Server and
QUARK

DNN, CNN, LSTM

Deep3!

GONN

COSNet
ParCOSNet HNN

CNN, LSTM-BRNN

CNN, 2D-BRLSTM

ENN-RL

CNN FFNN

o

DNN ONN LSTM

HOL CNN
LSTM RNN

KNN LSDR

Stack-RNN LSTM

o

CNN, RNN, BRNN

DNN, Adam
aigorthm

CNN and DNN

NN ANN BLSTM
FFNN Attention
models

3D ONN

ANN LSTM

NN SGD

ANN

o

UDNN RNN 2

GA mulitveaded
processing

MDLoc BN

SR

SFFS SWM
EASE-MM

SPINNN

NA

DNN

DROP SVM RF.

SPARKS-X
Agortm

N8

S SVR

RFR SWM AR

CNF SVM

BroMap

SVM KNN DT SVR

ANN FFNN 18P
B8P QP GALM

GASVM KNN

MUSTER SWM

AR Lasso PLSR
SVMR LPSVMR
LPBoosR MR
ORMR

K-means Clustering

DFS HMM GA
AGCT

BBFNN NN DT

SWM C-SWM
agoritm
implementation

NN

Protein
Query

A sequence-based
prediction method for
protein-ATP-binding
residues, including,
PSSM, the predicted
secondary stucture,
and one-hot encoding

Information about
locations in a protein
where aligand can bind,
including binding stes,
alosteric sites, and
ey stes,
independently of the
conformation

Cormectness of protein
residues

Protein-protein
complexes in a 3D
structure

‘Comparison and review
of machine learming
scoring functions and
dlassical scoring
functions.

State description matrix
‘containing structural
information by four parts,
‘amino acid name (N),
angles ¢ and yiA),
relative distance (RD),
and relative angle y (RA)

A computational
technique toimprove the
identiication of reaction
sites for multple ysine
PTM sites in a protein
sample

Prediction with only
primary amino acid
sequence without any.
tempate or co-
‘evolutional information

Performing proteome-
wide prediction of sub-
mitochondrial
localization on
representative
proteomes

Protein structures,
protein mutation, and
mutation type

Amino acid residues to
create the image-ike.
representations by
feature vectors

Avibrational spectrum of
the amino acid,
comprising amino acid
sequence, fold
geometry, or secondary
structure

Protein sequences in
order to construct
several features for the
input feature map

Generative neural
network trained on
protein structures
produced by molecular
simulation can generate
plausivle conformations

Pinpoint molecular
recognition features,
which are key regions of
intrinsically disordered
proteins by machine
learning methods

Protein sequence by
creating four sets of
features:
physicochemical,
HHBlts, predicted
‘shape string and
predicted eight-state
secondary structure

Predict Lysine
ubiquitinatin sites in
large-scale

‘Sequence-based
prediction for Protein
Secondary

Structure (P.S.S)

Thveo methods, PAM,
ProCos, and BR to
create the feature sot
from the frame vector;
applying directy to raw
protei sequences
without any extensive
feature engineering,
whie optimizing the

modl for predicting
metal-binding site

Protein function and.
structure predicton via
analysis of uniabeled big
data and deep learming
processing

Three-dimensional
structure of protein
prediction

Development of
‘accurate desp learming
models for predicting
‘compound-protein
affinity using only
‘compound identities and
protein sequences.

Fold-specifc features
with biological attributes
‘considering the
‘evolutionary information
from posiion-specific
frequency matrices
(PSFMs) considering the
structure information
from residue-residue.

Protein sequences by
‘combining pseudo
‘amino acid, dipeptide
‘compositon, and
reduced sequence
algorithms

Protein model qualty
assessment

‘Assess performance of
several network
propagation aigorithms
to find sensible gene
targes for 22 common
non-cancerous diseases

High prediction on
discriminating four
mitochondrial
compartments (matrx,
outer, inner,
intermermbrane)

Predict ocal structural
features of a protein from
the primary sequence

An amino acid sequence
binary vector,
evolutionary information,
physicochemical
properties

Protein functional site
detection

Protein functional
biological network node
neighborhoods and co-
occurrence function
information

Query sequence
structures as the inita
partcle selection for
conformation
representation

‘Generation of audible
Sound from amino acid
sequence for application
on designer materils

Identify protein-protein
interactions and classify
families via deep learning
models

Employment of PSSM
feature and sequence
feature for predicting
DNA-binding stes in
proteins

Starting froma ful-ength
query sequence
structure

Predict protein
expression

A protein secondary
structure prediction
model

A generalzed graph
convolution to include
intramolecular
interactions and
noncovalent interactions.
between different
molecules

AFP (Automated Protein
Function Prediction)

Improving the prediction
of protein secondary
structure, backbone
angles, solvent
accessibiity

Protein contact map
prediction

Protein-protein
interaction network

Solubiity prediction

Classify Rab protein
molecues

Prediction of protein
interactions.

Predicting hydroxylation
sites

Protein function
prediction

De novo drug design

Cathepsin S model
igand protein

Four input features;
postion-specific scoring
matrx, protein coding
features, physical
propertes,
characterization of
protein sequence

Use of auto-covariance
descriptor to extract the
features from amino acid
sequences and deep
neural networks to
predict PPis

Raw sequence and
physicochemical
propertes of protein for
characterization of the
acetyated fragments

Predict protein
subceluar localzation

Predict protein-iigand-
binding sites Drug
design

Design of new peptide
combinatorial de novo.
peptide design

Protein-figand score for
drug discovery

Protein clssifcation by
‘amino acid sequence

Hierarchical biological
‘sequence classiication

HLA class I-peptide-
binding prediction

Prediction of Protein
Contact Map

Designed heical repeat
proteins (OHRS)

Protein muli-location
prediotion

Structure prediction of
cysteine-rich proteins.

Model designed for a
‘specific type of mutation

‘Sequence profle
prediction

Enzyme design

Predicton of local
properties in proteins.

Domain prediotor

Single-method fold
recognition

Predict protein
suboelular localization

Protein folding kinetic
ate and real-value
foiding rate

Effect on single or mult-
site mutation on protein
themostabilty

Protein folding

‘Tenth human fibronectin,
044.1 and DI3
antibodies, Human
enythvopoietin

Single-site amino acid
substiution

Lipase production
‘Syncephalastrum
racemosum,
Pseudomonas sp. strain
S5 and Pseudomonas
aeruginosa

Prediction method for
predicting subceluar
locaiization of novel
proteins

Local structure
prediction

Proteinase K variants

Existence of a-helces,
paralel f-sheets, ant-
paralel sheets and
loops. Non-conventional
hybrid structures

Protein-fold prediction

Predict protein functions

Predict signal peptide

Prediction of dhedral
regions

Protein stabiity
prediction

Bamase and
chymotrypsin inhbitor

Characteristics

The CNN frameworks
aro proposed as a mult-
incepResiet-based
precictor archtecture
and a mult-Xception-
based predictor
architecture. LightGBM,
as a Gradent Boosting
Decision Tree (GBDT) for
classifcation and
regression merged by
an ensemble earming
agorthm

Curvature and torsion of
protein backbone,
feature vector for igand.
Mutiple convolution
networks with varying
window sizes as branch
convolution

Visual examination by
the crystalographer.
oot provides vaidation
tools to identify
Ramachandran outlers,
unusual otamers, and
other potential ors, as.
wel as an interface to.
some tools from
MolProbity

Ensemble of multiple
independentl trained
networks that consist of
mutiple channels of 3D
CNN fayers.
Protein-igand
complexes were
represented as 3D grids
voxeized binding pocket
and ligand

Machine learning-based
scoring funciion
performs better than
classical scoring
functions, outperforming
the average cassical
methods

A three-layer MLP;
four-layer MLP a three-
layer MLP, all with ReLU
noniinearities. The final
layer was a inear layer
that produced logis for
optimization with a
softmax loss function

Improves the
performance of
identiting ysine PTM
stes by using a novel
combination with
convolutonsl neual
networks and sequence
graph transfomn

Performs labeing of
dihedral anges,
‘combined with the.
‘sequence information,
allowing the phi-psi
angle prediction and
buiding the atomic:
stucture

Its major characteristics
is o combine proteome-
wide experimental data
with the precicted
annotation of subcelliar
locaization at
submitochondria level
and complementary
functonal
characterzation interms
of biokogical processes
and molecuar functons.
Evolutonary nformation,
in the form of Positon-
Specific Scoring
Matrioes (PSSM)
Convolutional Neural
Networks, used in their
Top Net Tree model, as
a second modue:
consisting of the CNN-
assisted GBT model

Sets of convolution
layers for image
operations, folowed by
‘apooing layer anda ully
connected layer. The
internal weights of the
network were adjusted
using the Adam
optimizer. Bayesian
optimization uses
calculated values for
configuring the model's
hyper-parameters
based on prior
obsenvations

‘The RNN layers, Long
Short-Term Memory
Units are for time
sequence features,
alongside a dynamical
contioning. The
attention dynarmical
condiioning model
monitors the note
velocity changes of the
note sequences

First representation, an
amino acid sequence by
mxd. Fist convolutional
layer with k x d kemel
size. Stage 1, with
Pain(k x 1,20) the same.
as for Blooklk x 1,20).
Stage 2, with a Blocklk x
1,20) and Layer
normalization-GLU-
Gonv block

Generative neural
networks for the
characterization of the
conformational space of
proteins featuring
‘domain-level dynamics

Ensemble decp
‘convolutional neural
network-based
molecular recognition
feature predicton. It
does not incorporate.
any predicted features
from other classifers
Concatenate four
‘convolved feature maps.
along the feature
dimension. Feed the
concatenated feature
map into the stinged
denss inception blocks.
Dense layer, with
Softmax function

Input fragment. Mult-
‘convolution-pooling
layers. Full connected
layers

‘The DeepACLSTM
method is proposed to
predict an 8-category
PSS from protein
‘sequence features and
profe features

The model is a 2D-CNN
with four convolution
layers, two pooing, two
‘dropout, and two muli-
layer perceptron layers.
Each convolution layer
has 3 x 3 pixel fiters

Novel representation of
protein sequences as
continuous vectors
using language model
ELMo, sing NLP.

Predicting relatve
Saivent accessbilty
(RSA) of amino acids
within a protein is a
signifcant step toward
resoiving the protein
structure preciction
challenge, especialy in
cases in which stuctural
information about a
protein is ot avaieble
by homology transier
Using only compound
identiies and protein
sequences, and taking
massive protei and
compound data,
RNN-CNN, and GONN
rained models
outperform baseine
models

The predictor called
MotiCNN-fold
combines SVMs with the
painwise sequence
simiarity scores based
on fold-specific features.

GAIs used to select the
druggable protein
dataset. The optimal
feature vectors are for
the SVM classifer.
Bagging-SVM ensemble
is for positive and
negative sample sets
Three convolutional
ayers. Fully connected
layers. Use of ELU as
activation function

Two biciogcal
networks, s
performance metrcs,
and compared two
ypes of nput gene-
discaso assocition
scores. The impact of
the design factors in
performance was
quantied through
addiive expanatory
models

“Two pooling layers
concatenated into a
singe vector wit four
independent output
units with sigmoid
actvaton functon
quantifying the
membership of each
considered
mitochondril
compartment

Anovel tool that can
predict the most
important local structural
features with
unprecedented
acouracy and runtime. Is
sequence-based and
uses an architecture
composed of
convolutional and long
short-term memory.
neural networks trained
on salved protein
structures.

DNN uses deep
architectures of fuly
connected arifcial
neural networks. And
SVM inear kemel for
classification techniques
o predict O-inked
glycosylation sites
Protein site
representation as four
atom channels and
supenised labels

“The network.
architecture consists of
three fully connected
hidden layers, folowed
by an output layer with
s many neurons as the.
numbers of terns
selected for the
biological process
functional domain. A
sigmoid function is used
as activation function
and the AdaGrad
optimizer is
implemented

Use of muliple energy
functions as mult-
objectives. Initalization,
energy map of the inital
partcls. lteration,
energy landscape of the
ath teration. Seection of
non-dominated
solutions and added to
the Pareto set. And
selection of the global
best position and the
best positon every
‘swarm has had by the.
use of the dominance
relationship of swarms,
moving 1o the optimal
direction

An RNN utiized for
melody generation.
(LSTM) for time

‘sequence featuring

Mult-modal deep
representation learing
structure by
incorporating the protein
physicochemical
features with the graph
topological features
from the PP networks.

Introduction of new
feature representation
‘approach by combining
positon-specifc scoring
matix, one-hot
encoding and predicted
solvent accessiilty
features. Apply adaptive
‘synthetic samping to
oversample the minority
class and Bootstrap
strategy for a majorty
class 1o deal with the
imbalance problem
Three core modues:
mutiple sequence
alignment (MSA)
generation protocol to
construct deep
‘sequence-profies for
contact prediction; an
improved meta-
method, NeBcon, which
‘combines multiple
contact predtors,
inciucing ResPRE that
precicts contact-maps
by coupling precision-
matrices with deep
residual convolutional
neural networks; an
optimized contact
potential to guide
structure assembly
simuations

Hierarchical
representation of image
features from data

A designed feature
matix corresponding to
the primary amino acid
sequence of a proten,
which consists of a rich
set of information
derived from individual
amino acid, as wel as
the context of the
protein sequence

First: graph convolutions.
over only bonds, which
derves new node
feature maps. Second:
entais both bond-based
and spatial distance-
based propagations of
information. Third: a
graph gather operation
is conducted over the
ligand atoms, whose
feature maps are derived
rom bonded igand
information and spatial
prosimity to protein
atoms

Network parameters are.
leamed to cope with the.
label imbalance

The model leverages an
ensemble of LSTM-
BRANN and ResNet
models, together with
predicted
residue-residue contact
maps, to continue the
push toward the
attainable fmit of
prediction for 8- and 8-
state secondary
structures, backbone
angles (, 3, and w),haif-
sphere exposure,
contact numbers and
solvent accessible
surface area (ASA)

Transformation of
sequence-based 1D
features into a 2D
representation (outer
concatenation functon).
ResNet, 2D-BRLSTM
andFulyConnected (FC)

Contains five layers
including the input laer,
three hidden layers, and
the output layer.
Sigmoid is adopted as
the activation function
for each newron, and
layers are connected
with ropouts.
Roguiarized Laplacian
kel appled 1o the
ransition matrx buit
upon that evolved the
PP network

Use addiional biokogical
features from extemal
featurs extraction tool
Kits from the protein
sequences

2D-CNN and position-
specifc scoring
matrices. PSSM profies
of 20 x 20 matrices

Machine learning
approach for
computational methods
forthe prediction of PPls.

CNN deep leaming
model. Convolution layer
consists of aset o fiters.
through dimensions of
input data,
Transformation of the
GO terms into a lower-
dimensional space

Deep neural network
generative novel
molecules (G) and
predictive novel
compounds (F)

NN based on scoring
functions

Alocal block comprising
two 1D convolutional
networks with 100
kemels, and the.
concatenation of their
outputs. BGRU block,
the concatenation of
input from the previous
layer and before the.
previous layer is fed to
the 1D convolutional
fiter. After reducing the
dimensionalty, the 500-
dimensional data are
transferred 10 the next
BGRU layer

“The feature vectors of
two indvicual proteins
extracted by AC are
empoyed as the inputs
for these two DNNs,
respeciivey. Adam
aigoritm is applied to
specd up traning. The
dropout technique is
employed to avoid
overliting. The ReLU
activation functon and
cross-entropy loss are
employed, since they
can both accelerate the
model training and
obain better prediction
results

Muli-layer 1D GNN for
feature extractor and
NN with attention layer
with a softmax layer

CNN extracts motf
information using
difrent moti sizes.
Recurent neural
network scans the
‘sequence in both
directions

Fully connected
networks. Hierarchical
organized layers

The computed output y
is compared to the
actual amino acid to
calcuiate the categorical
cross-entropy loss

NN architecture:
construction using
simple parameterization
and serve as a starting
point for optimization

‘The convolutional
architecture with 1D
‘spatial pyramid pooling
and fully comnected
layers. The network has
six one-dimensional
‘convolution layers with
kemel sizes (6.65.5.5.5)
‘and depths (iter counts)
[128,128,256,256,
512,512], with
parametrc rectfied
finear unit activation.
Each max pooling layer
was folowed by a batch
normaiization layer

‘SECLAF impements a
muit-label binary Cross-
entropy dlassifcation
foss on the output
neurons

The CNN architecture:
‘convolutional and fully
connected dense layers

Consists of two major
modules, each being a
residual neural network

Herates through
mutation, scoring,
ranking, and selection

Each iteration of the
leaming process obtains
2 Bayesian network
structure of locations.
using the software.
package BANJO.
Postion-specific scoring
matrix (PSSM): each
oxidized oysteine
residue is represented
s a vector of 20
elements

Feature-based muliple
models with each model
designed for a specific
type of mutations

Sequence Profies by
Integrated Neural
network based on
fragment-derived
Sequence profiles and
structure-derived energy
profies

No network

An amino acd feature
extraction layer. A
‘sequenta feature
extraction layer. A series
of dassical neural
network layers.

Vector encoding.
Random Forest feature
selection. SVM

parameter optimization.
Prediction assessment

‘The model s buit by
modellerv7 using the.
alignment generated by
SPARKSX

Yioc, based on the
simple naive Bayes
dlassifier

‘SVM dlassifer to classiy
folding types based on
binary kinetic
mechanism (two-state
ormultstate), instead of
using structural dlasses.
of alla-class, al-f-class
and a/p-class

Random forest includes.
bootstrap re-sampiing,
random feature
selection, in-depth
decision, tree
construction, and out-
of-bag error estimates
Conformations of a
residue in the protein
backbone is described
as a provabilstic
distribution of 0, 1)
BroMAP attempts the
reduction of the problem
size within each node
through DEE and
elmination

Early Integration.
Intermediate Integration.
Late Integration

ANN architecture: input
layer with six neurons,
an output layer with one.
neuron, and a hidden
layer. Transfer functions
of hidden and output
layers are iteratively
determined

Preparation of SVM,
binary dlassiers of
UBSWM. Sequence
representation. Inclusion
of essential GO terms

Calculation of output of
each unitn each layer.
Soft max functon to al
outputs of a given layer
represents valid
probabilty distibution
Design of protein
variants. Expression of
he protein variants.
Anaysi of protein
varant sequences and
actitios 0 assess the
contrbution of each
amino acid substitution
Network moti vector (k
means of moti vector).
Envched Interaction
graphs.

LIBSWM provides a
choice of in-buit kemels,
such as Linear,
Pojynomial, Radil basis.
function (REF), and
Gaussian, we use REF
kemel

AGCT study apples a
hybrid methodology
based on genetic
programming with a
causal tree model to
predicting protein
function

BBFNN Characterstis:
Mutation mattix for
protein sequence
encoding. BBFNN s a
linear combination of K
bio-bases with the bio-
basis function
Implementation of the
sequence window of
length seven and three
separate predictions:

helx, extended beta,
and outiers

Prediction of the
direction of the protein
stabilty changes upon
single-point mutation
from the protein tertary
structure

Two- and three-body
energy functions.
Partioningthe 20 amino.
acids into classes
(Hyrophobic, Neutral,
Charged)

Strengths

The model enriches.
the protein-ATP-
binding residue
predicton abilty using
sequence information,
Outstanding
performance using
ensemible leaming
aigorthm in
combination with a
deep convolutional
neural network and
UghtGBM as an ATP-
binding tool

The model does not
show biases i the
physicochemical
properties and
necessity of accurate
3D conformation whie
requiing significantyy
less computing time.
Fast computation
once the model is
rained with weights
are fixed. No
requirement of high-
resolution structural
data

No cutoff has to be
chosen

Higher Pearson
coefficient (0.827)
than the state-of the-
art binding affiniy
preciction scoring
functons. Accurate
rarking of the relatve
binding affities of
possible multile
binders of a protein,
comparable to the
other scoring
functions

Machine learing-
based scoring
function has
introduced strong
improvements over
classical scorng
functons,
benchmarks for
s8vs.

Structural retationship
information of amino
acds and the
relationship inference
model can achieve
good resus in the
protein functional
classifcation

As the current model
that we are proposing
is amuliabel model, it
is very generalzable,
‘especially when it
comes to
‘combinations of
muitiabel that the
dataset does not
have. In addtion, such
‘combinations of
muitiabel wil increase
the test sample size
‘and provide a better
idea of the accuracy of
the model

Prediction consumes
less than six orders of
magnitude time.
Prediction of the
structure of an
unknown protein is
achieved, showing
great advantage in the
rational design of de
ovo proteins

‘The model alows
users 1o search for
proteins by
organisms,
mitochondrial
‘compartment,
biological process, or
molecular functionand
to quickly retrieve and
‘download results in
different formats,
including JSON

and OSV.

The proposed model
‘achieved signifcanty
better Rp than those
of other existing
methods, indicating
hat the topology-
based machine
learming methods have
aetter prediciive
powerfor PP1 systems
The mod is abke to
predict a protein
sequence with the
ighest sensitiity
‘compareditoany other
ool

‘The deep neural
network is capable of
training, classifying,
and generating new
protein sequences,
reproducing existing
sequences, and
completely new
sequences that do not
exst yet. The model
generates new
proteins with an
embedded secondary.
structure approach
“The convolutional
architecture provides
the abilty to process
variable-length inputs.
‘The hierarchical
structure of the
architecture enables.
us to capture long-
dstance
dependencies
between the residue
and those that are
precisely controlled.
Augmentation of the
training sets sighty
improves the
perormance
The auto encoder
does great at
describing concerted
motions (e.g., hinge
motions) than at
capturing sublle local
fuctuations; it is most
suitable to handie
cases featuring
‘domainlevel
rearrangements
‘The proposed method
is highly performant for
proteome-wide MoRF
prediction without any.
protein category bias.

Proposed process for
beta-tum prediction
outperforms the.
previous authors

Extract features from
the original protein
fragments. First used
in the prediction of
wbiquitination

The method effciently
‘combines AGNN with
BLSTM newral
networks for the PPS
preciction. Leveraging
the feature vector
dimension of the
protein feature matrix
The good
performance of the
model demonstrates
the potential
applcation for protein
metal-binding site
prediction. A
‘competite tool for
future meta-binding
studies, protein metal
interaction, protein
secondary stucture
preciction, and protein
function prediction.
‘The CNN method
provides better resuts
for the prediction of
protein metal binding
using PAM attributes
The approach
improved over some
popuiar methods
using evolutionary
information, and for
some proteins even
aid beat the best.
Thus, they prove to
‘condense the
underling principles
of protein sequences.
Overal, the important
novetty is speed

High accuracy in four
diferent classes (75%
average). They
performed al the
training and testing in
5-old cross-vaidation
on avery large, state-
of-the-art redundancy
reduced set
containing over
15,000 experimentally
resolved proteins
Compared to
conventional
‘compound or protein
representations using
molecuar descriptors.
or Plam domains, the
encoded
representations
leamed from novel
structuraly annotated
‘SPS sequences and
SMILES strings
improve both
predictive power and
raining effciency for
various machine
learing models

The model
incorporates the
structural motis into
the CNNs, aiming to
extract the more
discriminative fold-
specific features with
biological atroutes,
considering the
evolutionary
information from
PSFMs and the
structure information
from CCMs
Themethod has ahigh
reference value for the
predicton of potential
drug targets. An
improvement over
previous methods

‘Competithvty with
single-model protein
model qualty
‘assessment. Trained
to match CAD-score,
onstage20fCASP 11
Network propagation
‘seems efective for
drug target discovery,
reflecting the fact that
drug targets tend to
cluster within the.
network

Model has a robust
‘approach with respect
to dlass imbalance
and accurate
predictions for the four
classifcation
compartments

Predicts solvent
accessivity,
secondary structure,
structural disorder,
and backbone
dihedkral angles for
each residue of the.
input sequences

N-glycosyation model
performs equally well
for ntra or cross-
species datasets

Achieved an average
0f0.955 ata threshold
of 0.99 on PROSITE
families. Good
performance where
sequence motis are
absent, but a function
is known

Successul learming of
the functional
representation
classifers for making
predictions.

‘Success of AR can be
attrbuted to three
main aspects: the first
is the anisotropy of
multple templates.
‘The complementarity
of multi-objective.
energy functions and
the swarm inteligence
of the PSO algorithm,
for effective search of
good solutions. The
larger number of
iterations alows the.
algorithm to perform a
more detaied search
on the search space,
which canimprove the
qualty of the output
models

Mechanism to explain
the importance of
protein sequences. 4.-
It can be appled to
express the structure
of other
nanostructures.

The model
outperforms most of
the baseine machine
learming models
analyzed by the
authors, using the
same reference
datasets

Demonstration that
the method achieves a
high prediction
performance and
outperforms the state-
of-the-art sequence-
based DNA-protein-
binding site predictors.

Improvement of the
‘acouracy of protein
structure prediction for
both FM and TBM
targets. Accurate
‘evolutionary couping
information for contact
prediction, thus.
improving the
performance of
structure prediction.
And properly
balancing the
‘components of the
energy function was
vial for accurate
structure prediction

Prediction and
visualzation of
transcription factor
binding, Dnase |
hypersensitty sites,
enhancers, and DNA
methylation sites
“This model uses a
more sophisticated,
yet effcent, deep
learning architecture.
The model utiizes
hierarchical deep
inception blocks to
effectively process
local and nonlocal
interactions of
residues

Statistically significant
performance
increases were
Observed for al tree.
prediction tasks,
Gectroni property
(mutitask, soubiiy
(snge task), and
tosicty prediction
(multtask). Spatial
araph convolutons
can loam an accurte
mapping of
protein-igand
structures to binding
froe energios using the
‘same relatively low
amount of cata
Advantage of the
‘sparsity of input
graphs and the
scarcity of positve
proteins in
characterizng data in
the AFP.

The large.
improvement of
fragment structural
acouracy. A new
method for predicting
one-dimensional
structural properties of
proteins based on an
ensemble of diferent
types of neural
networks (LSTM-
BANN, ResNet, and
FC-NN)with predicted
contact map input
from SPOT-contact.
‘The employment of an
ensemble of diferent
types of neural
networks contributes.
another 0.5%
improvement

Method achieves a
robust performance.
The model is more
acourate in contact
prediction across
difierent sequence
separations, proteins
with a different
number of
homologous
sequences and
residues with a
different number of
contacts

‘The transition matrix
leamed from our
evolution neural
network can also help
buid optimized kemel
fusion, which
effectively overcome
the limitation of the
raditional WOLP
method that needs a
relatively large and
connected training
network to obtain the
optimal weights
DeepSol s at least
3.5% more accurate
than PRSP and
15% than PROSO Il
DespSol is superior to
al the current
sequence-based
protein solubiity
predictors

Construct a robust
deep neural network
for classifying each of
four specific molecular
functions. Powerful
model for discovering
new proteins that
belong to Rab
molecular functions.
Insight into the.
identiication of
protein-protein
interactions (PPs) into
protein functions

p-values between
AUCS of other
methods are less than
0.000001

GO-aware LSDR has
sightly better
performance on SDp.
LSDR reduces the
number of dimensions.
in the label-space.
Improve power of the
tem-specific
predictors

‘The ReLeaSe method
oes not rely on
predefined chemical
descriptors No
manual feature
engineering for input
representation

NN scoring function
outperforms Vina on
most tasks without
manual intervention
The ONN was
successiul at feature.
extraction, and the
ANN was successful
at sequence
processing. The
residual network
connected the interval
BGRU network to
improve modeling
long-range:
dependencies. When
the staked layers were
increased to two
layers, the
performance
increased o 70.6%,
and three-layer
networks increased
further to 71.4%
accuracy

To reduce the bias
and enhance the
generaiization abilty of
the generated
negative dataset,
these two sirategies
separately adjust the
degree of the non-
interacting proteins
and approximate the
degree to that of the
positive dataset.

Capabity of transfer
leaming for species-
speciic model,
combining raw protein
sequence and
physicochemical
information

ABLSTM and the
CONV A-BLSTM
models achieved the
highest performance

Four convolutional
layers with max
pooling and dropout
after every two
‘convolutional layers,
followed by one
reguiar fully connected
layer

The network modes.
were shown to
‘generate peptide
lioraries of a desired
size within the
‘applicabiity domain of
the model

On a per-target basis,
NN scoring
outperforms Vina
‘scoring for 90% of the
DUD-E targets

‘The model
outperformed the
existing solutions and
have attained a near
100% of accuracy in
mult-label, mult-
family classffcation

'SECLAF produces the
most accurate artiicial
neural network for
residue sequence
dlassication to date
Effective for valdation,
distribution, and
representation for
‘automatic encoding
with no handcrated
encode construction

3D models bt from
contact prediction

have Tm score >0.5
for 208 of the 398
‘membrane proteins

Aims to control the
overall shape and size
of a protein using
existing blocks

Improvement of
MDLoc over
preiminary methods.
with Bayesian network
dlassiers

Gyscon improved the
average accuracy of
‘connectvty pattem
prediction

EASE-MM archived
balanced resuls for
different types of
mutations based on
the accessible surface
area, secondary
structure, or
magnitude of stabiity
changes

SPIN improves over
the fragment-derived
profie by 6.7% (fom
23610 303%) in
‘sequence identity
between predicted
‘and raw sequences
No network

For the prediction of
‘olled coil regions, our
performance of 97.4%
beats the best result
(94%) on the same
dataset from using the
‘same evaluation setup
Advantage for testing
several averaging
‘windows, 600
properties encoded,
‘averaged with fie
different windows into
'23000-dimensional
vector

‘SPAKRS-X performs
significantly better in
recognizing
structurally simiar
proteins (3%) and in
buiding better
modls (3%)

‘Small number of
features and the
simple architecture
guarantee
interpretable
predictions.

‘The accuracy of fold
rate prediction is
improved over
previous sequence-
based prediction
methods

Overall accuracy of
dlassication and the.
Pearson correlation
coefficient of
regression were
79.2% and 0.72

The method generates
conformations by
restricting the local
conformations of a
protein

Lower bounds are.
exploited in branching
and subproblem
selection for fast
discovery of strong
Upper bounds

Possible combination
including new feature
se, new kemel, or a
learning method to
improve acouracy.

Maimum predited
values by ANN (0.47
Uml -1) and RSM
0.476 UH - 1),
whereas R2 and AAD
were detarmined as
0989 and 0.050°% for
AN and 095 and
0.078% for RSM,
respectively

Bias o estmation of
ho accuracy reduces
computational cost

Accurate predictions.
of novel alphabets for
extending the
perormance

Machine learing
aigorithms make it
possible to use more:
complex and
expensiveteststoonly
protein properties

Rediscovery existence
of conventional
ahelces, paralll
b-sheets, ani-paralel
sheets and loops, and
non-conventional
hybrid structures

Overal accuracy of
65.2% for fod
discrimination and
inividul
propensites, which is
better than those from
the iterature

The modal is
developed to explot
global search
capabittes n genetic:
programring for
predicting protein
functions of a distantly
related protein family
that has diffcuites in
the conserved domain
identiication

“The BBFNN has
improved the
accuracy by a further
5% Most cost-
effectve and affcent
way of prediting
signal peptides
Profie-ony SV
classfers show a
prediction
perormance of 80%

Large extent protein
stabilty can be
evaluated with specifc:
interactions in the
sequence neighbors
captured

‘The method is able to
identiy crucial stes for
folding process: for
26i2 and bamase and
shows a very good
agreement with
experimental results

Limitations

Distribution of the
‘specific weights was
calculated according
1o the ratio between
the positive instances
and the negative
instances to solve the
imoalance proble.
‘The sensitvity
prediction was only.
0.189. This can be
atirbuted by its very.
limited prediction
coverage and the
fimited number of
‘sequences in the
training set

‘Ssnet being bind to
‘conformation limits its
capabilty to account
for mutations resulting
fromthe same fold but
significant differencein
binding affnty. Ssnet
should be treated as a
t0ol to cull milfons of
drug-ike molecules
and ot as an exact
binding affnty
prediction tool

It may aiso have
difficultes in that a
residue but into the
solvent 5 A" away from
the structure is no
different than one 10
A away

For docking power,
the Ak-score-single
model is not as.

prominent as the other
criteria models

Current SBVS
benchmarks do not
actually mimic real test
sets, and thus their
abilty to anticipate
prospective
performance is
uncertain

The model is currently
only for single-iabel
dlassification rather
than muli-abel
dlassification and only
predits proteins
approximately into six
major ciasses. The
training has a
considerable time
during the entire
experiment; further
optimization is
necessary to improve
performance

Deep leaming models
are black-box models
and may not be very
useful for rying to
understand the
causes of PTMs and
how to affect them.
We gather that
scientists would ke to
know the cause and
effect in order to
propose disease
modifcation methods,

rather than just pure
dentifcation of PTM's
Prediction accuracy
can b further
improved by
incorporating new
structure to refine the
model

NA

Both GBTs and neural
networks are quite
sensitive to system
errors of training of a
model The A4G of
27 non-binders.

(-8 kealmok-1) did not
folow the distribution
of the whoe dataset.

Improvement and
especilly in reducing
the number of non-
binding residues that
getfalsely classiied as
binding sites. Better
feature engineering to
produce better
protein-peptide-
binding sie prediction
resuts. More
‘advanced computing
environment

The mathod couid be
extendsd to addoss
folded structures of
proteins by including
more spatial
information (datve
distance of esiduals,
angls, or contact
information. As well
as the addton of
combined
optmzation
aigortms, ke
genetc agorthms
“The computatonal
cost for raining
increases several
tmes. Due to the
considerable cata
skow, tho raring
aigortm tends to fal
into a local minimum
whero the natwork
predicts al inputs a5
negatve examples

This generative neural
network model yet ies
incapable of
reproducing non-
diversiy-related
cases, which is a
‘subject of active
research in the
machine learing
‘community

s yet diffiult to
predict if the new
models wil perform
better only on the
resuls, referring to the
use of a new dataset.

Of the nine cases
used, the amount of
data belonging to
‘each class may not
produce a model with
the abilty to extract
features or to be wel
generaized.
Combined features
improve predition
results than those
features used alone
DeepUbi is not too
deep. Only two.
‘convolution-pooiing
structures

Expensive and time
consuming

The overal best
results were obtained
for a window of size
15. The lowest result
was obtained in
windows of size 101.
The lowest resut for
the ProCos was
obtained with the CNN
model

Although SeqVec
embeddings
generated the best
predictions fromsingle
sequences, no.
solution improved
over the best exsting
method using
evolutionary
information

The protein structure
prediction challenge
especially in cases in
which structural
information about a
protein s not avaiable
by homology transfer

The resulting unified
RNN/GONN-CNN
model did notimprove
against unified
ANNCNN

Existing fold-specific
features lack biological
evidences and
interpretabilty, the
feature extraction
method is stil the
botileneck for the
performance
improvement of the
machine leaming-
based methods.

NA

‘Omate does not reach
the accuracy of the
best meta-methods.
Scoring timeabout 15
for mid-size proteins

Choice of the input
network and the seed
scores on the genes.
need careful
consideration due to
possiilty of
overestimation in
performance
indicators

Adoption of more:
complex architecture,
ke recurrent layers.
can improve
performance.
However, the use of
recurrent models
leads to bad
performance.
Impossivilty to predict
multple locaiization for
asingle protein
sequence

‘The models are
presented with cases
that are neither
physicaly nor
biologically meaningful

Limitaton to typical
Neinked and mucin-
type Ovlnked
giycosyaton stes due
tolack of data for
atypical Nenked and
ofhertypes of Onked
giycosyaton stes
Loss of specifc
orentation data. NOS
structures 1TLL and
120 and catalyic
stes in TRYPSN-ke
enzymes not detected

Potentalimprovement
of predictive accuracy
by integrating
representations from
other data sources
with the current PPI

network embedding
representations

Restriction of the.
velocity of the dihedral
angles neachiteration
to a reasonable range
for balancing the
accuracy and the
searching
conformation. There
are stil some
unreasonable
solutions in the Pareto
set. The final step,
which ranks the
structures in Pareto
set, needs more
studies

NA

ithereis a certaintype
of PP that previous
models cannot
hande, the article wil
not say if the new
model can

Consideration of some
other physicochemical
features to construct
the model and try to
expain the biological
meaning of CNN fiters

Incorrect prediction of
contacts between the
N- and C- terminal
protein regions. Low
‘acouracy of contact
predicton in the
Terminal regions due.
to MSAs with many.
9aps in these regions,
as the acuracy of
contact-map.
prediction and FM
target modeling is
highly influenced by
thenumber of effective:
sequences in

the MSA.

Measurement of
protein expression
with yeast possessing
only 5000 genes

Further application of
the modl to predict
other protein
structure-related
properties, such as
backbone torsion
‘angles, solvent
‘accessiilty, contact
number, and protein
‘order/disorder region,
wil be done in the
future

Drawback to
train-test spit is
possble overfiing to
the test set through
hyperparameter
searching. Another
fimitaton s that train
and test sots wil
‘contain simiar
examples

Time execution
increased less than
the density, and more
than the number of
nodes.

Long proteins are also.
shown to take
extensive time,
‘especialy for 2D
analysis tooks. The use:
of GPU and GPU is
shown 10 not make a
major diference in the.
time taken, as the
speed increase.
introduced by GPU

‘acoleration mainly
‘comes during training

Coding imitation
‘environment imposed
by the 2D-BRLSTM
mode; traning and
testing input is imited
to proteins of kength
300 and 700 residues

The results show that
our method can
further improve the.
prediction
performance by up to
2%, which is very
close 1o an upper
bound thatis obtained
by an approximate
Bayesian
‘computation-based
samping method

DeepSol §2 model
was surpassed by
PaRSnIP on sensitity
for soluble proteins

‘Consideration of the
potentil effects of
more rigorous
dlassication tests

Manual input of
features into the
networks

Comparative resuits
for GNN and iHyd-
PseCp networks

LSDR generates
inconsistent
parent-chid pairs.
GO-aware terms have
ahigher
inconsistencies

Extension of the.
system to afford mul-
objective optimization
of several target
properties

Diffculies with
Cathepsin S, for de.
ovo docking

When the recurrent
neural network was
constructed by
unidiectional GRU,
the performance
ropped to 67.2%.
‘The unidirectional
GRU network was
ineffective at capturing
contextual
dependencies

NIP-SS is competent
on al datasets and
hold a good
performance,
whereas NIP-RW can
only obtain a good
performance on small
dataset (positive:
‘samples <6000)
because of the
restiction of random
walk and the resuts of
‘extensive experiments

Interpretation of
biological aspect,

overiiting problems
on smallscale data

Training tme for the
full ensemble was
80 h, approximately
5 h per model

Demand of significant
‘computational
resources than other
methods for ligand-
binding prediction

Increasing the
network size to more
than two layers with
256 newrons led to
rapid over-fiting of the
training data
ditrioution

NN performance is
worse at intra-target
pose ranking, which is
more relevant to
molecular docking

Network variants
without batch
normalization and five
(instead of six) ayers
showed a
performance drop of
several percentage
points. With more
GPU RAM avalable,
one can further
improve upon the
performance of our
neural network by
simply increasing the
number of
convolutional or ully
connected layers.
Preparation of the
input data must be
done by the user

Provided suffcient
data, the method s,
able to make
preciction for any
length peptides or
allele subtype

No recogition of
predict contact maps
from PDB.

First workioad
imbalance, less.
efficient work sharing
and overheads in
schedulng

MDLoc's precision
values are lower than
those of BNCs,
MDLoc's

Contact information
must be predicted
from sequence either
by feature-based
training or by
conelated mutations
Using an independent
test set of 238
mutations, results
were comparedinwith
related work

Minor improvement in
the core of proteins,
which have 10% less
hydrophilc residues in
predicted sequences
than raw sequences

No network.

The largest
improvement is
observed for relative
solvent accessibilty
predicton, from 79.2
10.81.0%in the
multtask setting
Computational time
required for

HHPRED improve 3%
over SPARKS-X due
o significantly more:
sophisticated model
buiding techniques

Retums in confidence
estimates that rate
predictions are reliable
o not

Performance can be
further enhanced with
additonal information

Direct comparison of
Prethermut with the
other published
prediotor was not
performed as a result
of data mitation and
differences.

NF can generate
decoys with lower
energy but not
improve decoy qualty

BroMAP is particularly
applicable to large
protein design
problems where DEE/
A struggles and can
also substiute for
DEE/A in general
GMEC search
Training any classifier
with an unbalanced
dataset in favor of
negative instances
makes it dificult to
leam the posiive
instances

ANN has the
disadvantage of
requiring large
‘amounts of training
data

‘Computational
‘demand is impractical
for large datasets

‘Smaller windows and
number of units, the
network has fewer
total degrees of
freedom

‘Gomputational
resources are cheap;
we instead used the
1000 subsamples of
the traning sets

Limitation to
backbone
interactions, the
degreeof each nodein
the network was
bounded from above.
by two covalent and
two possible
hydrogen bonds
Incrementation of
backbone
‘conformation resuits
in the reduction on
‘acouracy prediction

Ratios of comparison
between the heuristic
signal match and
exhaustive sequence.
alignment are low

Size of the positive
‘examples in the
dataset reduces
prediction accuracy

‘The approach is
based on sequence
profies only. Models
show a tendency to
over-predict extended
residues and under-
prediot residues in the.
heical state
Correlation of
predicted with
expected/
‘experimental values is
0.71 with a standard
error of 1.30 kealimol
20,62 with an SE of
1.45 kealimol

No improvement on
success rate by
introducing more
‘sophisticated energy
functions. Important
features of real
proteins are neglected
by short-range
Hamitonians

Validation
and performance

AUC (0922 and
0.902), MCC (0639
and 0.0642), and 5-
fold cross-vaidation

AUC, ROC, and EF
scores

COD for main chain
0.751; COD for side
chain 0613

Spearman and
Pearson correlation
coefficients

NA

Acauracy, ROC
curve, AUC, 3-fold
cross-valdation

Cross-valdation,
precision accuracy,
recall, Hamming-loss

Prediction
‘accuracy (85%)

MCC coeffiient

Person coefficient
(Rp) = 0.65/0.68 and
10-0ld cross-
vaidation

Sensitivty,

‘specifcty, AUC,
ROC curve, and
MCC coefficient

Molecular dynamics
equilbration with
normal mode
analysis

Precision,
Recal, MCC

Performance
assessed using
diferent sizes of
latent vector and
optimizer

Sensitivty,
Speifty,
Acauracy, AUC,
ROC curve, MCC
coeficient

MCC and 5-fold
cross-valdation

4-,6-,8-,and 10-f0ld
cross-valdation
Sensitvty,
Speifcty, Acc,
AUC, MCC, Acc
>85% AUC =
0.9066/M
CB6133 0.742
©B5130.705

078

Precision, Accuracy,
Recall F-Measures.
K-fold (< =3,5) cross-
vaiidation

Predictions of
intrinsic disorder
were evaluated
through Matthew's
‘corretation coefiicient
and the False-
Positive Rate. Also,
the Gorodkin
measure was used

2-class ACC
0805 2-class F1
080 3-class ACC
0664 3-class F1
0,66 4-class ACC
0.565 4-class
F1056

Inferior elative ermor
inC50 within 5-fold
for test cases and
20-foid for protein
dlasses not included
for training

2-f0id cross-
vaiidation, Acouracy

Acc, MCC, Sn, Sp,
AUC, PPV, NPV, F1-
score,AOC curve
and 5-fold cross-
vaiidation

Network running
using a GeForce GTX
680 GPU

There was a dramatic
reduction in
‘performance for
‘most methods when
using a complex-
aware cross-
vaiidation strategy.
Thres cross-
vaiidation schemes
were used

10-0ld cross-
vaiidation, MCC from
04510065

CASP12 0726
TS115 0,778 CBS13
0794

AUC MCC,
acouracy, sensitity,
specicty, ROC
cuve, 10-fold cross-
valdation

5+0ld cross-
valdation Precision,
Recall Precision

0.99 Recall = 0.955

AUC, ROC, MCC

RMSD value

NA

PPl prediction
‘accuracy for eight
‘species ranged fom
96.76 10 99.77%,
which implies the
‘mul-modal deop
representation-
learming framework
achieves superior
‘performance
compared to other
‘computational
methods

Sensitivty,
Speifity,
Accuracy, Precision,
and MCC coefficient

TM-score and
pvalues

kemerfeature, Gross-
vaiidation, Held-out
R2 =061

Accuracy, p-value

Regression
enrichment factor
(EF), Pearson, and
Spearman
coefficient,
R-squared, MUE
(mean-unsigned
emor)

5-f0kd cross-
vaication
Implementation and
executon in a Nvidia
GeForce GTX980
GPU target
Precision. Recal,
F-score, AUPRC
10-00d cross-
vaidation, Accuracy

AUC 0.95, ROC
cunve, precision

Gross-vaiidation,
AUC, sensitvity

10-fold cross-
valdation Acc, MCC
15% MCC = 0.55
3.5% DeepSol S1-
69 DeepSol 52- 69%

5-0ld cross-
vaidation Sensitty,
Specifcity, Acc,
AUC, F-score, MCC
Acc =99, 995,
963, 97.6%

Hold-out testing set
model validation Acc,
recall, precision,
F-score, MCC Acc
0.9878 Recal=
0.9891 Precision =
0.9861 F-score=
0.9876 MCC=
09757

5-0ld cross-
valdation Sn, Sp,
Acc, MCC, TPR,
FPR, Precision, recal

3-0ld cross-
valdation Fp,
AUPRGp, SDp, Ft,
AUCRPCL

5-0ld cross-
valdation (5CV)
model trained using a
GPU Acc R2, RMSE
Acc R2 = 0,91

AUC, ROC, MCC

Precision, Recal, F1-
score, macro-F1,
Accuracy

Precision, Accuracy,
Recall, Specifcty,
MCC coefficient, F1-
score, AUC,
Sensitvity

10-f0ld cross-
valdation; ACG =
0.708, sensitvity
(SEN) = 0723,
specifcty (SPE) =
0.707, AUC = 0.783,
MCC = 0251
Nested cross-
valdation and helg-
out set for testing
models Gorodkin,

Acc, MCC 72.90%
72.89%

10-0ld cross-
vaidation Using
Nvidia GeForce GTX
1080 GPU for
accolerated
‘computing DCC,
DVO AUC, ROC, S,
SP, Precision, F1-
score, MCC,
Cohen's Kappa
oefiicient

5-fold cross-
vaidation Network
training and
generated
sequences on a
Nvidia GeForce GTX
1080 Ti GPU

3-fold cross-
vaiidation ROC,
AUC, FPR, TPR, RF-
score, NNScore.
ONN-0.815 Vina-
0645

Precision, Recal, F1-
value, AUC, ROC
auve

AuC

70% traning set and
30% valdation set
(Hold-out) and 10-
fold cross-vaidation
GPU for faster
‘computation of
‘model SRCC, AUC
SRCC = 0521,
0521, 0513 AUC=
0836, 0819,
081866.7%
Agorithm runs on
GPU card, Acc Lk
(k=10,5.2, 1) Long-
range 47%
CCMpred- 21%
CASP11-30%
RMSD value

5-oid cross-
vaiidation Presi,
Recsi, Acc, F1-
scoresi

10-0ld cross-
vaiidation and 20-
fold cross-valdation
Qc, QP 21.9%

10-0ld cross-
vaiidation ROC,

Sp, PW, NPV AU
082MCC =044 Q2
=747180=7314
Sp=7528PW =

52.30 NPV = 88.33

10-f0ld cross-
vaiidation MSE,
Precision, Recovery
rate

3-and 10-fold cross-
vaiidation Acc,
precision, recall,
F180.3%

5-fold cross-
vaiidation AUC, Sn,
Precision, NDO, AOS

ROC, TPR, FPR

5-fold cross-
vaiidation Acc, F1-
score, precision,
recall

Leave-one-out
cross-valdation
(Loocy)
Classification
‘acouracy surface,
Predicted precision

10-0ld cross-
vaiidation Overall
acouracy (2), MCC,
Sn, Sp, Pearson
correlation cosfficient
© Acc = 79.2% ¢
-o72

5-,7-, and 10-foid
cross-vaidation
Accuracy () Q3
=80.1%

NA

20-0d cross-
valdation Acc, Error
rate, Precision,
Recal, FP rate Acc=
0842, 0835

AMSE, Rz, AAD
AMSE<0.0001 R2
0.9998

10-f0ld cross-
valdation and leave-
one-out cross-
valdation (LOOCY)
Accuracy, MCG
Acc=90.6-85.7%
3-0ld cross-
vaidation, Gn

Cross-vaiidation

10-fold cross-
vaidation

2-0ld cross-
valdation 5-fold
cross-vaidation
Accuracy (@), Sn, Sp
Q= 65.2% >70%

Cross-vaiidation

5-0ld cross-
valdation Accuracy
Acc >00%, 97.16%
for BBFNN 97.63%
for Ca.5

Acc, MCC, Sn, Sp
Acc = 93.3%, 93.4%
MCC = 0645, 0.671

Cross-vaiidation
Accuracy, MCC, Q2
=0:80,0.77 MCC
051,042

NA
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