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In order to more accurately and comprehensively characterize the changes and
development rules of lesion characteristics in pulmonary medical images in different
periods, the study was conducted to predict the evolution of pulmonary nodules in the
longitudinal dimension of time, and a benign and malignant prediction model of pulmonary
lesions in different periods was constructed under multiscale three-dimensional (3D)
feature fusion. According to the sequence of computed tomography (CT) images of
patients at different stages, 3D interpolation was conducted to generate 3D lung CT
images. The 3D features of different size lesions in the lungs were extracted using 3D
convolutional neural networks for fusion features. A time-modulated long short-term
memory was constructed to predict the benign and malignant lesions by using the
improved time-length memory method to learn the feature vectors of lung lesions with
temporal and spatial characteristics in different periods. The experiment shows that the
area under the curve of the proposed method is 92.71%, which is higher than that of the
traditional method.
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1 INTRODUCTION

Because of factors such as smoking, air pollution, and occupational environment, lung cancer
has become one of the most malignant tumors that threaten human health and life and has
become the number one killer of all cancers (Taillant et al., 2004; Zhang et al., 2018). Global
cancer data show that the number of new cases and deaths of lung cancer in the world in 2018
were 2.1 million and 1.8 million, respectively, with the highest morbidity and mortality rates
among all cancers. The 5-year survival rate of patients with advanced lung cancer is
approximately 16%, but for effective treatment in patients with early-stage disease, the 5-
year survival rate can increase by approximately four to five times (Nagaratnam et al., 2018
Cheuk). Pulmonary nodules are an early manifestation of lung cancer, and their benign and
malignant predictions are very important for radiologists to carry out cancer staging assessment
and individualized clinical treatment planning. With the development of medical imaging
technology, the number of computed tomography (CT) images of the lungs continues to
increase, but the number of experienced physicians is limited, resulting in the explosive
growth of image data and the serious shortage of manual diagnosis. Therefore, computer-
aided diagnosis technology is urgently needed (Zhang et al., 2020a) to assist physicians in feature
extraction and benign and malignant prediction of lung nodules.
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In clinical diagnosis, the objects of lung medical image
processing are often limited to the data of the patient in the
same period, and the feature vectors of a slice in a certain period
are considered in isolation, and the global features with spatial
information on the time axis are ignored. In addition, Existing
prediction methods, such as medical decision-making systems
(Christo et al., 2020) combined with intelligent optimization
(Deng et al., 2020; Zhang et al., 2021), are divided into
multiobjective (Cui et al., 2020; Cai et al., 2021a) and single-
objective optimization (Boudjemaa et al., 2020; Yang et al., 2020).
Although the factors considered can be more comprehensive,
they mostly rely on artificial features. Because of the limited
expressive power of manual features, the prediction effects of
existing methods are often unsatisfactory. At the same time,
because of the complexity of the growth and evolution of lung
nodules in the lung cancer lesion area (Duffy and Field, 2020), the
same lesion often has different imaging manifestations at
different periods. Among them, the medical imaging data of
lesions at different periods contain a large amount of their
evolution (development, death)–related information. Lung CT
images have blurred edges, low gray values, and difficult-to-
express texture information. It is difficult to accurately and
comprehensively characterize lung lesions. In recent years,
longitudinal prediction methods have been proposed
(Santeramo et al., 2018; Oh et al., 2019), and the current
research methods are rarely useful in the field of pulmonary
medicine, and the existing intelligent diagnosis mostly uses
isolated image fragments, which cannot present the entire
cycle of the lesion, resulting in the inability to link the
characteristics of lung cancer at different periods.

Figure 1 shows the evolution trend of the sequence of long-
course lung lesions examined every 3 months in the same patient.

We propose a scheme that uses the latest deep learning
techniques (Cui et al., 2021) to extract the depth features of
long-term lung CT lesion sequence images for early benign and
malignant lung lesion prediction. According to the sequence
images of the lesions in each period, make full use of the
temporal and spatial information of the image to extract the
depth features of the lesions in different periods. According to the
characteristics of lung medical images in different periods, the
long- and short-term memory model recurrent neural network
(RNN) architecture is good for lung lesions. Longitudinal
prediction of malignancy provides reliable help for physicians.

The major contributions of this article are as follows:

1) On the lung lesion image data set, RPN was used to extract the
candidate region (Ren et al., 2017), and linear interpolation
technology was used to obtain the three-dimensional (3D)
structure of the candidate region.

2) We propose a novel method to exploit 3D convolutional
neural network (CNN) deep network to extract the deep
hidden features of long-duration lung lesions; compared
with their 2D counterparts, the 3D CNNs can encode
richer spatial information and extract more discriminative
representations via the hierarchical architecture trained with
3D samples.

3) We propose a novel long short-term memory (LSTM)
network with time modulation information to propagate
the spatial–temporal information between pulmonary
lesions adjacent slices for a long period and capture the
corresponding long-term dependencies and solve the
problem that the input must be the image of lung lesions
with equal intervals, thereby predicting the next stage of
pulmonary lesion.

2 RELATED WORK

2.1 Methods of Extracting Medical Image
Feature Information
The large amount of information contained in the lesions in each
period of medical imaging has important guiding significance for
obtaining accurate prediction results, and accurate prediction
results also play an important guiding role for doctors’ diagnosis
(Hu et al., 2016). For extracting a large amount of information
from the lesions, Zhao and Du (2016) used dimensionality
reduction technology and deep learning technology,
respectively, to extract spectral features and spatial features
and used CNN to find space-related features. Bodla et al.
(2017) proposed a face recognition method based on deep
heterogeneous feature fusion, which uses different deep CNNs
(DCNNs) to concatenate the generated features and merge the
feature information. Khusnuliawati et al. (2017) proposed that
the scale invariant feature transform and local extensive binary
pattern should be used for multifeature extraction, and the
extracted features should be concatenated and fused in the
form of histogram. Xiao et al. (2015) proposed a feature
fusion method based on SoftMax regression to perform
effective feature fusions by estimating the similarity measure

FIGURE 1 | Long-term sequence of lung lesions.
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from object to class and the probabilities that each object belongs
to a different kind. Shi et al. (2017) put forward a new nonlinear
measurement learning method, which uses deep sparse
autoencoder feature fusion strategy based on deep network.

2.2 Application of Traditional Methods to
Time-Series Data
In recent years, scholars have also studied time-series data in
medicine. Onisko et al. (2016) analyzed medical time series
through Kaplan–Meier estimator Cox proportional hazard
regression model and dynamic Bayesian network modeling. Li
and Feng (2015) predicted the number of future medical
appointments by analyzing the appointment capacity of
emergency patients every day and every hour. Cheng et al.
(2020) applied a Bayesian nonparametric model based on
Gaussian process regression to hospital patient monitoring using
clinical covariables and all information provided by laboratory tests
and successfully conducted medical intervention. As deep learning
has a good advantage in time-series learning, many scholars have
applied it to many fields. Chandra (2015) has proposed utilizing
RNN to predict collaborative evolution by analyzing time series.
Fragkiadaki et al., 2016 proposed an improved RNN model that
captures moving body gestures in video for recognition and
prediction. Koutník et al. (2014) have introduced a modified
clockwork RNN architecture, which divides its hidden layers into
separate modules, achieving the processing input of each module at
its own time granularity, improving the performance of task tests,
and speeding up the network speed.

2.3 Application of CNN and Long-Term
Memory and LSTM to Time-Series Data
In recent years, CNNs have been successfully used to detect
radiological anomalies in medical images, such as ordinary
X-rays. LSTMs is a special type of RNN that can classify, process,
and predict time series (Graves, 2012; Zhang, 2020). The internal
state of the LSTM (also known as cell state or memory) enables the
architecture to remember the standard LSTM. The standard LSTM
contains memory blocks, which contain memory units. A typical
memory block consists of three main components: an input gate
controlling the input activation flow of memory cells, an output gate
controlling the output activation flow, and a forgetting gate
regulating the internal state of cells. The forgetting gate adjusts
the amount of information used in the internal state of the previous
time step. Santeramo et al. (2018) attempted to automate the analysis
of longitudinal medical image data by using the LSTM network to
analyses the temporal context of a series of chest radiographs. In the
field of breast pathological images, Kooi and Karssemeijer (2017)
proposed a region of interest (ROI)–based method to compare
plaques aligned at different time points. Although the latter
method is slightly improved compared with a single detection
method, it depends on specific lesion detection and requires
local data.

These algorithms are very effective, but are rarely applied to long-
term lung CT image prediction. So far, most studies have used CNNs
in individual tests, but abandoned previously available clinical

information. One limitation of traditional LSTM is that they
implicitly assume equal interval observations, while medical
examination is event based, so the sampling is irregular.

LSTMs and more general RNNs do not perform well in time
series with irregularly sampled or missing data (Che et al., 2018;
Zhang, 2021). Previous attempts to apply LSTMs to irregularly
sampled data points focused on accelerating algorithm
convergence or reducing short-term memory in an
environment with high-resolution sampled data (Baytas et al.,
2017). This project set out to explore the performance of LSTM
network, which became one of the selection methods of sequence
modeling, especially when combined with CNNs for medical
image feature extraction (Donahue et al., 2015; Grano and Zhang,
2019). The main advantages of combining CNNs with LSTMs are
flexibility and scalability; it allows multiple prior sequences of
variable length to be classified using the same network.
Longitudinal analysis of images can potentially improve the
ability of machine learning algorithms to interpret imaging
studies accurately and reliably, thus providing value for
medical image processing (Gao et al., 2018).

3 METHODS

In this article, the benign and malignant lung lesions can be
predicted by spatiotemporal feature fusion. For CT sequence
images of the same patient from the early stage to the
diagnosis, a faster Region-CNN (R-CNN) (Shinde et al.,
2019) detector was used to generate ROI (Qiang et al.,
2015), to extract temporal and spatial features of multilayer
context information around pulmonary nodules, and a 3D
CNN (Cai et al., 2021b) was used for fusion. Then, the
temporal and spatial feature fusion vectors of pulmonary
nodules in each period were selected to study the variation
trend and relationship of feature vectors in each period by
using time-modulated long–short memory network. Finally,
the time-modulated LSTM (T-LSTM) model was used to
predict the evolution trend of lung lesions over a long
period and to determine their malignancy. The overall
process is shown in Figure 2.

2D CNN selects ALEXNET network as baseline. CNN
architectures for medical imaging usually contain fewer
convolutional layers because of the small data sets and input
size. The CNN architecture consisted of three convolutional
layers and two fully connected layers, where each
convolutional layer was followed by a max-pooling layer. In
2D CNN, the kernel moves in two directions. The input and
output data of 2D CNN are 3D. It can be mainly used for single
image data. In 3D CNN, the kernel moves in three directions. The
input and output data of 3D CNN are 4D. It can be mainly used
for 3D image data (magnetic resonance imaging, CT scan).

3.1 Lung CT Sequence Image
Preprocessing
In the diagnosis process of doctors, the focus of observation and
research is pulmonary nodules, which are transparent light and
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shadow with the maximum diameter of no more than 30 mm in
the pulmonary parenchyma and occupy only a small part of the
CT area of the chest cavity. In order to reduce the interference of
other organs and tissues on the diagnosis process of doctors and
effectively reduce the algorithm complexity, the lung CT images
obtained from The National Lung Screening Trial (NLST) and
cooperative hospitals were preprocessed. As the location of
pulmonary nodules was not marked in detail in the data set,
we adopted a pace–R-CNN detector to detect the target nodules
and intercept the ROI-centered peripheral rectangular area to
construct the pulmonary nodule data set.

We screened lung CT images of patients followed up for
3 years or more in the NLST data set to construct a long-term
data set. The NLST data set marked the section number and
approximate location of the most prominent pulmonary
nodules in each phase sequence. The pulmonary CT image
corresponding to the section number was examined for
nodules. ResNet 101 (He et al., 2016) was selected as the
backbone network of faster R-CNN. Boundary boxes were
defined with five aspect ratios of 1:3, 1:2, 1:1, 2:1, and 3:1

and four scales of 8 × 8, 16 × 16, 32 × 32, and 64 × 64 to cover
blocks of different shapes. It is worth noting that the 1:3 and 3:
1 aspect ratio settings are due to the presence of pulmonary
vascularized lesions, which are critical for the diagnosis of lung
cancer.

According to the detection of pulmonary nodules, use a
rectangular area with a scale of 30 * 30 or 40 * 40, take the
coordinate information of the upper left corner of the detailed
annotation rectangle in the lower right corner, cut the first five
and the last five rectangular boxes according to the pulmonary
nodules with the most obvious coordinate information as the
center, and construct a 3D block. When each data set has the
same sequence, do the same processing on the CT image, and
establish a long-term pulmonary nodule sequence image data set.

3.2 Spatiotemporal Feature Extraction
The feature extraction methods of pulmonary lesions can be
generally divided into traditional feature extraction methods
and deep learning feature extraction methods. Generally
speaking, the traditional method of feature extraction can

FIGURE 2 | The framework of our proposed network.
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only de-scribe a specific type of information. Deep learning,
such as 2D CNN, has achieved good results in image feature
extraction and can express high-level semantic information of
lesions. However, this solution based on 2D CNN still cannot
make full use of the 3D spatial context information of
pulmonary nodules to extract the benign and malignant
information of pulmonary nodules with temporal and
spatial characteristics. Therefore, this article proposes a new
method to extract the benign and malignant features of
pulmonary nodules from CT sequences using 3D CNNs.
Compared with 2D CNN, 3D CNN can encode more spatial
information and extract more spatial discrimination
information through the hierarchical structure of 3D sample
training.

Features extracted by DCNN can represent the inherent
semantic information of images (Kamnitsas et al., 2016). With
the emergence of deep neural networks in computer vision, 3D
CNN has developed rapidly in the past few years. Although 3D
medical data are very common and popular in clinical practice,
3D CNN is still in its infancy in medical application.
Furthermore, the hyperparameter adjustment of thousands
of filters on large data sets is still an important challenge.
To alleviate this problem, migrating pretrained 3D CNN to
specific application scenarios is a very efficient and simple
solution (Aaron et al., 2018).

We proposed a two-channel network, which is suitable for
input of different sizes. The main structure of our multilevel
3D CNN framework is shown in Figure 3. Each network has
four convolutional layers. Both cnn-30 and cnn-40 contain a
fully connected layer. After each hidden layer, a batch
normalization layer is inserted to ensure a higher learning
rate and reduce overfitting, and a dropout layer is added to
further reduce the overfitting performance.

The two architectures, respectively, output the 2D
classification prediction of nodule or nonnodule by SoftMax in
the upper layer and a 256-D feature vector from the last hidden

layer. Their outputs are then combined into a single classification
result of a given original 3D volume. This feature is used for
feature fusion and for predicting classification of pulmonary
nodules. We used data fusion techniques to, namely, late
fusion. The two features from the last hidden layer of CNN
are connected into a complete feature vector and sent to the
prediction module. Table 1 details the network configuration.

A batch of 3D training samples are expressed as
(x1, y1) . . . (xi, yi) . . . . . . (xm, ym), where m is the number of
samples, xi is the input sample, and yi is the real label
corresponding to the sample. yi ∈ [0, 1], where 0 represents
benign nodule and one represents malignant nodule. pi is the
probability of prediction, and θ represents all trainable
parameters in the model. In this article, the weight factor of
the right of use, α ∈ [0, 1], and the adjustable focus parameter,
γ≥ 0, are used to solve the class imbalance problem, and the
attention is focused on the sample of more complex training
situations. The population objective function is the average value
of the sample loss, as shown in Eq. 1, minimizing J(θ) by
optimizing network parameters.

J(θ) � − 1
m
[αyi(1 − p(θ))γ log(pi(θ))

+ (1 − α)(1 − yi)(pi(θ)γ log(1 − pi(θ)))] (1)

FIGURE 3 | The main network structure of multiscale 3D CNN framework. C is the 3D convolutional layer; MP represents the 3D maximum pooling layer, whereas
FC is the full connection layer.

TABLE 1 | Architecture of the multilevel contextual 3D CNNs.

Archi-1 Archi-2

Layer Kernel Channel Layer Kernel Channel

Input — 1 Input — 1
C1 5 × 5 × 5 64 C1 5 × 5 × 5 64
M1 2 × 2 × 2 64 M1 2 × 2 × 2 64
C2 2 × 2 × 2 128 C2 5 × 5 × 5 128
M2 2 × 2 × 2 128 M2 2 × 2 × 2 128
C3 3 × 3 × 3 256 C3 2 × 2 × 2 256
FC1 256 FC1 — 256

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 7914245

Liu et al. Prediction Method for Long-Term Pulmonary Lesions

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


3.3 Long-Term Lung Lesion Prediction
Based on the T-LSTM Model
In this article, the long-term pulmonary nodules sequence
image data set prepared in Section 3.1 was used to construct a
long-term pulmonary nodule benign and malignant prediction
model. LSTM and RNN are deep network architecture. The
connection between hidden units forms a directed cycle. The
feedback loop enables the network to save the previous hidden
state information as internal memory. Therefore, RNNs are
preferred for problems where the system needs to store and
update the context information (Li et al., 2020). Hidden
Markov model (HMM) and other methods are also used for
similar purposes. However, RNN has its unique
characteristics, which is different from traditional methods
(such as HMM). For example, RNN can deal with variable
length sequences without the assumption of Markov property.
In addition, in principle, the information entered in the past
can be saved in memory without being limited by the past time.
However, in practice, the optimization of long-term
dependence is not always possible. Because when the
gradient value becomes too small and too large, the
gradient value will disappear and explode. In order to
merge long-term dependencies without violating the
optimization process, a variant of RNN has been proposed.
One popular variant is LSTM, which can handle long-term
dependencies using gated structures (Huimei et al., 2020).

However, traditional LSTMs are not suitable for our task
because the time between consecutive follow-up of patients is
variable (Zhang et al., 2020b), and they have no mechanism to
explicitly model the arrival time of each observation (Baytas et al.,
2017). In fact, LSTM and, more generally, RNN have been shown
to perform poorly in time series with irregular sampling data or
lack of values (Che et al., 2018). A previous study attempted to use
LSTM for irregular sampling data points mainly focused on
accelerating the convergence speed of the algorithm or
reducing short-term memory in the setting with high-
resolution sampling data.

For the first time, we propose a temporal information
enhancing LSTM neural networks (T-LSTM) that combine
recurrent time labels with RNNs, which makes the best use of
the temporal features to improve the accuracy of short-term
prediction. And the Long-term lung lesion prediction
algorithm in T-LSTM is shown as Algorithm 1.

To solve these problems, we introduce two simple
modifications to the standard LSTM architecture, called
T-LSTM, both of which explicitly use the input-related time
index. In the architecture proposed in this article, all images of
a given patient are first processed by CNN architecture, which
extracts a set of image features, denoted by Xt̂, at each time step.
The LSTM takes as inputs lt−1i , that is, the radiological labels
describing the images acquired at the previous time step, the
current image features X̂

t
i , and the time lapse between Xt−1

i and
Xt

i , which we denote as:
For the last image in the sequence, the LSTM predicts the

image labels lti , called y
t
i .The cell structure of T-LSTM is shown in

Figure 4 The equations below define the T-LSTM unit:

ft � σ(Wfl p l
t−1 +Wfx p X̂

t +Wfj p δ
t + bf) (2)

it � σ(Wil p l
t−1 +Wix p X̂

t +Wij p δ
t + bi) (3)

ot � σ(Wol p l
t−1 +Wox p X̂

t +Woj p δ
t + bo) (4)

ct � tanh(Wcl p l
t−1 +Wcx p X̂

t +Wcj p δ
t + bc) (5)

ht � ft p ht−1 + it p ci (6)
yt � ot p tanh(ht) (7)

Algorithm 1. Long-term lung lesion prediction algorithm for
T-LSTM.

Input: fusions of pulmonary nodules at different periods of the
same patient Xt̂, t = 1, 2, 3;
Output: The results of classification {0,1}.

Step 1: When calculating C0, the first implied state, Ct−1 is
needed, but it does not exist, so it is set to 0.

Step 2: Calculate the input gate, such as Eq. 3, including the
benign and malignant label of the lesion sequence image
at time t, the input of the feature vector of the lesion
sequence image at time t, and the time interval between
t−1 and t. The activation function is calculated after
summation.

Step 3: The forgetting gate was calculated as Eq. 2, including the
benign and malignant labels of the lesion sequence image
at time t, the input of the feature vector of the lesion
sequence image at time t, and the time interval between
t−1 and t. The activation function is calculated after
summation.

Step 4: The output gate is calculated as Eq. 4, which includes the
benign and malignant labels of the lesion sequence image
at time t, the input of the feature vector of the lesion
sequence image at time t, and the cumulative sum of the
time intervals of t−1 and t, and then the activation
function is calculated.

Step 5: The computational memory unit (the first layer is not
calculated), as shown in Eq. 5, contains the benign and
malignant labels of the lesion sequence image at time t,
the input of the feature vector of the lesion sequence
image at time t, and the time interval between t−1 and
t. The activation function is calculated after
summation.

Step 6: Calculation of implicit elements, such as Eq. 6.
Step 7: Repeat steps Eqs 2–6 to calculate the input and output of

each layer by layer.

4 EXPERIMENTS AND RESULTS

4.1 Data Sets
In order to train and classify CNN, we used two labeled lung
data sets. One is the NLST data set, and the other is the
provided cooperative hospital data set.
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NLST (The Landmark National Lung Screening Trial) data
set. The NLST is a randomized, multisite trial that examined
lung cancer–specific mortality among participants in an
asymptomatic high-risk cohort. Subjects underwent
screening with the use of low-dose CT or chest X-ray. More
than 53,000 participants each underwent three annual
screenings from 2002 to 2007 (approximately 25,500 in the
LDCT study arm), with follow-up postscreening through 2009.
Lung cancers identified as pulmonary nodules were confirmed
by diagnostic procedures (e.g., biopsy, cytology); participants
with confirmed lung cancer were subsequently removed from
the trial for treatment through 2009. NLST contains 421 CT
scans annotated by four radiological experts voxel-wise.

The cooperative hospital had CT images of the lungs of 267
patients, a total of 1,837 cases. The pulmonary CT images of
the cooperation hospital were taken from the positron
emission tomography (PET)/CT center of a hospital in
Shanxi Province in January 2011 and January 2017. The
medical equipment used was Discovery ST16 PET/CT of
GE. The CT image acquisition parameters were as follows:
150 mA, 140 kV, layer thickness 3.75 mm, and image
resolution 512 × 512. Under the diagnosis of two
professional radiologists, the nodule location was marked,
and all cases were marked with 1 and 0, respectively.

4.2 Input Description
We determined the size of the receptive field used in our
framework by analyzing the size distribution of pulmonary
nodules. Firstly, we observed that the diameter density peak of
small nodules was about 9 voxels in X and Y dimensions and
about 4 voxels in Z dimension. We set the first network, Archi-1,
with an acceptance domain of 30 × 30 × 10 (voxels). This
receiving domain can contain small pulmonary nodules in the
appropriate context, and it covers 85% of all nodules in the data
set. This can be performed well under normal circumstances,
most often in patients. The purpose of this window size is to
provide rich background information for small nodules and
appropriate background information for medium-sized lesions.
For some large nodules, it can usually include their main parts
and exclude some marginal areas. Finally, we constructed an
overall acceptance domain of 40 × 40 × 10. According to our

statistical analysis, the boundary of this model is more than 99%
of nodules, except for several outliers.

4.3 Classification Accuracy Comparison of
3D CNN Feature Extraction Methods With
Different Parameters
This article adopts the method of uniform random sampling; the
NLST data set is divided into training set validation set and test
set. Three parts will be 1 over 10 of the NLST data set as a test set;
the rest of the data according to speak is divided into training set
and test set because the model in clinical practice needs to detect
significant differences of data and training data, so we use team
hospital to provide the data set and the NLST test set as a test set
to select the training program.

Training process, from the positive and negative sample
dropout layer and maxnorm regularization, weight
initialization, data expansion four aspects to experiment on
the two-validation set to explore the four aspects of the
influence of different combination for the model to detect
lung nodules on the NLST test and cooperation hospital test
sets of prediction results, and the network parameters as
shown in Tables 2, 3, which define the sensitivity,
specificity, accuracy, and F score of the four parameters to
evaluate the classification effect of nodules. The dropout rates
are 1:20, 1:10, 1:5, 1:3, and 1:2.

First, it can be seen from Tables 2, 3, when the samples are
rare, even in the process of testing, all samples to sample more
than one, and the same accuracy can be higher. Thus, the balance
of positive and negative samples in the training is very important
in this article. The main purpose of this model from the hundreds
of thousands of pieces of chest CT image sequence forecasts
suggestive of benign and malignant lesion area is for the doctor to
prescreen in the end. The bold values is the best performance.

It can be seen from Tables 4 and 5 that the accuracy of the
basic RNN tanh-RNN can reach 87.1%, which verifies that the
RNN has the ability of learning and discriminating features.
Support Vector Machines (SVM) is a traditional feature
extraction and classification method. As it is unable to learn
deep hidden features and their existing relationships, its
accuracy is relatively low. However, the T-LSTM network

FIGURE 4 | T-LSTM cell.
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proposed in this article is higher than RNN, which proves that
considering the relevant continuous changes of things is
helpful to further improve the accuracy of prediction. The
bold values is the best performance.

4.4 Discussion of the Number of LSTM
Layers
The number of network layers directly affects the ability of the
network to extract the characteristics of lung nodules.
Theoretically, the more hidden layers, the more complex the
network structure, making the network have a strong feature

extraction ability, and the higher the accuracy. However, blindly
increasing the number of network layers will result in increased
difficulty of network training, greatly prolonged learning time,
and poor accuracy. In this article, the network structure with
different hidden layers is studied to ensure that other parameters
of the network remain unchanged, and the average value is
calculated 10 times per iteration. Generally speaking, the more
layers of LSTM module, the stronger the learning ability of
higher-level time representation. At the same time, a layer of
ordinary neural network is added to reduce the dimension of the
output results.

As can be seen from Figure 5, the prediction accuracy
increases first and then decreases with the increase of the
number of network layers. When the number of network
layers is 4, the overall accuracy is higher than other values.
When the number of layers in the network is 6, because the
number of layers is too deep and difficult to converge, and at
the same time, the high-level abstract feature information

TABLE 2 | The classification results and network parameters on NLST test set.

Method Sensitivity Specificity Accuracy F1 score

1:20 + Dropout 0.801 0.999 0.905 0.891
1:20 + Dropout + Maxnorm 0.752 0.998 0.883 0.863
1:10 + Dropout + Maxnorm 0.861 0.998 0.921 0.904
1:5 + Dropout + Maxnorm 0.908 0.994 0.949 0.923
1:3 + Dropout + Maxnorm 0.917 0.994 0.953 0.913
1:2 + Dropout + Maxnorm 0.924 0.991 0.957 0.924
1:2 + Dropout + Maxnorm + Lecun 0.932 0.989 0.954 0.917
1:2 + Dropout + Maxnorm + Lecun + Aug 0.943 0.985 0.965 0.929

The bold values is the best performance.

TABLE 3 | The classification results and network parameters on cooperative hospital test set.

Method Sensitivity Specificity Accuracy F1score

1:20 + Dropout 0.711 0.908 0.815 0.864
1:20 + Dropout + Maxnorm 0.705 0.900 0.800 0.848
1:10 + Dropout + Maxnorm 0.721 0.908 0.817 0.864
1:5 + Dropout + Maxnorm 0.717 0.907 0.813 0.871
1:3 + Dropout + Maxnorm 0.709 0.886 0.799 0.862
1:2 + Dropout + Maxnorm 0.698 0.870 0.779 0.952
1:2 + Dropout + Maxnorm + Lecun 0.760 0.943 0.851 0.878
1:2 + Dropout + Maxnorm + Lecun + Aug 0.814 0.946 0.880 0.901

The bold values is the best performance.

TABLE 4 | Comparison of prediction performance of different methods.

Algorithm ACC (%) Pre (%) Rec (%) F score (s)

SVM 0.812 0.818 0.813 0.819
tanh-RNN 0.871 0.936 0.778 0.874
LSTM 0.911 0.943 0.875 0.903
T-LSTM 0.928 0.948 0.927 0.938

The bold values is the best performance.

TABLE 5 | Results for all models, AUROC, and specificity at sensitivity (SPC@
SEN) of 0.87, with 95% confidence interval (CI) displayed in brackets.

AUROC [CI] SPC@SEN 0.87 [CI]

LSTM 0.82 [0.732–0.821] 0.62 [0.401–0.705]
xgb 0.84 [0.789–0.880] 0.75 [0.534–0.721]
BI-LSTM 0.90 [0.802–0.908] 0.72 [0.543–0.813]
T-LSTM 0.93[0.825–0.921] 0.78 [0.561–0.921]
RNN 0.88 [0.744–0.851] 0.59 [0.371–0.752]

*p < 1e-6 compared with RNN. The bold values is the best performance.

FIGURE 5 | Layer number experimental result diagram.
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weakens the differentiation of benign and malignant nodules,
the result will fall into the local extreme value, and the
accuracy is reduced.

4.5 Comparison of Convergence Effect of
T-LSTM
This section will compare the performance of the T-LSTM and
the Bi-directional Long Short-Term Memory (BI-LSTM)
LSTM in the training process. In theory, the BI-LSTM
model takes about twice as much time as the LSTM because
of its bidirectional structure. The single-cycle time of the
T-LSTM is approximately 1.4 times as much as the LSTM
due to the fact that the input data of the T-LSTM are more than
those of the LSTM as shown in Figures 6–8, in the training
process of neural network, although the LSTM converged
faster than T-LSTM and BI-LSTM at the beginning; the
time of BI-LSTM was only 1.5 times that of LSTM and that
of T-LSTM was only 1.2 times that of LSTM due to the impact
of data reading speed and other factors. After some periodic
training, when LSTM and BI-LSTM gradually approach a
constant value, T-LSTM can continue to converge. From
the perspective of recognition effect, T-LSTM performs
better than the other two. From the perspective of model
convergence and recognition effect, the validity of time-
modulated recursive neural network structure is proven.

4.6 Comparison of Prediction Rates Among
Different Classifiers
The RNN classifier does not add a priori knowledge. The AUC
under the receiver operating characteristic (ROC curve; AUROC)
obtained on the evaluation set is 0.88, the sensitivity is 0.87, and
the specificity is 0.59. LSTM did not improve the accuracy and
decreased slightly compared with RNN (Table 4). BI-LSTM
increased AUROC to 0.90 and specificity to 0.64, which was
not statistically significant. The improvement obtained by
gradient boosting was more significant (AUROC 0.84,
specificity 0.75, p < 1e−6). The T-LSTM network further
improved the performance, with AUROC of 0.93, specificity of
0.78, and sensitivity of 0.87. The ROC curves of the five classifiers
are given in Figure 8.

We can see that because the ability of network to learn from
image sequences is limited by depth, RNN is not as good as
BI-LSTM. In future work, we intend to validate our results on a
larger evaluation set. The further improvement of this work is to
train 3D CNN and T-LSTM networks at the same time to realize
the joint optimization of the whole classification architecture. In
addition, we will consider the role of clinical information in
guiding classification. Finally, we can also evaluate the effect of
using multiple a priori knowledge or neighborhood knowledge in
the training set. In conclusion, combining long-time sequence
image research in the deep learning analysis framework can
improve the classification performance and enhance
radiologists’ confidence in the reliability of decision support
technology.

5 DISCUSSION

It is reported that deep learning algorithm can achieve high
performance in medical image classification task (Kooi and
Karssemeijer, 2017; Ribli et al., 2018). However, the current
algorithm is still lower than the average level of human
radiologists in real-world data. One explanation for this gap
is that radiologists add additional information to their
diagnostic analysis, such as nonimage clinical information
and patient specific information. We address the latter by
allowing our algorithm to analyze current and previous
studies. Most of the literatures in this field do not take into
account the relevant characteristics and information of patient
time series, so it is difficult to accurately compare the
performance. On different data sets, AUROC values for
cancer classification ranged from 0.79 to 0.95. The AUROCs
with time information and without time information are 0.82
and 0.93, respectively, which is different from the related work
(Kooi and Karssemeijer, 2017), reflecting the significant
benefits of using previous studies. The advantage of our
method is that it only needs to comprehensively label each
pulmonary nodule without expensive local lesion description.
The experimental results show that it is not enough to simply
classify the images separately; only by training the
classification algorithm on the long-time sequence image
can it be improved.

FIGURE 6 | Comparison of convergence LER results between T-LSTM
and BI-LSTM and LSTM.

FIGURE 7 | Comparison of convergence Rec results between T-LSTM
and BI-LSTM and LSTM.
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It can be seen in Table 4, there are two serious problems in
RNN: gradient explosion and gradient disappearance; thus,
the follow-up training results are not very good. LSTM
improves the gradient updating process, which is mainly
generated by the accumulation of the output of each gate,
so as to avoid the problems of gradient explosion and gradient
disappearance caused by accumulation and multiplication
such as RNN. Bidirectional LSTM is actually the
integration of two LSTM (forward and backward) to enable
them to extract information from the above and below at the
same time. The main integration methods are direct splicing
concatenated and weighted summation. Adding nonlinear
characteristics can also fit the data better. The training
system that provides the highest performance is T-LSTM,
which trains based on features of 3D CNN extracted. T-LSTM
solution is also scalable for analyzing multiple a priori
sequences, and we will further study how to increase
scalability and robustness in the future. In Table 2, there is
a lower probability of specificity after data enhancement than
without data enhancement, which may be related to the
setting of data enhancement parameters. It can reduce the
overfitting of data, but also depends on enhanced effects and
methods. Although the proposed method has a certain
reduction, it is within a reasonable range. In Figures 5, 6,
the convergence speed of the proposed method is slower than
that of LSTM at the beginning, but it can achieve the best
convergence effect after 35 iterations. This shows that our
method can realize effective processing and analysis for data
with more time information.

However, there are still some limitations. If the time span
of LSTM is very large and the network is very deep, this

calculation will be very time-consuming. Meanwhile, this
network structure also has certain limitations in efficiency
and scalability. In addition, there is the issue of data size. An
LSTM is a neural network and like any neural network
requires a large amount of data to be trained on properly.
The information with a time series needs to traverse all the
cells before entering the current processing unit. This
generates vanishing gradient. LSTM does not completely
solve this problem. The methods proposed in this article
tend to do better on unstable time series with more fixed
components because of their inherent ability to quickly adapt
to sharp changes in trends. However, this method can only
make short-term prediction, and remote prediction may be
invalid. This is also one of the limitations of the proposed
method. In future work, we will consider how to better learn
on medical small sample data sets. And we will try to improve
the robustness and generalization of the algorithm so that the
model can be used in more different scenarios and
environments.

6 CONCLUSION

In this article, we have used and substantially extended LSTM
in the 3D spatial–temporal domain for the task of modeling
3D longitudinal pulmonary nodule data. The novel 3D CNNs
and T-LSTM network jointly learn the interslice structures,
the interslice 3D contexts, and the temporal dynamics.
Quantitative results of notably higher accuracies than the
original RNN are reported, using several metrics on
predicting the future tumor volumes. Compared with the

FIGURE 8 | ROC curve of each model. Blue is LSTM; orange is gradient boost (xgb); green is BiLSTM; red is T-LSTM; and purple is RNN.
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most recent 2D + time deep learning–based tumor growth
prediction models (Missrie et al., 2018; Audrey et al., 2019),
our new approach directly works on 3D imaging space and
incorporates clinical factors in an end-to-end trainable manner.
This method can also detect the benign and malignant
pulmonary nodules. Our experiments are conducted on the
largest longitudinal lung data set (421 patients) to date and
demonstrate the validity of our proposed method. This method
enables efficient and effective 3D medical image segmentation
with only sparse manual image annotations required. The
presented prediction model can potentially enable other
applications of medical sequence imaging applications.
Gradient extinction can be remedied with the LSTM module,
which is currently considered a multiswitched gateway, a bit like
ResNet. Because LSTM can bypass some cells and memorize
long steps, LSTM can solve the gradient disappearance problem
to some extent. This method can provide technical support for
processing medical image data or bioinformatics data with time
information in the future.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

MWcontributed to conception and design of the study. XL performed
the statistical analysis and wrote the first draft of the manuscript. RA
wrote sections of the manuscript. All authors contributed to
manuscript revision, read, and approved the submitted version.

FUNDING

This work was supported by National Natural Science
Foundation of China (grant numbers 61872261, 61972274).

REFERENCES

Aaron, R., Miller, J. B., Christin, N., and Jeffrey, C. (2018). Neuroscience Learning
from Longitudinal Cohort Studies of Alzheimer’s Disease: Lessons for Disease-
Modifying Drug Programs and an Introduction to the center for
Neurodegeneration and Translational Neuroscience. New York, NY:
Alzheimers & Dementia Translational Research & Clinical Interventions.
S2352873718300350–.

Audrey, W., Aberle, D., and Hsu, W. (2019). External Validation and Recalibration
of the Brock Model to Predict Probability of Cancer in Pulmonary Nodules
Using Nlst Data. Thorax 74. doi:10.1136/thoraxjnl-2018-212413

Baytas, I. M., Xiao, C., Zhang, X., Wang, F., and Zhou, J. (2017). “Patient Subtyping
via Time-Aware Lstm Networks,” in The 23rd ACM SIGKDD International
Conference. doi:10.1145/3097983.3097997

Bodla, N., Zheng, J., Xu, H., Chen, J. C., and Chellappa, R. (2017). “Deep
Heterogeneous Feature Fusion for Template-Based Face Recognition,” in
2017 IEEE Winter Conference on Applications of Computer Vision
(WACV). doi:10.1109/WACV.2017.71

Boudjemaa, R., Ouaar, F., and Oliva, D. (2020). Fractional Lévy Flight Bat
Algorithm for Global Optimisation. Ijbic 15 (2), 100–112. doi:10.1504/ijbic.
2020.10028011

Cai, X., Geng, S., Zhang, J., Wu, D., Cui, Z., Zhang, W., et al. (2021). A Sharding
Scheme Based Many-objective Optimization Algorithm for Enhancing Security
in Blockchain-Enabled Industrial Internet of Things. IEEE Trans. Ind. Inform.
17 (1), 7650–7658. doi:10.1109/tii.2021.3051607

Cai, X., Cao, Y., Ren, Y., Cui, Z., and Zhang, W. (2021). Multi-objective
Evolutionary 3D Face Reconstruction Based on Improved Encoder-Decoder
Network. Inf. Sci. 581, 233–248. doi:10.1016/j.ins.2021.09.024

Chandra, R. (2015). Competition and Collaboration in Cooperative
Coevolution of Elman Recurrent Neural Networks for Time-Series
Prediction. IEEE Trans. Neural Networks Learn. Syst. 26 (12), 1. doi:10.
1109/tnnls.2015.2404823

Che, Z., Purushotham, S., Cho, K., Sontag, D., and Liu, Y. (2018). Recurrent
Neural Networks for Multivariate Time Series with Missing Values. Sci.
Rep. 8 (1), 6085. doi:10.1038/s41598-018-24271-9

Cheng, L. F., Darnell, G., Dumitrascu, B., Chivers, C., Draugelis, M. E., Li, K.,
et al. (2020). Sparse Multi-Output Gaussian Processes for Medical Time
Series Prediction. BMC Med. Inform. Decis. Making 20. doi:10.1186/
s12911-020-1069-4

Christo, V. R. E., Nehemiah, H. K., Nahato, K. B., Brighty, J., and Kannan, A.
(2020). Computer Assisted Medical Decision-Making System Using Genetic

Algorithm and Extreme Learning Machine for Diagnosing Allergic Rhinitis.
Ijbic 16 (3), 148–157. doi:10.1504/ijbic.2020.111279

Cui, Z., Zhang, M., Wang, H., Cai, X., Zhang, W., and Chen, J. (2020). Hybrid
many-objective Cuckoo Search Algorithm with Lévy and Exponential
Distributions. Memetic Comp. 12 (3), 251–265. doi:10.1007/s12293-020-
00308-3

Cui, Z., Zhao, Y., Cao, Y., Cai, X., Zhang, W., and Chen, J. (2021). Malicious Code
Detection under 5G HetNets Based on a Multi-Objective RBM Model. IEEE
Netw. 35 (2), 82–87. doi:10.1109/mnet.011.2000331

Deng, W., Zhao, H., Song, Y., and Xu, J. (2020). An Effective Improved Co-
evolution Ant colony Optimisation Algorithm with Multi-Strategies and its
Application. Ijbic 16 (3), 158–170. doi:10.1504/ijbic.2020.10033314

Donahue, J., Hendricks, L. A., Guadarrama, S., Rohrbach, M., Venugopalan, S.,
Saenko, K., et al. (2015). Long-term Recurrent Convolutional Networks for
Visual Recognition and Description. Elsevier.

Duffy, S. W., and Field, J. K. (2020). Mortality Reduction with Low-Dose Ct
Screening for Lung Cancer. New Engl. J. Med. 382 (6).

Fragkiadaki, K., Levine, S., Felsen, P., and Malik, J. (2016). Recurrent Network
Models for Human Dynamics. Santiago, Chile: IEEE 2, 18.

Gao, L., Pan, H., Liu, F., Xie, X., and Han, J. (2018). “Brain Disease Diagnosis Using
Deep Learning Features from Longitudinal MR Images: Second International
Joint Conference, Apweb-Waim 2018, macau, china, July 23–25, 2018,” inWeb
and Big Data, 327–339. proceedings, part i. doi:10.1007/978-3-319-96890-2_27

Grano, T., and Zhang, Y. (2019). “Getting Aspectual-Guo under Control in
Mandarin Chinese: An Experimental Investigation,” in Proceedings of the
30th North American Conference on Chinese Linguistics (NACCL-30), Vol. 1,
208–215.

Graves, A. (2012). Long Short-Term Memory. Berlin Heidelberg: Springer Berlin
Heidelberg.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep Residual Learning for Image
Recognition,” in Proceeding of the 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016
(IEEE), 770–778. doi:10.1109/CVPR.2016.90

Hu, B., Chen, Y., and Keogh, E. (2016). Classification of Streaming Time Series
under More Realistic Assumptions. Data Min Knowl Disc 30 (2), 403–437.
doi:10.1007/s10618-015-0415-0

Huimei, H., Xingquan, Z., and Ying, L. (2020). Generalizing Long Short-Term
Memory Network for Deep Learning from Generic Data. ACM Trans.
Knowledge Discov. Data (Tkdd) 14 (2), 1–28. doi:10.1145/3366022

Kamnitsas, K., Ledig, C., Newcombe, V. F. J., Simpson, J. P., Kane, A. D., Menon, D.
K., et al. (2016). Efficient Multi-Scale 3D CNN with Fully Connected CRF for
Accurate Brain Lesion Segmentationfficient Multi-Scale 3d Cnn with Fully

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 79142411

Liu et al. Prediction Method for Long-Term Pulmonary Lesions

https://doi.org/10.1136/thoraxjnl-2018-212413
https://doi.org/10.1145/3097983.3097997
https://doi.org/10.1109/WACV.2017.71
https://doi.org/10.1504/ijbic.2020.10028011
https://doi.org/10.1504/ijbic.2020.10028011
https://doi.org/10.1109/tii.2021.3051607
https://doi.org/10.1016/j.ins.2021.09.024
https://doi.org/10.1109/tnnls.2015.2404823
https://doi.org/10.1109/tnnls.2015.2404823
https://doi.org/10.1038/s41598-018-24271-9
https://doi.org/10.1186/s12911-020-1069-4
https://doi.org/10.1186/s12911-020-1069-4
https://doi.org/10.1504/ijbic.2020.111279
https://doi.org/10.1007/s12293-020-00308-3
https://doi.org/10.1007/s12293-020-00308-3
https://doi.org/10.1109/mnet.011.2000331
https://doi.org/10.1504/ijbic.2020.10033314
https://doi.org/10.1007/978-3-319-96890-2_27
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/s10618-015-0415-0
https://doi.org/10.1145/3366022
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Connected Crf for Accurate Brain Lesion Segmen- Tation.Med. Image Anal. 36,
61–78. doi:10.1016/j.media.2016.10.004

Khusnuliawati, H., Fatichah, C., and Soelaiman, R. (2017). Multi-feature Fusion
Using Sift and Lebp for finger Vein Recognition. TELKOMNIKA
(Telecommunication Computing Electronics and Control) 15, 478. doi:10.
12928/telkomnika.v15i1.4443

Kooi, T., and Karssemeijer, N. (2017). Classifying Symmetrical Differences and
Temporal Change in Mammogra- Phy Using Deep Neural Networks. J. Med.
Imaging (Bellingham) 4 (4), 044501. doi:10.1117/1.JMI.4.4.044501

Koutník, J., Greff, K., Gomez, F., and Schmidhuber, J. (2014). A Clockwork Rnn.
Computer Sci., 1863–1871.

Li, L., and Feng, Y. (2015). “Using Time Series Analysis to Forecast Emergency
Patient Arrivals in Ct Department,” in Proceeding of the 2015 12th
International Conference on Service Systems & Service Management,
Guangzhou, China, 22-24 June 2015. IEEE. doi:10.1109/icsssm.2015.7170134

Li, Y., Yu, Z., Chen, Y., Yang, C., Li, Y., Li, X. A., et al. (2020). Automatic Seizure
Detection Using Fully Convolutional Nested Lstm. Int. J. Neural Syst. 30 (04),
1250034–1253520. doi:10.1142/S0129065720500197

Missrie, I., Hochhegger, B., Zanon, M., Capobianco, J., César, d. M. N. A., Pereira,
M. R., et al. (2018). Small Low-Risk Pulmonary Nodules on Chest Digital
Radiog Raphy: Can We Predict whether the Nodule Is Benign? Clin. Radiol. 73
(10), 902–906. S0009926018302277–. doi:10.1016/j.crad.2018.06.002

Nagaratnam, N., Nagaratnam, K., and Cheuk, G. (2018). Lung Cancer in the
Elderly. Cham, Switzerland: Springer.

Oh,D. Y., Kim, J., and Lee, K. J. (2019). “Longitudinal ChangeDetection onChest X-Rays
Using Geometric Correlation Maps,” in Medical Image Computing and Computer
Assisted Intervention –MICCAI 2019. Cham, Switzerland: Springer Nature, 748–756.
doi:10.1007/978-3-030-32226-7_83

Onisko, A., Druzdzel,M., andAustin, R. (2016). How to Interpret the Results ofMedical
Time Series DataAnalysis: Classical Statistical Approaches versusDynamic Bayesian
Network Modeling. J. Pathol. Inform. 7 (1), 50. doi:10.4103/2153-3539.197191

Qiang, Y., Zhang, X., Ji, G., and Zhao, J. (2015). Automated Lung Nodule
Segmentation Using an Active Contour Model Based on Pet/ct Images.
J. Comput. Theor. Nanoscience 12 (8), 1972–1976. doi:10.1166/jctn.2015.4216

Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster R-Cnn: Towards Real-Time
Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal.
Mach Intell. 39 (6), 1137–1149. doi:10.1109/TPAMI.2016.2577031

Ribli, D., Horváth, A., Unger, Z., Pollner, P., and Csabai, I. (2018). Detecting
and Classifying Lesions in Mammograms with Deep Learning. Sci. Rep. 8
(1), 4165. doi:10.1038/s41598-018-22437-z

Santeramo, R., Withey, S., and Montana, G. (2018). “Longitudinal Detection of
Radiological Abnormalities with Time-Modulated Lstm,” in Deep Learning
in Medical Image Analysis and Multimodal Learning for Clinical Decision
Support, 326–333. doi:10.1007/978-3-030-00889-5_37

Shi, B., Chen, Y, Zhang, P., Smith, C. D., and Liu, J. (2017). Nonlinear Feature
Transformation and Deep Fusion for Alzheimer’s Disease Staging Analysis.
Pattern Recognition 63, 487. doi:10.1016/j.patcog.2016.09.032

Shinde, S., Prasad, S., Saboo, Y., Kaushick, R., Saini, J., Pal, P. K., et al. (2019).
Predictive Markers for Parkinson’s Disease Using Deep Neural Nets on
Neuromelanin Sensitive MRI. Neuroimage Clin. 22, 101748. doi:10.1016/j.
nicl.2019.101748

Taillant, E., Avila-Vilchis, J. C., Allegrini, C., Bricault, I., and Cinquin, P. (2004).
“Ct and Mr Compatible Light Puncture Robot: Architectural Design and First
Experiments,” inMedical Image Computing & Computer-Assisted Intervention-
Miccai, International Conference Saint-Malo (France: Springer). doi:10.1007/
978-3-540-30136-3_19

Xiao, B., Chuntian, L., Peng, R., Jun, Z., Huijie, Z., and Su, Y. (2015). Object
Classification via Feature Fusion Based Marginalized Kernels. Geosci. Remote
Sensing Lett. IEEE 12, 8–12. doi:10.1109/LGRS.2014.2322953

Yang, S., Huang, Q., Cui, L., Xu, K., Ming, Z., and Wen, Z. (2020). Variable-
grouping-based Exponential Crossover for Differential Evolution Algorithm.
Ijbic 15 (3), 147–158. doi:10.1504/ijbic.2020.107486

Zhang, J., Chen, L., Ye, Y., Guo, G., Chen, R., Vanasse, A., et al. (2020). Survival
Neural Networks for Time-To-Event Prediction in Longitudinal Study.
Knowledge Inf. Syst. 62 (10). doi:10.1007/s10115-020-01472-1

Zhang, J., Xia, Y., Cui, H., and Zhang, Y. (2018). Pulmonary Nodule Detection in
Medical Images: A Survey. Biomed. signal Process. Control 43 (MAY), 138–147.
doi:10.1016/j.bspc.2018.01.011

Zhang, X., Onieva, E., Perallos, A., and Osaba, E. (2020). Genetic Optimised Serial
Hierarchical Fuzzy Classifier for Breast Cancer Diagnosis. Ijbic 15 (3), 194–205.
doi:10.1504/ijbic.2020.107490

Zhang, Y. (2020). Nominal Property Concepts and Substance Possession in
Mandarin Chinese. J. East. Asian Linguist 29, 393–434. doi:10.1007/s10831-
020-09214-8

Zhang, Y. (2021). Subjectivity and Nominal Property Concepts in Mandarin
Chinese. ProQuest Dissertation Publishing: New Jersy, USA. [Doctoral
dissertation, Indiana University].

Zhang, Z., Cao, Y., Cui, Z., Zhang, W., and Chen, J. (2021). A Many-objective
Optimization Based Intelligent Intrusion Detection Algorithm for Enhancing
Security of Vehicular Networks in 6G. IEEE Trans. Veh. Technol. 70 (6),
5234–5243. doi:10.1109/tvt.2021.3057074

Zhao, W., and Du, S. (2016). Spectral-Spatial Feature Extraction for Hyperspectral
Image Classification: A Dimension Reduction and Deep Learning Approach.
IEEE Trans. Geosci. Remote Sensing 54 (8), 4544–4554. doi:10.1109/tgrs.2016.
2543748

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Liu, Wang and Aftab. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 79142412

Liu et al. Prediction Method for Long-Term Pulmonary Lesions

https://doi.org/10.1016/j.media.2016.10.004
https://doi.org/10.12928/telkomnika.v15i1.4443
https://doi.org/10.12928/telkomnika.v15i1.4443
https://doi.org/10.1117/1.JMI.4.4.044501
https://doi.org/10.1109/icsssm.2015.7170134
https://doi.org/10.1142/S0129065720500197
https://doi.org/10.1016/j.crad.2018.06.002
https://doi.org/10.1007/978-3-030-32226-7_83
https://doi.org/10.4103/2153-3539.197191
https://doi.org/10.1166/jctn.2015.4216
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1038/s41598-018-22437-z
https://doi.org/10.1007/978-3-030-00889-5_37
https://doi.org/10.1016/j.patcog.2016.09.032
https://doi.org/10.1016/j.nicl.2019.101748
https://doi.org/10.1016/j.nicl.2019.101748
https://doi.org/10.1007/978-3-540-30136-3_19
https://doi.org/10.1007/978-3-540-30136-3_19
https://doi.org/10.1109/LGRS.2014.2322953
https://doi.org/10.1504/ijbic.2020.107486
https://doi.org/10.1007/s10115-020-01472-1
https://doi.org/10.1016/j.bspc.2018.01.011
https://doi.org/10.1504/ijbic.2020.107490
https://doi.org/10.1007/s10831-020-09214-8
https://doi.org/10.1007/s10831-020-09214-8
https://doi.org/10.1109/tvt.2021.3057074
https://doi.org/10.1109/tgrs.2016.2543748
https://doi.org/10.1109/tgrs.2016.2543748
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

	Study on the Prediction Method of Long-term Benign and Malignant Pulmonary Lesions Based on LSTM
	1 Introduction
	2 Related Work
	2.1 Methods of Extracting Medical Image Feature Information
	2.2 Application of Traditional Methods to Time-Series Data
	2.3 Application of CNN and Long-Term Memory and LSTM to Time-Series Data

	3 Methods
	3.1 Lung CT Sequence Image Preprocessing
	3.2 Spatiotemporal Feature Extraction
	3.3 Long-Term Lung Lesion Prediction Based on the T-LSTM Model

	4 Experiments and Results
	4.1 Data Sets
	4.2 Input Description
	4.3 Classification Accuracy Comparison of 3D CNN Feature Extraction Methods With Different Parameters
	4.4 Discussion of the Number of LSTM Layers
	4.5 Comparison of Convergence Effect of T-LSTM
	4.6 Comparison of Prediction Rates Among Different Classifiers

	5 Discussion
	6 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


