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Reproduction of different tissues using scaffolds and materials is a major element in
regenerative medicine. The regeneration of whole organs with decellularized extracellular
matrix (dECM) has remained a goal despite the use of these materials for different
purposes. Recently, decellularization techniques have been widely used in producing
scaffolds that are appropriate for regenerating damaged organs and may be able to
overcome the shortage of donor organs. Decellularized ECM offers several advantages
over synthetic compounds, including the preserved natural microenvironment features.
Different decellularization methods have been developed, each of which is appropriate for
removing cells from specific tissues under certain conditions. A variety of methods have
been advanced for evaluating the decellularization process in terms of cell removal
efficiency, tissue ultrastructure preservation, toxicity, biocompatibility, biodegradability,
and mechanical resistance in order to enhance the efficacy of decellularization methods.
Modification techniques improve the characteristics of decellularized scaffolds, making
them available for the regeneration of damaged tissues. Moreover, modification of
scaffolds makes them appropriate options for drug delivery, disease modeling, and
improving stem cells growth and proliferation. However, considering different
challenges in the way of decellularization methods and application of decellularized
scaffolds, this field is constantly developing and progressively moving forward. This
review has outlined recent decellularization and sterilization strategies, evaluation tests
for efficient decellularization, materials processing, application, and challenges and future
outlooks of decellularization in regenerative medicine and tissue engineering.
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1 INTRODUCTION

Tissue engineering, as a division of regenerative medicine, combines engineering and biological
science in order to reproduce tissues and organs that can help to overcome the lack of enough donor
organs (Shafiee and Atala, 2017). Tissue engineering applies cells into desirable biological structures
in a defined framework to restore the normal function of tissues. This process includes three
cornerstones, namely scaffolds, cells, and signaling factors. As a critical component in tissue
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engineering, scaffolds provide mechanical stability and structural
support for exogenous cell attachment and proliferation and
facilitate the delivery of required growth factors for tissue
regeneration (Vacanti and Langer, 1999; Soltani Khaboushan
et al., 2021).

Scaffolds could be made up of natural tissues harvested from
animal or human sources or being constructed using synthetic
biomaterials. Natural scaffolds represent biological characteristics
that better fit the regular tissue microenvironment, promoting
appropriate cellular interactions, biocompatibility, and
degradability. Decellularization is the process of eliminating
cells and their components (especially DNA and RNA) from
the extracellular matrix (ECM) to yield a natural matrix with
saved mechanical integrity. It has been demonstrated that
decellularized extracellular matrix (dECM) is a suitable type of
natural scaffold for tissue engineering since the ECM plays a
crucial role in tissue development (Gilbert et al., 2006).

ECM is mainly composed of water, proteins (mainly collagen),
and polysaccharides (Frantz et al., 2010). The composition and
arrangement of ECM components and microenvironmental
conditions (e.g., mechanical properties, pH, CO2

concentration) of the matrix differ from one tissue to another
based on the tissue function and its residing cells that secrete
ECM components (Kawecki et al., 2018). Fibroblasts, adipocytes,
and chondrocytes are among the cells involved in the formation
of ECM components (including growth factors and structural
proteins such as fibronectin). Physical, chemical, and biological
methods have been utilized to produce acellular scaffolds, either
by perfusion- or immersion/agitation-based systems, or even a
combination of methods (Crapo et al., 2011).

So far, a wide variety of decellularization methods have been
studied and developed (Crapo et al., 2011; Fu et al., 2014; Keane
et al., 2015; Choudhury et al., 2020). Since acellular scaffolds have
low immunogenicity and are biologically recognizable, they are
beneficial for cell adhesion, proliferation, and survival. Because of
these properties, decellularized materials have the potential to
regenerate injured tissues or organs (Damodaran and Vermette,
2018). After decellularization, dECM should be sterilized, and
several tests should assess the efficacy of decellularization. These
tests are carried out to ensure the removal of cellular contents and
preservation of biochemical and mechanical properties and
include macroscopic and microscopic assessments, staining for
evaluation of remaining components, and mechanical analyzes
(Crapo et al., 2011). Moreover, these acellular scaffolds can be
processed before application to acquire desired characteristics of
the ECM for further use. Modifying and refining the dECM,
recellularizing the scaffold, and providing a suitable biochemical
and physical environment via bioreactors, could improve its
characteristics and boost its regeneration ability in host tissues
(Garreta et al., 2017).

The application of dECM as wound healing products and
surgical mesh devices has been reported (Damodaran and
Vermette, 2018; Daryabari et al., 2019; Uday Chandrika et al.,
2021). In addition to therapeutic applications, dECM could be
used for modeling various diseases, such as tumors, which helps
to understand the pathophysiology and progression process of
the disease (Liu et al., 2019; Pina et al., 2019). Despite the recent

progress, tissue engineering is still in its early stages, and multiple
studies are being conducted to develop functional organs. Up to
the present, research was mainly directed towards discovering the
ideal decellularization methods; and translational studies were
performed to achieve functioning materials. This review aims to
provide an overview of decellularization techniques, evaluation
tests, dECM modification, practical approaches, clinical
application, current insufficiencies, and future prospects in
tissue decellularization.

2 DECELLULARIZATION AGENTS AND
METHODS

Several decellularization techniques have been developed to date
to reconstruct different types of living organs. The main principle
in all methods is removing cellular material and leaving the ECM
ultrastructure unchanged in the tissue. Decellularization
techniques differ in terms of applied materials (reagent
combinations) and the routes used to deliver the main
reagent, namely vascular, airway, or both (Uygun et al., 2010;
Badylak et al., 2011; Crapo et al., 2011; Daryabari et al., 2019).

Generally, tissue decellularization methods are classified into
three main groups: chemical methods, such as alkaline/acid,
detergents, and alcohols; physical methods, such as
electroporation, pressurization, freeze/thaw; biological
methods, such as enzymes (Table 1) (Badylak et al., 2011;
Gilpin and Yang, 2017). Several characteristics could sway the
quality of the tissue decellularization process, including cell
density, matrix thickness, and tissue morphology. These
characteristics are different in various tissues; Thus, it is
crucial to determine which method is the most suitable one
for a specific tissue (Crapo et al., 2011; Heath, 2019).

2.1 Chemical Agents
2.1.1 Ionic Detergents
Ionic detergents act by solubilizing DNA and cell membrane and
tend to denature the proteins, thus decreasing collagen integrity.
Ionic detergents are powerful in removing glycosaminoglycans
(GAGs) and growth factors, therefore destroying ECM rigidity
and function. Sodium dodecyl sulfate (SDS), sodium
deoxycholate (SD), and Triton X-200 are ionic detergents that
have been used in decellularization (Hudson et al., 2004; Gilbert
et al., 2006; Lumpkins et al., 2008; Montoya and McFetridge,
2009; Zhou et al., 2010). Alshaikh et al. (Alshaikh et al., 2019)
have examined SDS and SD in ovary decellularization. They have
suggested a better ECM preservation in SD than SDS but lower
donor DNA content in SDS. Due to polarity, ionic detergents
such as SDS are hard to remove from ECM, and extensive wash
with non-ionic detergents such as Triton X-100 is usually needed
to take away the remnant ionic detergents from tissue (Gilpin and
Yang, 2017).

2.1.2 Non-Ionic Detergents
Non-ionic detergents, such as Triton X-100, can strongly break
lipid-lipid and lipid-protein bonds, but they are less effective on
protein-protein interaction. Although they maintain the
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ultrastructure of the decellularized tissue and preserve the growth
factors, they are less effective in removing cellular materials than
SDS. The Triton X-100 is not appropriate for tissues where GAGs
and lipids are important parts. Accordingly, the effectiveness of
non-ionic detergents depends on the tissue undergoing the
decellularization process (Gilbert et al., 2006; Lumpkins et al.,
2008; Fu et al., 2010; Crapo et al., 2011; Gupta et al., 2018).

2.1.3 Zwitterionic Detergents
Zwitterionic detergents have the properties of both ionic and
non-ionic detergents. They have shown better cell removal than
non-ionic detergents and improved preservation of the ECM
ultrastructure than ionic detergents (Hudson et al., 2004; Gupta
et al., 2018; Heath, 2019). Zwitterionic detergents, include
sulfobetaine-10 (SB-10), SB-16, Tri (n-butyl) phosphate
(TnBP), and 3-[(3-cholamidopropyl) dimethylammonio]-1-

propanesulfonate (CHAPS). CHAPS is a common zwitterionic
agent that has been widely used in tissue decellularization
(Tsuchiya et al., 2016; Gupta et al., 2018). TnBP is an organic
solvent that dissociates protein-protein Interactions. TnBP was
reported to match SDS in cell removal in tendon and ligament
tissues (Deeken et al., 2011). Kuna et al. (Kuna et al., 2018) have
reported that decellularization of the human saphenous vein
using Triton X-100, TnBP, and deoxyribonuclease (DNase)
resulted in properly removing the cells.

2.1.4 Chelators and Toxins
Ethylene glycol tetraacetic acid (EGTA) and
ethylenediaminetetraacetic acid (EDTA) are used as chelating
agents in organ decellularization through binding to divalent
metal cations at the cell adhesion site of ECM. This binding was
found to dissociate the cell from the remaining ECM. Due to their

TABLE 1 | Decellularization methods and agents.

Method Category Agent Properties References

Chemical Organic Solvents Alcohols (e.g., ethanol) Cell lysis by dehydrating the tissue Wollmann et al. (2019), Walawalkar and
Almelkar, (2019)Acetone May disrupt ECM ultrastructure

TnBP Disrupts protein-protein connections Deeken et al. (2011), Duarte et al. (2021)
May enhance collagen crosslinking

Chelators EDTA Disrupts cell adhesions Rieder et al. (2004), Cheng et al. (2019), Caralt
et al. (2015), Huh et al. (2018)EGTA Usually combined with other agents such as trypsin due

to low efficacy in cell removal
Toxins Latrunculin B Acts through actin rearrangement Reyna et al. (2020), Assmann et al. (2017)

Mostly used for decellularizing skeletal muscle
Ionic detergents SDS High efficacy in cell removal by solubilizing cell

membrane
Hudson et al. (2004), Alshaikh et al. (2019),
O’Neill et al. (2013)SD

Triton X-200 May disrupt ECM ultrastructure
Non-ionic detergents Triton X-100 Gentle cell removal by disrupting lipid-lipid and lipid-

protein connections
Fu et al. (2010), Huh et al. (2018), Liao et al.
(2008)

Gentle disruption of the ECM structure
Zwitterionic detergents CHAPS Properties of ionic and non-ionic detergents May disrupt

basement membrane
Tsuchiya et al. (2014), Gupta et al. (2017),
Song et al. (2021)SB-10

SB-16
Hypotonic and
hypertonic solutions

Sodium chloride solution Osmotic shock induction Kim et al. (2016), Goktas et al. (2014)
Low efficacy in remnant removal
Minimal ECM disruption

Acid and Alkaline PAA and EDTA Sodium
hydroxide

Solubilizing cytoplasmic cell components and nucleic
acid disruption Can disrupt ECM components

Wollmann et al. (2019), Poornejad et al. (2016),
Mimler et al. (2019)

Biological Esterase Phospholipase A2 Cleaving ester bonds in the cell membrane May disrupt
ECM components

Isidan et al. (2019), Huang et al. (2011)

Protease Trypsin Cleaving peptide bonds May disrupt ECM components
over prolonged exposure

Prasertsung et al. (2008), Rahman et al. (2018),
Pouliot et al. (2020)Pepsin

Dispase
Nuclease DNase Cleaving nucleotide bonds Simsa et al. (2018), McCrary et al. (2020b),

Philips et al. (2018b)RNase

Physical Freeze-thaw cycles Cell death due to crystallization of intracellular water
Extracellular crystallization can disrupt ECM

Roth et al. (2017), Fernández-Pérez and
Ahearne, (2019b)

Agitation Cell death directly or by assisting in chemical exposure
and remnant/toxic removal

Starnecker et al. (2018), Simsa et al. (2019),
Yusof et al. (2019)

Pressure Cell Membrane destruction May damage biomechanical
properties of ECM

Funamoto et al. (2010), Watanabe et al. (2019)

Supercritical fluids Assisting in chemical exposure and remnant/toxic
removal

Chou et al. (2020), Duarte et al. (2021)

Abbreviations: TnBP, Tri(n-butyl) phosphate; EDTA, Ethylene diamine tetraacetic acid; EGTA, Ethylene glycol tetraacetic acid; SDS, Sodium dodecyl sulfate; SD, Sodium deoxycholate;
CHAPS, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate; SB, Sulfobetaine; PAA, Peracetic acid; DNase, Deoxyribonuclease; RNase, Ribonuclease.
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ability to damage cells, Cytotoxic agents could be used in the
decellularization process (Crapo et al., 2011). Reyna et al. (Reyna
et al., 2020) have shown the high efficiency of latrunculin, a toxin,
in removing skeletal muscle cells by disrupting actin and myosin,
thus damaging the cell and reducing DNA content to less than
10% compared to controls have shown the high efficiency of
latrunculin, a toxin, in removing skeletal muscle cells by reducing
DNA content to less than 10% compared to controls. They stated
that this toxin is more effective in decellularizing skeletal muscle
than ionic and non-ionic agent treatments.

2.1.5 Bases
Solutions with extreme pH were indicated to be effective in the
decellularization process. Alkaline substances including sodium
sulfide, ammonium hydroxide, calcium hydroxide, and sodium
hydroxide were suggested as commonly used in organ
decellularization processes. It has been shown that increasing
the PH of CHAPS during decellularization increases the
effectiveness of cell and protein removal. Bases could eliminate
growth factors and disrupt the mechanical structure of the
scaffold (Komai and Ushiki, 1991; Prasertsung et al., 2008;
Choi et al., 2010; Reing et al., 2010; Sheridan et al., 2012;
Tsuchiya et al., 2014; Gupta et al., 2018).

2.1.6 Acids
Acids were found to dissociate nuclear DNA from ECM by
disrupting nucleic acids and solubilizing cytoplasmic
components. Moreover, acids could facilitate the denaturation
of the biomolecules. Acetic acid, hydrochloric acid, and sulfuric
acid can disrupt cell membranes and be used in decellularization
(Gilbert et al., 2006; Gupta et al., 2018). Lin et al. used and
compared formic acid, acetic acid, and citric acid for porcine
cornea decellularization (Lin et al., 2019). They showed that
formic acid treatment had the optimal decellularizing effect
and preserved in vitro and in vivo recellularization. Peracetic
acid (PAA) can also be used as a decellularizing agent; however, it
is mostly used as a sterilizing agent and has an unsuitable impact
on decellularization. Kao and colleagues (Kao et al., 2020) have
reported that the use of PAA in bladder decellularization was not
successful because the levels of remaining DNA were similar to
the native tissue.

2.1.7 Alcohols
Alcohols play their role in the decellularization process via
dehydration; they diffuse into the cells, replace the
intracellular water, disrupt the cells, and decrease their genetic
materials. Alcohols such as methanol and ethanol are effective in
lipid solubilization. Due to their role in tissue fixation and protein
deposition, ethanol and methanol may affect the ultrastructure of
the tissues. Lumpkin et al. have demonstrated that the use of
acetone/ethanol in the decellularization of the
temporomandibular joint disc came up with a stiffer tissue
compared to Triton X-100 and SDS, and the mechanical
characteristics of the decellularized tissue were not
appropriately preserved (Lumpkins et al., 2008; Jamur and
Oliver, 2010; Crapo et al., 2011).

2.1.8 Hypertonic and Hypotonic Solutions
Hypotonic and hypertonic solutions can lead to cell lysis and
disruption of the DNA. Although they do not remove the cellular
debris, they could improve decellularization in combination with
other chemical reagents since they do not disturb ECM
composition (Woods and Gratzer, 2005; Gupta et al., 2018).

2.2 Biological Enzymes
Enzymatic agents include phospholipase A2, proteases (e.g.,
trypsin, dispase), and nucleases (e.g., DNase, ribonuclease
(RNase) are used in the decellularization process. Trypsin
breaks peptides containing Lys and Arg, and in extended
exposure, it may damage the ECM structure (Stenn et al.,
1989; Gilbert et al., 2006; Rahman et al., 2018). Dispase chiefly
cleaves fibronectin and collagen IV. It has been used in the
decellularization of the porcine cornea and skin (Wilson et al.,
2016; Joszko et al., 2019). Nucleases are mainly used in
combination with other detergents to expedite the removal of
DNAs and RNAs from the scaffold (Grauss et al., 2005; Heath,
2019). The application of phospholipase A2 in decellularization
helps maintain collagen and proteoglycans in the tissue. It has
been demonstrated that phospholipase A2, along with SD, was
influential in producing the acellular porcine corneal stroma (Wu
et al., 2009; Rahman et al., 2018).

2.3 Physical Methods
2.3.1 Freeze-Thaw Cycles
The freeze-thaw cycle is being done by fluctuation between
freezing temperature (−80c°) and biological temperature. The
freeze-thaw cycle disrupts the cell membranes and cell lysis via
the formation of intracellular crystals. It has been demonstrated
that this method considerably keeps the structure of the ECM but
does not effectively remove the remnant cellular debris; thus,
further detergents are needed after the freeze-thaw cycle. Multiple
freeze-thaw cycles can be used in the decellularization process,
whereas they could deteriorate the ECM structure (Pulver et al.,
2014; Xing et al., 2015; Rahman et al., 2018).

2.3.2 Agitation Immersion and Pressure
The agitation in conjunction with immersion leads to cell lysis,
but it is mostly used with chemical reagents to enhance the
exposure of the ECM to the detergents and to augment the
decellularization process. Agitation could be applied in the
decellularization of the thin tissues, including the small
intestine and bladder. In addition, the use of agitation and
immersion in the decellularization of the tracheal tissue has
been reported. The time of the protocol and intensity of
agitation depends on the thickness of the tissue. Agitation may
cause cell lysis before exposure to the detergents; thus,
deteriorating the structure of the ECM. Furthermore, pressure
could promote accessibility of the detergents to the ECM, hence
decreasing the time of the decellularization process. Also, it can
improve the removal of cellular remnant materials. The pressure
leads to minimal changes in ECM structure, even less than
agitation (Crapo et al., 2011; Heath, 2019; Rabbani et al.,
2021). Sonication is another physical method and can be
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considered a subtype of agitation. It has been demonstrated that
direct or indirect sonication increases agent penetration to the
scaffold, therefore enhancing chemical decellularization while
causing less damage to the ECM structural content (Forouzesh
et al., 2019).

2.3.3 Supercritical Fluids
The supercritical fluids are over their critical pressure and
temperature where it is not distinctly gas or liquid. Due to
high permeability, these fluids could easily be removed from
the tissue without the need for further washing. They can remove
remnant cellular particles from the scaffold and decrease harmful
changes in the ECM. Supercritical carbon dioxide has recently
attracted attention in tissue decellularization because its critical
temperature is appropriate for ECM processing. Recently,
different studies reported complete effective removal of
porcine skin via supercritical CO2 (Crapo et al., 2011; Chou
et al., 2020; Rabbani et al., 2021). Supercritical CO2 not only
decellularizes different tissues with better ECM structure
preservation compared to conventional detergent-based
techniques but also is used for sterilization of the dECM.
Efficient cell removal and preserved ECM integrity were
achieved by applying different supercritical CO2-based
protocols on the optic nerve, myocardium, and cornea (Topuz
et al., 2020).

3 STERILIZATION

Decontamination of the dECM via sterilization and disinfection
process is necessary before further evaluations and in vitro or in
vivo application. Sterilization kills all microorganisms, but the
disinfection process only removes vegetative microorganisms and
does not affect the bacterial spores. There are different
sterilization methods that can be used for dECM methods.
Appropriate sterilization and disinfection method should be
selected considering various properties of the decellularized
scaffold, including chemical and physical characteristics.
Moreover, the needed time, availability, and target of
application are important factors in choosing the proper
method for sterilization (Kajbafzadeh et al., 2013; Fidalgo
et al., 2018; Moradi et al., 2020a; Tao et al., 2021). Irradiation
is a physical sterilization strategy that directly destroys nucleic
acids and proteins from microorganisms. Gamma irradiation is
extensively used for the sterilization of various tissues. Gamma
irradiation can effectively sterilize corneal xenografts while
preserving their structure and integrity. The irradiation has
strong penetrance to the tissue without toxicity. Ultraviolet
(UV) rays as a convenient physical disinfectant for the
environment and surfaces are used for disinfecting thin
decellularized scaffolds with a large surface. Large tissues such
as decellularized kidneys cannot entirely be sterilized by UV, and
it may interfere with further cell seeding on dECM (Islam et al.,
2019; Moradi et al., 2020a; Gosztyla et al., 2020; Tao et al., 2021).

Ethylene oxide sterilizes the tissues by disrupting the function
of the nucleic acids and proteins of the microorganisms. With its
strong penetration, ethylene oxide can be used for sterilizing

various decellularized scaffolds without causing toxicity.
Peroxides are widely used as a disinfectant, which can also
cause sterilization in specific conditions. They do not produce
any toxic product after decomposition (Hennessy et al., 2017;
Moradi et al., 2020a; Tao et al., 2021). According to a study, it has
been demonstrated that PAA, as a peroxide, has the ability to
decontaminate acellular rabbit kidney completely, whereas γ-
irradiation destructed the structure tissue and UV failed to
eliminate microorganisms (Moradi et al., 2020a). Alcohols are
disinfectants that destroy the proteins within microorganisms,
but they do not remove spores (Tao et al., 2021). They have
minimal effects on the tissue structure; thus, they have been
widely used to disinfect dECM derived from various tissues.
Supercritical CO2, in addition to its effects on decellularization
process, can lead to disinfection and sterilization of the
decellularized scaffolds (Hennessy et al., 2017; Antons et al.,
2018; Tao et al., 2021). CO2 laser, although less commonly
used, has a great potential to be used for the sterilization
process. CO2 laser bursts effectively removed bacteria
inoculated on pig skin in an experiment. A sterile
environment is a prerequisite of regenerative endodontic
treatment, which could be effectively achieved with the
assistance of a CO2 laser (Mullarky et al., 1985; Nammour and
Majerus, 1991; Divya et al., 2021). Low-level laser with 660 nm
wavelength and 100 mW power has been used for sterilization of
the decellularized lung tissues (Lopes Guimarães et al., 2020).
Laser is an appropriate option for effectively disinfecting tissues,
and its potential for disinfecting the dECM should be further
explored (Mullarky et al., 1985; Nammour and Majerus, 1991;
Divya et al., 2021).

These methods may impact the structural and biochemical
characteristics of the matrices. The γ-irradiation mainly affects
the ultrastructure and mechanical properties of the scaffold, while
ethanol and peracetic acid increase the ECM crosslinking
(Hennessy et al., 2017; Johnson et al., 2017; Islam et al., 2019).
In order to assess the efficacy of the sterilization method and its
effects on the scaffold, several evaluations, including histological
evaluations, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-
diphenyltetrazolium bromide (MTT) assay, mechanical tests,
and bacterial and fungal cultures may be applied (Moradi
et al., 2020b).

4 EVALUATION OF DECELLULARIZED
EXTRACELLULAR MATRIX

Although decellularization techniques cannot remove 100% of
cell material, quantitative analysis of cell components such as
mitochondria, double-stranded DNA (dsDNA), and
membrane-associated molecules (e.g., phospholipids) is a
crucial way to ensure the effectiveness of the
decellularization model. On the other hand, the ideal
decellularization method should conserve biochemical and
mechanical properties with the lowest toxicity rate for the
subsequent recellularizing phase to occur. Various evaluation
tests and assessments have been introduced to appraise the
different characteristics of the dECM (Figure 1).
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4.1 Macroscopic Evaluation
Despite the fact that gross inspection alone is not an entirely
reliable evaluation method, it is the first step in the evaluation
of the decellularized scaffold, which should be followed by
more accurate assessments. Different studies use macroscopic
imaging analysis as one of the first assessment steps to
determine the level of transparency of dECM compared to
native tissue (Philips et al., 2018a). Moreover, light
transmittance is essential in several organ reconstructions,
such as cornea (Oliveira et al., 2013). Transparency is
measured by placing samples on a patterned surface. Then,
the intensity is calculated by assessing the transmitted light by
processing images with software (Oliveira et al., 2013; Philips
et al., 2018a; Fernández-Pérez and Ahearne, 2019a).

4.2 Cell Removal Efficacy and
Immunogenicity
Various tests assay the effectiveness of the decellularization method.
Complete removal of antigens and nucleic acids, along with other
cellular components, ensures the biocompatibility of the scaffold. The
dECM must be implanted without host immune response activation
and graft rejection or the formation of vascular thrombosis. Besides,
transgenic transmission has been reported by retained DNA in
genetically engineered tissue implantation (Hussein et al., 2016).
Crapo et al. have suggested criteria for decellularization satisfaction
with cut-off amounts for dsDNA per mg ECM dry weight and DNA

fragment length, 50ng and 20bp, respectively, and lack of visible
nuclear content in microscopic evaluation (Crapo et al., 2011). Also,
extended agent exposure has been used to reduce DNA content by
approximately 93% (Tenreiro et al., 2021). Histological analysis of the
tissue allows evaluation of general morphology of dECM, as well as
cell content and structural integrity (Philips et al., 2018a).
Hematoxylin and Eosin (H&E) is mainly used in assessing tissue
morphology and cell nuclei, while fluorescent staining with 4’,6-
diamidino-2-phenylindole (DAPI) are used in the detection of
remaining nuclear structures (Crapo et al., 2011; Su et al., 2018).
Other histological staining such as Safrin O, Movat’s pentachrome,
Masson’s Trichome, and Hoescht can also be used to evaluate the
existence of remnant DNAor cytoplasmic and extracellularmolecules
in decellularized tissue (Garreta et al., 2017; Gaetani et al., 2018).

DNA quantification using immunofluorescence,
electrophoresis, or polymerase chain reaction is also of
great use (Pors et al., 2019; Naik et al., 2020; Hussein et al.,
2018; da Mata Martins et al., 2020). Of note, electron
microscopic assessment can be but is not commonly used
to evaluate the existence of nuclear material or cytoplasmic
debris due to the cost and the technical complexity (Gilbert
et al., 2006).

4.3 Ultrastructure Evaluation
Preservation of 3 dimensional (3D) architecture and structure of
the scaffold can be evaluated using different assessments, such as
electron microscope (Giraldo-Gomez et al., 2019). A scanning

FIGURE 1 | Evaluating the dECM. (A) Gross inspection of the decellularized ovine whole testes. (B) Hematoxylin and Eosin H&E staining of decellularized human
breast skin, no nucleus can be observed. (C) 4’,6-diamidino-2-phenylindole (DAPI) staining of decellularized human skin with no stained DNA. (D) Masson’s Trichome
staining of the human ovary, showing preserved collagen fibers while no nucleus is seen. (E) SEM imaging of decellularized ovine ovary tissue. (F) 3-(4, 5-dimethylthiazol-
2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, showing cellular viability and activity where the purple dye is observed. (G) Immunohistochemistry (IHC)
staining using antibodies against collagen I in human skin after recellularization. (H) Schematic imaging of the tensile test, tissue is placed in the middle of the apparatus
and dragged in opposite directions to evaluate the mechanical strength of the dECM.
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electron microscope (SEM) is used to reveal surface topography,
while transmission electron microscopy (TEM) is used for the
detailed orientation of materials and cellular organelles (Márquez
et al., 2009). These assessments are utilized to indicate the efficacy
of decellularization treatment in conserving the native structure
of ECM. In addition, they can show the debris and remaining cell
components in the decellularized tissue (Philips et al., 2018a). In a
study by Forouzesh et al., SEM images showed sonication-
induced micropores with 0.5–5 μm diameter on the surface of
decellularized cartilage tissue. Compared to the ultrasound-
induced ones, these smaller micropores resulted in increased
surface roughness, and suitable cell adhesion was imaged by
SEM (Forouzesh et al., 2019).

4.4 Cytocompatibility
Prior to in vivo use, it is crucial to investigate the cellular
interaction of cells with the decellularized scaffold. In other
words, the damaging effects of the decellularization method or
agent on the scaffolds should be assessed ex vivo to guarantee the
clinical efficacy of the dECM. In this regard, the initial step is to
quantify the remaining chemicals after washing and sterilizing.
Decellularizing and sterilizing agents are cytotoxic and prevent
efficient recellularization. The threshold for chemicals cytotoxic
concentration, such as SDS has been investigated (Zvarova et al.,
2016). The most valued biocompatibility test is in vitro cell
culture, either indirect or direct (Hussein et al., 2016). In
indirect contact assay, cellular proliferation (e.g., live/dead
assay or DNA quantification) and metabolic activity (e.g.,
MTT assay) will be evaluated when cultured in samples
extraction, while in direct contact assay, cells will be directly
cultured on the decellularized samples and investigated.

4.5 Biochemical Analysis
Following decellularization, it is necessary to determine the
remaining desirable ECM components such as GAGs, elastic
fibers, collagens, and adhesion proteins like fibronectin and
laminin in the decellularized tissue (Gilbert et al., 2006). An
adequate amount of these molecules in ECM contributes to the
tissue’s normal function, structure, and mechanical
characteristics. Various stains, kits, and immunohistochemistry
(IHC) markers can be used for the detection of these materials
(Garreta et al., 2017; Kajbafzadeh et al., 2019). For instance,
Masson’s trichrome is used for collagen fiber staining, and
laminin can be detected by IHC antibodies (Kajbafzadeh et al.,
2019).

4.6 Mechanical Tests
Following verification of complete cell removal, the impact of
decellularization on the mechanical characteristics of ECM is also
important. The ECM is composed of a network of molecules that
confer a proper mechanical architecture in the tissue required to
grow the desired cell population in tissue remodeling. It has been
demonstrated that ECM elasticity plays a role in determining
stem cell lineage specification, as matrices with elasticity similar
to the brain, muscle, or collagenous bone induced neurogenic,
myogenic, and osteogenic differentiation of mesenchymal stem
cells (MSCs) (Engler et al., 2006). Atomic force microscopy

(AFM), and single or bi-axial mechanical tests are vastly used
to measure and compare the mechanical strength of the
decellularized and native tissue. In AFM, samples are
subjected to a probe, and indentation stress curves are
obtained. Then these curves are analyzed, and AFC is
measured and compared to native tissue (Peng et al., 2019).
Moreover, mechanical testing, namely the burst pressure test, can
provide insight into the existence, distribution, and integrity of
collagen and elastin fibers within dECM (Bielli et al., 2018; Cai
et al., 2019).

4.7 Additional Tests
Based on the purpose of the study and future function of the
grafted dECM, researchers evaluate various components and
characteristics of their acellular scaffold. Proteomic analysis of
the dECM can precisely show and compare the proteome of the
ECM before and after decellularization treatment. Proteomic
evaluation can be exerted by different techniques, such as
nano liquid chromatography and tandem mass spectrometry,
and is used to assess the complete protein profile of the ECM,
including remaining enzymes and growth factors (Nakayama
et al., 2013). Computed tomography angiography is a technique
to demonstrate remained vasculature of tissue after
decellularization (Daryabari et al., 2019). In addition, during
the process of hydrogel production, the ability of dECM to
form gel could be analyzed by gelation assay of dECM to form
a gel by gelation assay (Gaetani et al., 2018).

5 PRE-APPLICATION PROCESSING

Before being applied, an acellular tissue may undergo a series of
in vitro procedures, including cell seeding. Processing the
scaffolds enhance their ability in successful grafting and
function (García-Gareta et al., 2020; Mendibil et al., 2020)
(Figure 2).

5.1 Modification and Refinement
5.1.1 Vascularization
Oxygen delivery to the tissues is one of the hindrances against
applying the decellularized scaffolds, and tissue thickness is an
important index for this matter. Preserving the ECM components
and vascular structure of the tissue yields better perfusion post-
implantation, facilitating further angiogenesis. For instance,
laminin and fibronectin in the basement membrane and
lamina propria play an essential role in the revascularization
of the tissue. Hence, evaluation of the scaffold components and
structure after the decellularization process can help us estimate
the extent of blood supply (Partington et al., 2013; García-Gareta
et al., 2020). Vascularization can be induced by adding angiogenic
factors to the matrix or prevascularization of the matrix
(Amirsadeghi et al., 2020). Various growth factors were
introduced to enhance angiogenesis. Drew et al. observed
neovascularization in the presence of exogenous Vascular
Endothelial Growth Factor (VEGF) (Dew et al., 2016).
However, another study revealed that in bladder tissue
regeneration, poly (octamethylene citrate) (POC) composites
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outperformed small intestinal submucosa (SIS) scaffolds in tissue
vascularization, while POC scaffolds lack any exogenous growth
factor (Bury et al., 2021). Stem cells are considered beneficial in
angiogenesis induction, as they can differentiate into endothelial
cells or secrete various growth factors. Adipose-derived stem cells
(ADSCs) were reported to significantly enhance vascular network
formation in decellularized adipose tissue scaffolds (Han et al.,
2015). Prevascularization is a technique of creating
microvasculature inside the synthetic scaffold; a decellularized
tissue is already prevascularized. Whole organ matrices maintain
the internal vasculature of the scaffold, bypassing the perfusion
limits regardless of thickness and density (Wang et al., 2019).
Hence, it is crucial to produce acellular organs with optimally
preserved vessels and ECM composition for repopulating a
capable scaffold and restoring blood circulation after
implantation.

5.1.2 Immunogenicity Regulation
Non-autologous materials or cells on an engineered organ may
trigger the immune response. Activation of the host immune
system against synthetic, biological, and decellularized
xenogeneic and allogeneic grafts has been reported as a hurdle
in the transplantation of engineered tissues and organs (Wiles
et al., 2016). Studies have proposed various approaches to

overcome immune reaction against engineered tissue,
including modulatory coatings on the scaffold surface,
immune cloaking, modification of Damage Associated
Molecular Pattern (DAMP) proteins which may remain after
decellularization, and recellularization with autologous cells to
suppress the immune response to materials (Wiles et al., 2016).
Moreover, genetically engineered hypoimmunogenic stem cells
are alternative to autologous cells to evade immune rejection
(Deuse et al., 2019). One of the limitations concerning tissue
decellularization is that most studies have examined these
scaffolds on animal models, and limited human studies have
been conducted so far. Consequently, translation of animal
findings on the immune response to humans can be
challenging. Human-like animals, such as nonhuman primates
and humanized mouse models, with immune systems similar to
humans, are being investigated to improve our understanding of
the immunogenic components of the acellular scaffold
(Bhattacharya et al., 2019; Bilodeau et al., 2020).

5.1.3 Bioprinting and Electrospinning
Bioprinting is a process through which bioinks are used to
produce a 3D construct resembling human tissue that can be
used to regenerate injured tissues and treat various diseases.
Although bioprinting is progressively used in regenerative

FIGURE 2 | Pre-application processing of decellularized scaffolds. Modifying the decellularized scaffolds improves their capacity to regenerate damaged tissues
without causing adverse events. In addition, processing scaffolds with stem cells and bioreactors helps improve their regeneration capacity.
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medicine to develop novel and effective treatments for various
diseases, the lack of suitable bioinks hinders its widespread
application in medicine (Ferreira et al., 2020; De Santis et al.,
2021). Bioinks should be both cytocompatible and appropriate
for structuring 3D tissues. 3D bioengineering of tissues using
dECM bioink helps provide scaffolds for modeling diseases and
developing efficient treatments for them. However, dECM needs
augmentation to mechanically resemble the natural ECM
(Ferreira et al., 2020; De Santis et al., 2021). Hydrogels could
be made through solubilizing dECM followed by reformation of
scaffold controlled by temperature and pH. Formation of dECM
hydrogels is highly dependent on the collagen content of dECM.
Hydrogel bioink derived from dECM can help deliver
biomolecules and provide an appropriate surface for cells to
migrate and grow (Saldin et al., 2017; Ferreira et al., 2020; De
Santis et al., 2021). The biochemical, structural, and viscoelastic
properties of dECM are tunable via combination with other
biomaterials and crosslinking to provide maximum
cytocompatibility along with structural support for tissues and
cells. Alginate/dECM compositions as bioink demonstrated
beneficial impacts on blood vessel formation after
transplantation and prevention of foreign body reactions
(Saldin et al., 2017; Ferreira et al., 2020; De Santis et al.,
2021). Alginate reinforced with methacrylate-dECM
demonstrated augmented bioactivity of hydrogel bioprinted
scaffold and osteogenic differentiation of ADSCs (Lee et al.,
2020).

Electrospinning has recently become increasingly popular for
modifying the dECMs. Electrospinning may help design
nanofibrous scaffolds from dECM with similar characteristics
to the native tissue, including ultrastructure, porosity, and
mechanical characteristics. Electrospun scaffolds demonstrated
superior functionality and histocompatibility compared to
scaffolds that are combined with other methods. Reinforcing
rat decellularized vessels with Polycaprolactone (PCL) using the
electrospinning method resulted in increased biomechanical
endurance. Electrospinning provides an efficient method to
combine natural and synthetic materials to achieve hybrid
scaffolds that resemble native tissue with biomimetic
architecture and enhanced biomechanical properties (Schenke-
Layland et al., 2009; Kai et al., 2013; Gong et al., 2016).

5.1.4 Hybrid and Combined Scaffolds
Combining the decellularized scaffolds with other molecules,
including biomaterials, drugs, and growth factors may help
modify the characteristics of the decellularized scaffolds. The
methods for designing combined scaffolds include solvent casting
and particulate leaching, lyophilization (freeze-drying), thermal-
induced phase separation (TIPS), gas foaming, rapid prototyping,
stereolithography, fused deposition modeling, selective laser
sintering, 3D printing, bioprinting, cross-linking, and
electrospinning (Eltom et al., 2019; Wasyłeczko et al., 2020).

It was demonstrated that decellularized omentum scaffolds
coated with gold (Au) nanoparticles (NP) could provide proper
electrical conductivity and characteristics. Hence after seeding
cardiac cells, the AuNP-decellularized scaffold can cause higher
contraction force, decrease the excitability threshold, and increase

the calcium channels currents. Also, silver (Ag) NPs show
proangiogenic properties and enhance the biocompatibility of
the scaffolds (Shevach et al., 2014; Saleh et al., 2019). When
modified with the methoxy polyethylene glycol, an acellular
adipose matrix decreases the immunogenicity and increases
the adipogenicity of the scaffold (Liu et al., 2021a).
Furthermore, polypropylene mesh coated with the ECM
inhibits the M1 macrophages and increases the M1/M2 ratio
(Wolf et al., 2014). Electrospun PCL blended with collagen in
combination with decellularized rabbit aorta was found to
provide biocompatibility and rigidity (Ghorbani et al., 2017).
Scaffolds fabricated from dECM mixed with PCL have suitable
properties for the growth and migration of stem cells. In addition,
PCL/Poly Lactic-co-Glycolic Acid (PLGA) electrospun scaffold
can support the cell-derived ECM to produce a dECM with
desirable mechanical properties and biocompatibility
(Schenke-Layland et al., 2009; Bracaglia and Fisher, 2015).
Sugar-induced modification of the decellularized kidneys
increases mechanical strength and resistance to deformation
(Sant et al., 2021). Recently multilayered decellularized
scaffolds demonstrated promising bioactivity and should be
further studied to be widely used (Smith et al., 2022).
Moreover, growth factors and drugs could be loaded on the
dECMs, making themmore potent. The addition of neurotrophic
factors to dECM as well as removing chondroitin sulfate
proteoglycans from dECM promote neurite outgrowth (Boyer
et al., 2015; Qiu et al., 2020). Heparinized decellularized scaffolds
have been examined for promoting angiogenesis and preventing
clot formation (Wu et al., 2016). Layer-by-layer coating of the
decellularized porcine aortic valve with basic fibroblast growth
factor (bFGF) and heparin preserve a sustained release of these
factors leading to improved biological activity (De Cock et al.,
2010). Another study loaded fibroblast-derived ECM with VEGF
and heparin to boost angiogenesis. Application of heparin/VEGF
ECM encapsulated with alginate resulted in a prolonged release of
these factors as well as enhanced bioactivity (Du et al., 2014). The
dECMs are promising options for drug delivery; meanwhile,
further studies are needed to increase their effectiveness.

5.1.5 Surface Modification
In order to achieve improved cytocompatibility, mechanical
properties, and biological function of decellularized scaffolds
without inflammatory reactions, the surface modification could
be done via various methods and biomaterials (Ozasa et al., 2013;
Liu et al., 2021b). It is demonstrated that immersion of
decellularized tendons with carbodiimide-derivatized
hyaluronic acid and gelatin could alleviate the tendon’s gliding
resistance by augmenting its surface’s smoothness (Ozasa et al.,
2013). Moreover, riboflavin-mediated UV crosslinking may
repair the damages caused by the decellularization process and
increase the smoothness and mechanical strength of the dECM;
therefore, it could be used as the luminal surface in the vascular
prosthesis (Schneider et al., 2020). Laser micro-ablation is
another method that can produce microporosity in the
scaffold’s surface (Matuska and McFetridge, 2018). In
addition, coating the surface of the scaffolds using heparin
reduces the thrombogenicity and makes their surface
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appropriate to be used as vascular grafts (Wu et al., 2016).
Decellularized aorta covalently linked with heparin through
“click” coating inhibited platelet adhesion and
thrombogenicity. Also, Proper adhesion and proliferation of
the endothelial cells were observed (Dimitrievska et al., 2015).
Immobilization of VEGF on the surface of dECM through “click”
reactions improves angiogenic properties of scaffolds (Wang
et al., 2014). Accordingly, surface modification can optimize
dECMs for various applications.

5.2 Recellularization
Acellular scaffolds have the capacity of in vitro or in vivo cell
seeding. In situ tissue regeneration takes advantage of the
recipient’s body’s regenerative capabilities and biological
supply. Therefore, cell seeding of the scaffold prior to
transplantation is not always necessary, but adding the
bioactive molecules would reinforce the regeneration process
(Yang et al., 2020). Thrombogenic and immunogenic factors
on decellularized matrices may trigger thrombogenesis or the
host immune response. These factors can be hidden, degraded, or
modified by cells. Robertson et al. have shown that
reendothelialization of whole heart ECM reduced the scaffold
thrombogenicity (Robertson et al., 2014).

During the recellularization process, whole organ
repopulation is difficult due to the complexity of the scaffold,
the challenges of introducing cells to different parts of the
scaffold, the need for the presence of different cell types, and
uncertainty about the viability and functionality of cells after
organ grafting (Bilodeau et al., 2020). However, advances in cell
seeding techniques have provided solutions. Several strategies for
the recellularization of a whole organ have been advocated,
including slicing, perfusion, and injections (Figliuzzi et al.,
2017). For instance, studies reported that the perfusion-based
method is fruitful for the recellularization of acellular lungs and
kidneys through the trachea and ureter, respectively (Song et al.,
2013; Kuevda et al., 2016). Daryabari et al. implanted patches of
the decellularized ovine whole uterus into uterine horns of female
rats. They demonstrated regeneration of endometrium and
myometrium layers, and vascularization was apparent
(Daryabari et al., 2019). Whole organ recellularization through
the vascular system on the liver, heart, pancreas, kidney, and lung
with preservation of original architecture has been widely
investigated (Gilpin et al., 2014a; Sabetkish et al., 2015; Scarrit
et al., 2015; Ferng et al., 2017). Also, innovative techniques such as
the exertion of negative trans-renal pressure gradient and
magnetic guidance to direct cells have been proposed for
repopulating complex tissues (Song et al., 2013; Ghodsizad
et al., 2014).

Moreover, as an alternative method, intraparenchymal
injection of the renal cell into the acellular porcine kidneys
resulted in satisfactory repopulation and function (Abolbashari
et al., 2016). Despite the progress in reseeding methods, slicing
the organ demolishes its native 3D structure, the introduction of
non-epithelial cells via perfusion is ineffective, and numerous cell
injections may cause injuries to the scaffold (Figliuzzi et al., 2017).
Therefore, multiple recellularization techniques might be
employed to achieve optimal results in the meantime.

Although recellularization is considered a beneficial stage in
the regeneration process, in vitro cell reseeding could be
associated with some constraints. The recellularization process
is time-consuming, especially when using induced pluripotent
stem cells (iPSCs) derived from the patient’s somatic cells. One of
the most important things to keep in mind is to utilize an
adequate amount of the appropriate cell type. This factor
varies in different tissues and organs and should be considered
to reduce the risk of teratoma formation or immune response
induction (Badylak et al., 2011; Kim et al., 2020). Multiple types of
cells have been investigated for the recellularization of the
scaffolds. Limited differentiation and expansion capacity of
specialized cells restrains their effectiveness in recellularizing
whole organ scaffolds. Stem cells have higher proliferation
capacity and are mainly classified into adult stem cells,
embryonic stem cells (ESCs), fetal stem cells, iPSCs, and other
engineered cells (Denstedt and Atala, 2009; Bacakova et al., 2018).
Mesenchymal stem cells (MSCs) and hematopoietic stem cells
(HSCs) are the most common stem cells that have been used in
the recellularization process. ESCs are pluripotent, but supply
issues and ethical concerns restrain their application potential.
The iPSCs are produced by the genetic reprogramming of adult
somatic cells (Moser and Ott, 2014). Although iPSCs ensure
histocompatibility and avoid ethical conflicts, tumor formation
remains unresolved. Recently, iPSCs have been shown to produce
self-organizing organoids with different cell types through genetic
reprogramming or exposure to environmental signaling factors
(Ebrahimkhani and Levin, 2021). Gilpin et al. evaluated the
recellularization of decellularized lung scaffold with lung
endothelial and epithelial progenitor cells derived from human
iPSCs. They found decellularized lung scaffold could provide an
appropriate environment for iPSC-derived progenitor cells
(Gilpin et al., 2014b). Therefore, iPSCs seem promising in
providing various functional cells for repopulating whole
organs. MSCs are multipotent stem cells and can be easily
harvested from various tissues such as bone marrow and
adipose tissue. They can differentiate into several cell lineages
and have demonstrated encouraging results in recellularizing
different tissues. Thus, these cells have been used as a source
for reseeding diverse tissues, such as cartilage (Zheng et al., 2011),
respiratory tract (Hou et al., 2011; Mendez et al., 2014), urinary
tract (Huang et al., 2007; Coutu et al., 2014), and cardiovascular
system (Zhao et al., 2010).

It is preferred to use autologous cells for recellularizing
acellular scaffolds since these cells would not trigger the host
immune system reactions and rejection after transplantation. It
has been demonstrated that reseeding acellular diaphragm and
lung matrices with stromal cells from homogenized rat lung and
diaphragm tissues had lower inflammation and fibrosis formation
compared to reseeding with mesenchymal stem cells (Kuevda
et al., 2019). In another study by Hellström and colleagues,
primary uterine cells and bone marrow-derived mesenchymal
stem cells (BM-MSCs) were seeded on rat decellularized uterine
scaffolds (Hellström et al., 2016). They observed that these
matrices were able to bear pregnancy and normal fetus
development. The co-culture of parenchymal cells with non-
parenchymal cells could enhance tissue development.
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Combining tissue-derived cells with endothelial cells or
fibroblasts has been reported to improve ECM remodeling,
cellular function, and cell organization (Badylak et al., 2011;
Gilpin and Yang, 2017). Shen and colleagues have shown that
endothelial cells are a critical component for neurogenesis of
neural stem cells (Shen et al., 2004). Endothelial cells work as a
barrier to prevent thrombosis and organ loss due to
immunogenicity of the matrix after transplantation, especially
in vascular and valvular grafts (Lichtenberg et al., 2006; Robertson
et al., 2014). Furthermore, reendothelialization of whole
decellularized heart vascular structures with rat aortic
endothelial cells enhanced the contractility of left ventricular
constructs (Robertson et al., 2014).

5.3 Bioreactors
Intercellular interactions and signaling play a major role in tissue
development and function. Bioreactors provide a refreshing
environment regarding factors, nutrients, and mechanical force
that together enhance cell seeding (Martin et al., 2004). Mostly,
bioreactors are perfusion-based systems involving a simple flow.
Enhancement in the systems includes gravity involvement or
providing a rotatory environment, optimization in oxygenation,
or regulation of mechanical stimuli to mimic a natural
microenvironment, such as compression and shear stress
(Selden and Fuller, 2018). Spinning flasks, rotating cylindrical
devices, perfusion bioreactors, and microfluidic systems are
among the most used types of bioreactors (Ahmed et al.,
2019). Unlike static culture conditions, bioreactors are able to
monitor and control the environmental factors precisely. The
incorporation of sensors into these devices allows detection of any
changes, namely pH or concentration of factors (Simmons et al.,
2017). The automation of these systems not only eliminates the
need for manual and invasive balancing of the ECM and cellular
interactions but also decreases manufacturing costs and enables
inclusive clinical application (Martin et al., 2004).

6 APPLICATION OF DECELLULARIZED
SCAFFOLDS IN REGENERATIVE MEDICINE

6.1 In Vitro Application
Decellularized scaffolds are being used for modeling the
diseases to investigate their pathophysiology. Cell-cell
communication, intracellular signaling, stem cell secretions,
and therapeutics approaches could be studied in a 3D ex vivo
scaffold to evaluate the role of the microenvironment in the
progression of diseases, such as tumors and inflammatory
conditions (García-Gareta et al., 2020). It has been shown that
breast cancer cells had improved growth profiles when seeded
on decellularized human adipose tissue compared to two-
dimensional and Matrigel three-dimensional cultures (Dunne
et al., 2014). In a recent study by Wishart and colleagues, the
involvement of collagen-IV in breast cancer cell invasion was
demonstrated (Wishart et al., 2020). Moreover, using
decellularized human colorectal cancer matrices, Pinto
et al. advocated that tumoral ECM macrophages enhanced
cancer cell invasion via cytokine signaling (Pinto et al., 2017).

The underlying mechanism of the diseases and the
effectiveness of the drugs could be assessed by modeling the
diseases using decellularized scaffolds (McCrary et al., 2020a). For
instance, acellular human intestine ECM was cultured with
intestinal myofibroblasts to assess intestine fibrosis subsequent
to inflammatory bowel disease (Giuffrida et al., 2019). Altered
sensitivity of breast cancer cells to doxorubicin and lapatinib was
also demonstrated in human adipose tissue-derived ECM
scaffolds compared with 2D-cultured cells (Dunne et al.,
2014). In another research, higher resistance to drug
administration in cancer cells was reported in 3D cultures
rather than 2D (Ganjibakhsh et al., 2019). Such studies
support the beneficial aspects of in vitro application of
decellularized tissue from normal or diseased tissues.

6.2 In Vivo Application
Since decellularized materials are biocompatible and stable
compared to synthetic matrices, these cell-free scaffolds are
being widely used (Kawecki et al., 2018). However, the
attraction of desired stem cells to the site of the scaffold
transplantation still remained challenging. Growth factors and
chemoattractant substances could help overcome this pitfall
(Yang et al., 2020). Sabetkish et al. used decellularized human
testicles from patients with testicular feminization syndrome and
implanted them between the thigh muscles of mice.
Spermatogonial stem-like cells were observed during follow-up
(Sabetkish et al., 2021).

Decellularized tissues, either cell-free or recellularized,
primarily aim to function as implantable matrices for lost or
injured organ regeneration (Figure 3). Multiple tissues have been
introduced as candidates for tissue engineering, including the
gastrointestinal tract, respiratory system, vascular, and neural
tissues (Mendibil et al., 2020). Gilpin et al. have classified the
applicable acellular scaffolds into cell sheets, tissues, and whole
organs (Gilpin and Yang, 2017). Cell sheets are simple constructs
mainly derived from a single cell type and may heal minor lesions
or more complex structures when different sheets are combined.
Cell-derived matrices are state-of-the-art ECM that can be used
as an alternative to native tissue-derived matrices since human
cells are accessible and limitless, and matrix properties can be
controlled (Fitzpatrick and McDevitt, 2015).

It is evidenced that genetic modification may improve the
characteristics of ECM and the efficacy of the decellularization
process. Effective decellularization process could be reached via
apoptosis of death-inducible stem cells. Also, genetic
modification of the stem cells may help tune the ECM
composition, such as modifying VEGF expression by stem
cells (Papadimitropoulos et al., 2015; Bourgine et al., 2017;
Morris et al., 2018). Acellular ECM derived from BM-MSC
sheets was used to treat osteochondral defects in rabbits
(Wang et al., 2020). These matrices promoted regeneration of
articular cartilage and subchondral bone with some degrees of
vascularization. Reconstruction of blood vessels, combination of
various decellularized cartilage sheets to produce two-
dimensional cartilage assembly, and recellularization of
periodontal ligament cell sheets were also reported (Fitzpatrick
et al., 2008; Gilpin and Yang, 2017).
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Acellular ECM hydrogels can also provide a scaffold for
transplantation and injection (Young et al., 2011; Wolf et al.,
2012). In addition, transplantation of recellularized acellular
scaffolds has been approached by many researchers. In a
study, regenerated rat lungs were orthotopically transplanted
to investigate the function of reendothelialized pulmonary
vasculature (Tsuchiya et al., 2017). They showed blood
perfusion in the transplanted lung as well as leak-free
ventilation. Transplantation of reseeded decellularized
diaphragm into rats resulted in improved spirometry
parameters (Gubareva et al., 2016).

Currently, decellularized tissues are widely being studied for
organ regeneration. Kajbafzadeh and colleagues have implanted
acellular rat colon-derived scaffolds into the mesenteric tissue as a
graft with an end-to-end anastomosis to the colon of host rats that
resulted in recellularization of the scaffold (Kajbafzadeh et al.,
2020). The trachea, heart valve, and urethra are examples that
have been clinically regenerated with decellularized scaffolds
(Versteegden et al., 2017; Porzionato et al., 2018).

6.3 Human Studies
Human application of different acellular organs is probably the
ultimate goal of tissue engineering and regenerative medicine.

Due to the shortcoming of living organs donation,
decellularization and tissue engineering methods could pave
the way for regenerating tissues and organs to treat diseases in
a less invasive procedure.

Variability in human tissues and their immunogenicity makes
it inconceivable to propose a standardized decellularization
method, thus precluding acellular whole-organ transplantation
(Tenreiro et al., 2021; Mattei et al., 2017). Other hindrances
include ideal vascularization, innervation, or recellularization of
acellular scaffolds (Choudhury et al., 2018). Application of cell-
free grafts is a relatively new area of the clinical setting to use
acellular matrices. Many commercial companies have been
producing dECM, namely Biohorizon and Axogen, which
produce acellular skin graft and dECM nerve scaffolds. In
addition, many human organ-derived dECM-bioprinted
hydrogels have been used in drug screening and delivery
(Choudhury et al., 2020; Lopresti et al., 2015; Cui et al., 2019).
Also, AlloDerm (derived from the allogenic human cadaveric
dermis), Strattice (derived from porcine dermis), and OaSIS
(derived from porcine SIS) are commercial cell-free products
that have been used in recent decades mainly for covering the skin
flaps donor sites, breast reconstruction, and managing ulcers and
wounds, respectively (Cui et al., 2019). In a clinical trial, human

FIGURE 3 | Schematic diagram of preparation and application of the recellularized scaffolds. (A) The decellularized scaffolds could be obtained via chemical,
biological, and physical approaches from human or animal sources. It has been demonstrated that stem cells from embryonic sources have a higher expansion capacity,
albeit they are not easily accessible. Conversely, stem cells from adult sources, including mesenchymal stem cells, are highly available, whereas they do not have
proliferation and differentiation capability as much as embryonic stem cells. Nevertheless, mesenchymal stem cells are multipotent stem cells that can differentiate
into various cell lineages. The iPSC can be obtained via genetic modification of mature cells. Thus, they are highly expansible and readily available. (B) decellularized
scaffolds can be used as cell-free grafts, or they can be seeded with stem cells. Decellularized scaffolds with or without stem cells could be transplanted for regeneration
of the damaged tissues. Moreover, they are used in drug delivery, drug screening, disease modeling, and studying the pathophysiology of diseases.
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acellular vessels showed safety and functionality in providing
access for hemodialysis in end-stage renal disease patients
(Lawson et al., 2016). Different decellularized tissues and their
application status is reviewed by Liao et al. (Liao et al., 2020).
Currently, several clinical trials in different phases are
investigating the application of decellularized tissue in the
regeneration of injured or lost organs. An active phase II
study is being conducted at the Department of Biomedical
Engineering, Johns Hopkins University, investigating acellular
adipose tissue for soft tissue reconstruction (identifier:
NCT03544632, clinicaltrials.gov). Various decellularized
scaffolds from animal and human sources have been used
clinically, mainly for wound healing and surgical mesh
devices, albeit their application is still limited, and further
studies are needed to make decellularized scaffolds
commercially available treatment of disease (Damodaran and
Vermette, 2018).

7 DISCUSSION: CHALLENGES AND
FUTURE DIRECTIONS

Despite favorable characteristics of the decellularized scaffolds for
implementation in clinical practice, there are some constraints
and challenges in their application. Determining the suitable
tissue, decellularization and sterilization method selection,
optimizing the efficacy of these techniques, dECM quality
assessment, modification of acellular scaffolds in vitro and in
vivo study, and transplantation problems (e.g., the timing of
biomaterial transplantation) are among the unsolved
challenges regarding the clinical translation of the
decellularized scaffolds (Figure 4) (Zhang et al., 2021).

The decellularization method is selected based on the type of
tissue and its characteristics. Developing cell removal techniques
with lower toxic agents or productions, in addition to enhancing
sterilizing techniques, would be beneficial. Apart from that,
unlike most synthetic scaffolds (Han et al., 2015), purified

ECM provides a natural microenvironment for the cells that is
challenging to preserve its properties during the decellularization
process (Frantz et al., 2010; Crapo et al., 2011). Ongoing research
is aspiring to develop new techniques to better preserve the ECM
architecture and components, such as vacuum-assisted and
apoptosis-assisted decellularization (Zhang et al., 2021).
Removing cells from ECM can become more efficient if an
innate cellular process or an exogenous stimulus, such as a
drug, promotes cell death, thereby eliminating possible ECM
structural damage. Cartilage ECM was yielded by culturing
human mesenchymal stromal cells with death-inducible
genetic systems. This method resulted in more productive
bone tissue engineering compared to cartilage ECM obtained
from freeze-thaw cycles (Bourgine et al., 2014). Also,
camptothecin-treated nerve tissue resulted in cellular apoptosis
and clearance, which was immunogenically tolerable in vivo
(Cornelison et al., 2018).

Various evaluation tests have already been established to
ensure that cellular compounds have been cleared from the
dECM during the decellularization treatment, while the
chemical and biomechanical properties remain intact and
the residual detergent is removed from the decellularized
tissue, as the remaining detergents may cause cell toxicity in
the scaffold (Zhang et al., 2021). Each tissue has unique
characteristics that make it proper for a research plan and
further clinical use. Additional novel analyzing tests should be
developed for each tissue and its future point of function,
letting researchers assess the acellular scaffold specifically and
exclusively.

Application of naturally-derived ECM is restricted owing to
limited animal sources that are free of by-products and
contaminants, while synthetic scaffolds are available in ample
amounts (Frantz et al., 2010). Polymerization of biodegradable
materials is becoming increasingly popular since manufacturing
techniques such as electrospinning can help create a large number
of scaffolds with controllable indexes, including shapes,
porosities, and fiber arrangements (Nam et al., 2007; Langer

FIGURE 4 | Challenges and hurdles regarding the decellularization process. The decellularization process encounters different challenges that may affect the
resulting scaffold.
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and Vacanti, 2016; Asghari et al., 2017). In order to overcome the
damages caused by the decellularization process and take
advantage of engineered materials, many researchers have
attempted to modify decellularized scaffolds, print 3D scaffolds
using bio-inks, or design ECM-derived hydrogels (García-Gareta
et al., 2020). In terms of regenerative medicine, 3D printing is a
valuable tissue fabrication technology since it is capable of
reproducing the structure of the desired organ; however,
clinical application of these 3D bioprinted constructs depends
on further regulations and improvements (Ji and Guvendiren,
2017; Bilodeau et al., 2020).

Although the aforementioned strategies have been effective
to a large extent in the decellularization process, there are still
many hindrances in the endless road of dECM engineering.
Despite all progress in this field, further investigations are
needed to overcome challenges regarding the clinical
application of decellularized biomaterials and the ultimate
goal of whole organ transplantation.
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GLOSSARY

ECM extracellular matrix

dECM decellularized extracellular matrix

3D three-dimensional

GAG glycosaminoglycans

SDS sodium dodecyl sulfate

SD sodium deoxycholate

SB sulfobetaine

TnBP tri (n-butyl) phosphate

CHAPS 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate

DNase deoxyribonuclease

EGTA ethylene glycol tetraacetic acid

EDTA ethylenediaminetetraacetic acid

PAA peracetic acid

RNase ribonuclease

UV ultraviolet

MTT 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide

dsDNA double-stranded DNA

H&E hematoxylin and eosin

DAPI 4’,6-diamidino-2-phenylindole

SEM scanning electron microscope

TEM transmission electron microscopy

IHC immunohistochemistry

MSCs mesenchymal stem cells

AFM atomic force microscopy

VEGF vascular endothelial growth factor

POC poly(octamethylene citrate)

SIS small intestinal submucosa

ADSCs adipose-derived stem cells

DAMP damage associated molecular pattern

TIPS thermal-induced phase separation

Au gold

NP nanoparticle

Ag silver

PLGA poly lactic-co-glycolic acid

bFGF basic fibroblast growth factor

iPSCs induced pluripotent stem cells

ESCs embryonic stem cells

HSCs hematopoietic stem cells

BM-MSCs bone marrow-derived mesenchymal stem cells
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