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Recent work has shown that deep convolutional neural network is capable of solving
inverse problems in computational imaging, and recovering the stress field of the loaded
object from the photoelastic fringe pattern can also be regarded as an inverse problem
solving process. However, the formation of the fringe pattern is affected by the geometry of
the specimen and experimental configuration. When the loaded object produces complex
fringe distribution, the traditional stress analysis methods still face difficulty in unwrapping.
In this study, a deep convolutional neural network based on the encoder–decoder
structure is proposed, which can accurately decode stress distribution information
from complex photoelastic fringe images generated under different experimental
configurations. The proposed method is validated on a synthetic dataset, and the
quality of stress distribution images generated by the network model is evaluated
using mean squared error (MSE), structural similarity index measure (SSIM), peak
signal-to-noise ratio (PSNR), and other evaluation indexes. The results show that the
proposed stress recovery network can achieve an average performance of more than 0.99
on the SSIM.
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1 INTRODUCTION

Inspired by the human nervous system, Rosenblatt (1958) proposed the perceptron model,
which became the basis of the early artificial neural network (ANN). In recent years, the ANN,
especially deep neural network (DNN), has become one of the fastest developing and most
widely used artificial intelligence technologies(Sun et al., 2020a; Sun et al., 2020c; Li et al., 2020;
Tan et al., 2020; Chen et al., 2021a). Classical research work has proved the excellent
performance of DNNs in image classification (He et al., 2016), medical image segmentation
(Ronneberger et al., 2015; Xiu Li et al., 2019; Jiang et al., 2021a), image generation (Isola et al.,
2017), and depth estimation (Godard et al., 2017; Jiang et al., 2019a). The deep convolutional
neural network is widely used in feature extraction of image data (Jiang et al., 2019b; Huang
et al., 2020; Hao et al., 2021). As an extremely powerful tool, the deep convolutional neural
network can provide a new perspective for the application of digital photoelasticity. That is, the
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deep convolutional neural network can directly learn the
corresponding relationship between isochromatic pattern
and principal stress difference pattern.

In digital photoelasticity, the fringe patterns that contain the whole
field stress information in terms of the difference of principal stresses
(isochromatics) and their orientation (isoclinics) are captured as a
digital image, which is processed for quantitative evaluation (Ramesh
and Sasikumar, 2020). Frequency-domain and spatial-domain
analysis methods, such as Fourier transform (Ramesh et al., 2011),
phase-shift (Tao et al., 2022), step-loading method (Ng, 1997; Zhao
et al., 2022) and multiwavelength technology (Dong et al., 2018), are
usually used to process the data of isochromatics and isoclinics.
However, in the actual industrial scene, the traditional pattern
demodulation will face challenges, such as the color difference in
the color matching method of the calibration table; the complex
geometry of the sample, which makes the pattern complex and
difficult to demodulate; and the fringes with different experimental
configuration need special analysis, all of which make photoelasticity
research a complex process extending to industrial applications.

In recent years, deep learning has shown increasing interest in
solving traditional mechanics problems (Chen et al., 2021b; Jiang
et al., 2021b; Duan et al., 2021; Tao et al., 2021; Zhang et al., 2022),
which is due to deep learning’s powerful ability of data feature
extraction and representation of complex relationships. In general,
deep learning is committed to mining implicit rules of data from a
large number of data sets and then using the learned rules to
predict the results and hoping that the learned models have good
generalization ability (Cheng et al., 2021; Huang et al., 2021; Yang
et al., 2021; Chen et al., 2022). Works in optical image processing,
such as phase imaging (Gongfa Li et al., 2019; Xin Liu et al., 2021;
Sun et al., 2022), phase unwrapping (Wang et al., 2019), and fringe
pattern analysis (Feng et al., 2019), have also demonstrated the
applicability of deep learning. Recovering the full-field principal
stress difference of the loaded object from the photoelastic fringe
pattern can be regarded as an inverse problem solving process of
deep learning. A large number of datasets are collected and trained
to find the complex correspondence between the fringe pattern and
stress difference pattern, which is then used to recover the stress
field of the real loaded object from a single fringe pattern. When
many conditions such as specimen shape, material properties, and
the setting of polarized light field need to be considered, it is

difficult for traditional mathematical methods to deal with this
complicated and changeable situation. However, with sufficient
data collected under different experimental conditions, deep
learning can directly learn the complex correspondence between
the input fringe pattern and output principal stress difference.

In this study, a deep convolutional neural network model is
designed for inferring the stress field from the photoelastic fringe
pattern. The overall framework of the network is in the form of
encoder–decoder structure. The encoder completes the feature
extraction process of the input fringe pattern, and the decoder
completes the process of feature fusion to stress distribution
pattern inference, thus realizing the transformation from the
single photoelastic fringe pattern to stress distribution pattern.
Themain contributions of our study can be summarized as follows:

(1) A simple and efficient stress recovery neural network is
designed to realize the process of stress field recovery of
the loaded object from a single fringe pattern.

(2) A multiloss function weighted objective optimization
function is proposed to accelerate the convergence of
neural networks and improve the robustness of model
prediction.

(3) The superior performance of the proposed method is verified
on a public dataset.

The remainder of this article is structured as follows. Some of
the work closely related to this study will be discussed in Section
2. The combination of the photoelastic method and convolutional
neural network and the design of the neural network model and
objective optimization function is presented in Section 3. In
Section 4, the details of the experiment implementation are
introduced, the method proposed in this study is compared
with that of other studies in detail, and then the experimental
results are further analyzed. Finally, the conclusion and
limitations of the proposed method are given in Section 5.

2 RELATED WORK

It is a challenging task to recover the stress field of the loaded
object from a single photoelastic fringe pattern. Most of the

FIGURE 1 | Schematic diagram of the orthogonal circularly polarized light field.
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traditional methods are limited by different experimental
conditions and calculation methods when dealing with
complex fringe patterns. Recently reported methods based on
deep learning provide new ideas to solve these shortcomings.
Feng et al. (2019) proposed a fringe pattern analysis method
based on deep learning. They collected phase-shifted fringe
patterns in different scenes to generate training data and then
trained neural networks to predict some intermediate results.
Finally, combining these intermediate results, the high-precision
phase image is recovered by using arc tangent function. The
results show that this method can significantly improve the
quality of phase recovery. Sergazinov and Kramar (2021) use
the CNN to solve the problem of force reconstruction of
photoelastic materials. They use the synthetic dataset obtained
by theoretical calculation for training and then use the transfer
learning to fine-tune a small amount of real experimental data,
which shows good force reconstruction results.

For the estimation of the photoelastic stress field under a single
experimental condition, a dynamic photoelastic experimental
method based on pattern recognition was proposed (Briñez-de
León et al., 2020a). The ANN was used to process the color fringe
patterns that changed with time so as to classify the stress of
different sizes, isotropic points, and inconsistent information. In
order to make the deep learningmethod suitable for a wider range
of experimental conditions, Briñez-de León et al. (2020b)
reported a powerful synthetic dataset which covered
photoelastic fringe patterns and the corresponding stress field
distribution patterns under various experimental conditions with
highly diversified spatial fringe distribution. At the same time, a
neural network structure based on VGG16 (Simonyan and
Zisserman, 2014) is proposed to recover the stress field from
the isochromatic pattern. However, the prediction results of this
network model are somewhat different from the real maximum
stress difference, and the prediction results of the stress on the
rounded surfaces are not very accurate. In their reports in the
other literature (Briñez-de León et al., 2020c), an image
translation problem directly related to spatial transformation
based on the generative adversarial network (GAN) model was
proposed. This method showed good performance in the SSIM,

but there is a supersaturation phenomenon of stress recovery in
some specimens. In addition, GAN is not an easy training model
for the convergence of the network (Sun et al., 2021; Ying Liu
et al., 2021;Wu et al., 2022). Recently, they proposed a new neural
network model to evaluate the stress field and named it
PhotoelastNet (Briñez-de León et al., 2022). Considering the
influence of noise and complex stress distribution patterns, the
scale of synthetic data was further expanded, and a lighter
network structure was designed, which achieved better
performance in synthetic images and experimental images.
However, there is still a certain gap between the accuracy of
stress distribution estimation and ground truth. Our study
improves on these methods by proposing a simpler and
reasonable network structure and designing more effective loss
functions to solve these problems.

3 PHOTOELASTICITY AND THE NEURAL
NETWORK MODEL

3.1 Photoelasticity
Photoelastic fringes are visualized patterns obtained by a
polarized optical system, which display the invisible stress
response of each point in the model related to the
birefringence effect through the related optical system. In this
research, photoelastic fringes are visualized by a circular
polariscope. The schematic diagram of the circular polariscope

FIGURE 2 | Schematic for the neural network architecture of the proposed model in this research. The network consists of an encoder and a decoder. An RGB
isochromatic image is taken as the input, and the output is a stress map in gray scale.

FIGURE 3 | Sketch of RepVGGBlock architecture.
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is shown in Figure 1. The circular polariscope comprises a light
source, polarizer, quarter wave plate I (QW-I), specimen which is
made of photoelastic material, quarter wave plate II (QW-II), and
an analyzer.

In Figure 1, F represents the fast axis of the QW-I and QW-II.
The orientations of the fast axis of the QW-I and QW-II are set to
45° and 135°, respectively. The orientation of the polarizer is set to
90°. The orientation of the analyzer is set to 0°. The light carried
with the specimen’s stress information is emitted from the
analyzer, and the light intensity can be expressed as follows:

Ia � Ib + I0
2
(1 − cos δ), (1)

where Ib is the background light intensity. I0 is the intensity of the
light source. δ is the isochromatic angle of the photoelastic model,
which contains the stress field information.

According to the law of stress optics, the principal stress
difference in photoelastic models is proportional to the
refractive index in the principal stress direction, as shown in
Eq. 2. The optical path difference produced when polarized light
passes through the photoelastic model can be expressed as Eq. 3.

n1 − n2 � C(σ1 − σ2), (2)
z � (n1 − n2)h � λδ/2π, (3)

where σi is the ith principal stress, ni is the refractive index in the
direction of σi, C = C1 − C2, Ci is the optical coefficient of the stress
of the model material, δ is the phase delay, h is the thickness of the
photoelastic model, z is the optical path difference, and λ is the
wavelength of the incident light source.

In two-dimensional photoelasticity, the relationship between
phase delay caused by principal stress difference and the
properties of the optical material is shown in Eq. 4. The main
influencing factors of phase delay are light wavelength, optical
coefficient of photoelastic material, model thickness, and stress
condition.

δ � 2π(σ1 − σ2)h/fσ , (4)
where fσ = λ/C is the material fringe value.

The photoelastic fringe patterns collected by the camera are
interference intensity images of light. These fringe patterns
generated by phase delay wrap the stress field information of
the stressed object. In general, the stress field can be understood
as the mechanical effect caused by the force distributed inside the
object (Markides and Kourkoulis, 2012), which can be expressed
by the principal stress difference σ1 − σ2.

Briñez-de León et al. (2020b) reported that the intensity of the
emitted light is related to the spectral content of the light source,
optical elements in the polarized light system, spatial stress
distribution, and relative spectral response in the camera
sensor. Based on the circular polariscope shown in Figure 1,
the relationship between the intensity and phase delay of the
emitted light (Ajovalasit et al., 2015) in different color channels is
shown in Eq. (5).

IR,G,B � 1
λ2 − λ1

∫λ2

λ1

I0(λ)
2

[1 − cos δ(λ)]SR,G,B(λ)dλ, (5)

where I is the emergent light intensity; RGB is the red, green, and
blue color channels; and SR,G,B(λ) is the relative spectral response
of the camera.

According to the causal relationship between the photoelastic
fringe pattern and stress field, the process from the stress field to
fringe pattern can be regarded as a forward problem, while
solving the stress field according to the single fringe pattern is
a challenging inverse problem, that is, unwrapping stress
information in the fringe pattern. We propose a stress field
recovering method based on the CNN to solve this problem.

3.2 Photoelastic Image Dataset
It is expensive to obtain enough photoelastic fringe patterns and
corresponding stress field images through the photoelastic
experiment, which is due to the complicated experimental
environment configuration and tedious post-data processing.
Briñez-de León et al. (2020d) propose a hybrid scheme that
includes real experimental data and computational simulation.

TABLE 1 | Encoder parameters of each stage. The first parameter of the size
indicates the number of channels, and the last two parameters indicate the
size of the image during the down-sampling process.

Stage Blocks Input size Output size

1 1 3 × 224 × 224 64 × 112 × 112
2 2 64 × 112 × 112 128 × 56 × 56
3 4 128 × 56 × 56 256 × 28 × 28
4 8 256 × 28 × 28 512 × 14 × 14
5 1 512 × 14 × 14 1024 × 7 × 7

FIGURE 4 | Sketch of decoding block architecture.

TABLE 2 | Parameters of each stage of the decoder. The input size of the decoder
is the output size of the encoder, and the final output size of the model is 1 ×
224 × 224.

Stage Blocks Input size Output size

6 1 1024 × 7 × 7 512 × 14 × 14
7 2 512 × 14 × 14 256 × 28 × 28
8 2 256 × 28 × 28 128 × 56 × 56
9 2 128 × 56 × 56 64 × 112 × 112
10 1 64 × 112 × 112 1 × 224 × 224
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Different types of light sources, the range of loading external
forces, rotation angles of optical elements, and various types of
camera sensors are fully considered in this method. According to
a variety of different experimental conditions, such a rich
isochromatic art dataset (Briñez-de León et al., 2020e) was
finally synthesized through calculation methods. In this
repository, all the experimental cases consider a PMMA
material of 10 mm thickness and a stress optical coefficient of
about 4.5 e−12 m2/N. There are totally 101,430 photoelastic image
pairs in the dataset, and each pair includes the color fringe pattern
and the corresponding gray stress map. The images are all 224 ×
224 in size, and these images cover various patterns from simple
to complex, which can be divided into two types: complete and
patch. The fringe pattern and stress pattern are placed in different
folders and matched by the same serial number.

3.3 Network Model
We propose a stress field recovery model based on the
encoder–decoder structure. The input of the network is a
single photoelastic color fringe pattern, and the output is the
gray image of the stress field recovered from the fringe pattern.
The overall structure of the neural network model is shown in
Figure 2.

The whole network consists of an encoder and a decoder. The
encoder receives the input photoelastic fringe pattern and then uses a
series of sub-sampling convolution, batch normalization (BN) (Ioffe
and Szegedy, 2015), activation, and other operations to complete
feature extraction from the input images. The feature information
extracted by the encoder will be used as an intermediate
representation of the input fringe pattern. Concretely, the whole
coding process is divided into five stages by using the structure of the
cascaded convolutional neural network (Sun et al., 2020b; Weng
et al., 2021), and each stage comprises a different number of
RepVGGBlock (Ding et al., 2021), as shown in Figure 3. The
number of blocks can be freely adjusted to change the encoder’s
representation ability of the input image. Considering the trade-off
between the accuracy and speed of the model, we set the number of
blocks in each stage as {1,2,4,8,1}, and the image resolution of the
first stage is 224 × 224. Experiments show that under the large image
size, using only one block is helpful to speed up the training and
reasoning of the model. The input and output dimensional
parameters of each stage are shown in Table 1.

RepVGGBlock is a convolutional block with multibranch
topology, including convolution with 3 × 3 kernel branch,
convolution with 1 × 1 kernel branch, and identity branch.
Each branch performs BN operation, then concatenates them
together, and finally outputs after being activated by ReLu.
The schematic diagram of RepVGGBlock is shown in
Figure 3.

In order to recover the stress field distribution quickly and
accurately, we designed a convolutional decoding structure which
maps the features extracted by the encoder to the stress
distribution map corresponding to the fringe pattern. The
feature decoding process is also divided into five stages, each
of which is stacked with blocks with the same structure. The
number of blocks is also adjustable, and its structure comprises an
up-sampling layer, a convolution layer, a BN layer, and an active

layer. The schematic diagram is shown in Figure 4. The up-
sampling layer uses bicubic interpolation (Huang and Cao, 2020),
the convolution layer uses 3 × 3 conv, and the activation layer uses
ReLu. Table 2 shows the parameters of each stage of the decoder.

3.4 Objective Optimization Function
Mean squared error (MSE) (choi et al., 2009;Ma et al., 2020) is the
most commonly used loss function in image reconstruction,
which has fast convergence speed. But for regression tasks, the
MSE is prone to interference by outliers during training. Most
importantly, it usually leads to blurred images (Gondal et al.,
2018) because minimizing MSE is equivalent to minimizing the
cross-entropy of the empirical distribution and Gaussian
distribution on the training set. We followed the method
proposed by Zhao et al. (2016) and used L1 (Liao et al., 2021),
L2, and SSIM (Wang et al., 2004) to construct our stress recovery
loss function. First, the L1 loss of the two images is defined as
follows:

LL1(Ir, Ig) � 1
N

∑
p∈I

∣∣∣∣Ir(p) − Ig(p)∣∣∣∣, (6)

where p is the index of the pixel; Ir(p) and Ig(p) are the values of
the pixels in the recovered stress map and the ground truth,
respectively; and N is the number of pixels p in the image I.
Similarly, L2 loss is defined as follows:

LL2(Ir, Ig) � 1
N

∑
p∈I

[Ir(p) − Ig(p)]2. (7)

The SSIM has been widely used as a metric to evaluate image
processing algorithms. It is a full reference image quality
evaluation index which measures the image similarity from
three aspects: brightness, contrast, and structure. The SSIM for
pixel p is defined as follows:

SSIM(p) � 2μxμy + C1

μ2x + μ2y + C1
· 2σxy + C2

σ2
x + σ2

y + C2
� l(p) · cs(p), (8)

where x and y are two image patches extracted from the same
spatial position of the two images, respectively; μx and μy are the
average brightness of patches x and y, respectively; σx and σy are
the standard deviation of x and y, respectively; σxy is the
covariance of x and y; and C1 and C2 are very small constants
to avoid having a zero denominator.

TABLE 3 | Quantitative results. Comparison with StressNet (Briñez de León et al.,
2020b) and GAN (Briñez de León et al., 2020c) in the SSIM, PSNR, and MSE.

Methods SSIM PSNR MSE

Mean SD Mean SD Mean SD

StressNet 1000 images 0.9587 0.0327 39.29 3.47 24.12 1.63
Ours 1000 images 0.9925 0.0037 45.16 7.20 7.67 17.14
StressNet 10000 images 0.9603 0.0329 39.33 3.58 25.18 1.47
Ours 10000 images 0.9929 0.0041 44.96 7.23 7.88 16.72
GAN 20000 images 0.9308 0.0186 28.36 1.67 1.36 0.04
Ours 20000 images 0.9943 0.0043 44.99 7.24 7.88 17.75
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In order to solve the problem of edge noise in the process of
image generation, multiscale SSIM (MS-SSIM) is added to the
loss function (Wang et al., 2003), which can effectively improve
the impact of edge noise. MS-SSIM is defined as Eq. 7. M scale
images were obtained by down-sampling. These images were
evaluated by the SSIM, and the MS-SSIM value was obtained by
fusion calculation.

MS SSIM(p) � lM(p) ·∏
M

j�1
csj(p), (9)

where lM and csj are the terms defined in Eq. 8 at scales M and j.
According to the convolutional nature of the network, the loss
function of MS-SSIM can be written as follows:

LMS SSIM(P) � 1 −MS SSIM(~p), (10)
where ~p is the center pixel of patch P and P is the image patch
sampled from image Ir and Ig.

Finally, the objective optimization function is formulated in
Eq. (11):

L � αLMS SSIM(Ir, Ig) + βLL1(Ir, Ig) + (1 − α − β)LL2(Ir, Ig),
(11)

where Ir and Ig are the recovered stress map and the ground truth,
respectively. Through the comparative experiments of different
loss functions, we set α � 0.5 and β � 0.25 so that the different
components of the loss function achieve roughly similar
contributions.

4 EXPERIMENT AND ANALYSIS

By comparing the performance of the proposed network structure
with the multiloss function fusion method on a synthetic dataset
and comparing with the previous work, it is proved that the
proposed method can accurately recover the stress field
distribution from the photoelastic fringe pattern.

4.1 Implementation Details
Our network model is implemented by PyTorch. During the
training process, 20,000 image pairs are randomly selected from
the complete dataset, with 80% as the training set and the
remaining 20% as the validation set. The batch size is set to
32, and Adam optimizer is used to train 100 epochs. The initial
learning rate is 0.0001. The size of the input and output images is
224 × 224, in which the input is the RGB channel color fringe

FIGURE 5 | Results of comparison with StressNet (Briñez de León et al., 2020b). (A,E) are photoelastic fringes obtained with fluorescent and incandescent light
sources, respectively. (B,F) are the corresponding ground truth. (C,G) are the results in StressNet. (D,H) are the results of our method.

TABLE 4 | Quantitative results of comparison with StressNet (Briñez de León
et al., 2020b). (a) and (e) represent the results of processing the photoelastic
fringes in Figure 5.

Method SSIM PSNR MSE RMSD

StessNet(a) 0.6338 34.38 28.16 0.88
Ours(a) 0.9916 40.61 5.85 0.89

StessNet(e) 0.8476 34.27 75.86 0.59
Ours(e) 0.9482 39.13 12.87 0.83
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pattern and the output is the single channel stress gray pattern.
We train the stress recovery network from scratch on a single
NVIDIAGTX 1080Ti, save several models with low loss values on
the verification set, and then select the one with the best
performance on the validation set as the final model. Another

20,000 pairs of images are randomly selected as the test set, and
these images did not appear in the previous training and
validation sets. This test set will be used to evaluate the
performance of the final model.

4.2 Comparison With Different Methods
We test the trained models on different number of test sets, and
the test images are randomly selected from the data sets that
have never participated in the training. The distribution map of
the stress field recovered by the network is compared with the
real distribution map. MSE, peak signal-to-noise ratio (PSNR)
(Gupta et al., 2011), and SSIM are used to measure the quality of
the generated stress field images and then compare with the
previous work. The PSNR is an image quality reference value for
measuring maximum signal and background noise, as shown in
Eq. (12).

FIGURE 6 | Results of comparison with GAN (Briñez de León et al., 2020c). (A,E) are photoelastic fringes obtained with Willard_LED and incandescent light
sources, respectively. (B,F) are corresponding ground truth. (C,G) are the results in the GAN. (D,H) are the results of our method.

TABLE 5 | Quantitative results of comparison with GAN (Briñez de León et al.,
2020c). (a) and (e) represent the results of processing the photoelastic fringes
in Figure 6. MSE is calculated after image normalization.

Method SSIM PSNR MSE RMSD

GAN(A) 0.9144 25.201 30.186e-4 2.28
GAN(A) 0.9974 50.148 1.02e-5 0.98

GAN(E) 0.9390 35.196 3.022e-4 1.01
GAN(E) 0.9923 52.497 1.10e-5 0.96

TABLE 6 | Comparison of results of different loss functions. All the results are tested on 20000 images, and then the average and standard deviation are obtained. MSE is
calculated after image normalization.

Loss function SSIM PSNR MSE RMSD

Mean SD Mean SD Mean SD Mean SD

L1 0.9803 0.0075 42.50 7.59 2.74e-4 7.16e-4 1.0276 0.0779
L2 0.9759 0.0164 43.36 4.97 1.02e-4 2.78e-4 1.0244 0.0985
L1+L2 0.9861 0.0101 43.80 5.09 9.50e-5 2.59e-4 1.0145 0.0879
MS-SSIM 0.9922 0.0057 43.08 8.35 2.88e-4 7.25e-4 1.0342 0.0852
Mix 0.9943 0.0043 44.99 7.24 1.43e-4 3.67e-4 1.0109 0.0652
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FIGURE 7 | Results for different loss functions. (A,B) are image pairs randomly selected from the test set (Briñez-de León et al., 2020e) and (C–G) are the stress
maps recovered under different loss functions.

FIGURE 8 | Stress concentration zones. Photoelastic fringes (A,D) and corresponding stress maps (B,E) are selected from the test set (Briñez-de León et al.,
2020e). (C,F) are stress maps recovered by our proposed method. The region inside the red box is the stress concentration zone.
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PSNR � 10 log10(MAX2
I

MSE
), (12)

where MAXI is the maximum possible pixel value of the image,
and MSE is the mean square error.

For MSE, the value is close to 0 and the smaller the better. For
the PSNR, high values indicate better performance; on the
contrary, low values indicate low performance. For the SSIM,
the value close to 1 indicates high similarity and the value close to
0 indicates low similarity.

The results of StressNet (Briñez de León et al., 2020b), GAN
(Briñez de León et al., 2020c) and our proposed network are
compared, as shown in Table 3. The experimental results show
that the proposed network model has good feature extraction
ability and better image space mapping ability. The large standard
deviation of the PSNR and MSE may be due to the noise in
randomly selected data, which leads to a certain deviation from
the mean value. Generally speaking, the results obtained by our
proposed stress recovery network are better than those of the
previous work.

We selected the two examples in StressNet to obtain
specific instructions. The results in Figure 5 and Table 4
show that our proposed method has a high structural
similarity index, and the bright area in the Figure 5 shows
the degree of stress concentration. In order to measure the
difference of the maximum stress difference between the
recovery stress map and ground truth in the stress
concentration area, the ratio of the maximum stress
difference (RMSD) was proposed, as shown in Eq. 13. For
the RMSD, the value close to 1 represents a small error.
According to the RMSD value in Table 4, the stress recovery
error of our method is smaller.

RMSD � MSDr

MSDg
, (13)

FIGURE 9 | Edge of the stress map. Photoelastic fringes (A,D) and corresponding stress maps (B,E) are selected from the test set (Briñez-de León et al., 2020e).
(C,F) are stress maps recovered by the proposed method. (A) is obtained by the human vision camera sensor with a cold white laser as the light source, and the
maximum stress value of (B) is 72 MPa. (D) is obtained by a Sony_IMX 250 camera sensor with Willard_LED as the light source, and the maximum stress value of (e) is
48 MPa.

TABLE 7 | All the metric values of the recovered stress maps in Figure 8.

Method SSIM PSNR MSE RMSD

(C) 0.9962 27.34 1.84e-4 0.9514
(F) 0.9957 35.24 3.02e-4 1.0222

TABLE 8 | All the metric values of the recovered stress maps in Figure 9.

Method SSIM PSNR MSE RMSD

(C) 0.9939 33.11 4.92e-4 0.9885
(F) 0.9875 35.57 2.85e-4 0.9942
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FIGURE 10 | Stress recovery results of complex fringe patterns. First column: photoelastic color fringe pattern; second column: ground truth; third column:
predicted stress map. All fringe patterns and corresponding stress maps are selected from the test set (Briñez-de León et al., 2020e). The maximum stress values of the
ground truth from top to bottom are 72, 48, 48, and 60 MPa.
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whereMSDr and MSDg are the maximum stress difference of the
recovery stress map and ground truth, respectively.

Similarly, we also make a further comparison with the methods
proposed in GAN (Briñez de León et al., 2020c), as shown in
Figure 6. The experimental results show that our method solves
the local over-saturation phenomenon in GAN (i.e., the predicted
value of the stress concentration area tends to be larger).

4.3 Comparison With Different Loss
Functions
In order to construct the most effective loss function to accurately
recover the stress map, we compare the image recovery effect of
the models trained under different loss functions. 20,000 images
were used to evaluate each indicator to avoid accidental errors.
The experimental conditions were the same except for different
loss functions. The experimental results of each evaluation index
are shown in Tables 5, 6. The results show that compared with
using MSE and MS-SSIM as loss functions alone, the fusion of
multiple loss function mix as shown in Eq. 11 can achieve better
image recovery quality. Figure 7 shows a concrete example of
stress map recovery under different loss functions. When L1, L2,
and L1+L2 are used as loss functions, as shown in Figures 7C–E,
local details are lost in the stress map recovery, leading to
inaccurate results. When MS-SSIM is used as a loss function,
as shown in Figure 7F, complete local details are preserved, but
the maximum stress difference in the stress concentration area is
less than the true value. Using the fusion loss function mix, as
shown in Figure 7G, the best effect is achieved in all evaluation
indicators, which is almost consistent with the ground truth.

4.4 Further Result Analysis
The prediction of the stress concentration area is the key point of
practical engineering because it has a great influence on the
fatigue life of components. We compared the maximum stress
difference between the predicted stress map and ground truth and
calculated the ratio of the maximum stress difference among
20,000 randomly selected image pairs.

The experimental results show that the average RMSD value
of 20,000 predicted and real stress maps is 1.0109, and the
standard deviation is 0.0652. This indicates that our network
model accurately predicts the maximum stress difference in
the stress concentration area with very dense fringes, which is
the benefit brought by the fusion of MS-SSIM and L1.
Multiloss function fusion not only considers the change of
global value but also has a good effect on optimizing the local
minimum value in the training process. Figures 8, 9 list some

specific examples. The color fringe images in Figure 8 are
obtained by using a Sony_IMX250 camera sensor with a
constant light source, and its maximum stress value is
72 MPa. Table 7 shows all the metric values of the
recovered stress maps in Figure 8. The SSIM values of
Figures 8C,F both exceed 0.99, and the maximum stress
difference of them are 68.5 and 73.5 MPa, respectively. The
results show that the maximum principal stress difference
appears in the area with dense fringes, and their maximum
stress difference error is less than 5%.

In order to evaluate the performance of the proposed
method at image edges, Figure 9 shows that the predicted
stress map is very smooth in the edge area of the pattern, and
the SSIM between the estimated stress map and ground truth
in the edge area can reach 0.99. From the perspective of
human vision, the prediction of stress concentration zones
and edges is almost consistent with the ground truth. Table 8
shows all the metric values of the recovered stress maps in
Figure 9.

When solving the stress field of complex geometric objects
under different experimental conditions, there were some
problems in the previous study, such as complicated
calculation methods and inaccurate calculation results.
Figure 10 shows the advantage of our method in solving the
stress field of complex geometry. Due to the strong unwrapping
ability of the network model, the stress field recovery of the
complex fringe pattern performs well in the edge and stress
concentration area. The predicted results of the stress map in
the first two rows in Figure 10 can reach 0.99 on the SSIM, and
the more complex patterns in the last two rows can also exceed
0.97. Table 9 shows all the metric values of the recovered stress
maps in Figure 10.

4.5 Experimental Cases
The model was also evaluated when dealing with experimental
cases. Based on experiments in literature (Restrepo Martínez and
Branch Bedoya, 2020), 12 images were selected to fine-tune the
network, and the remaining four images were used to test the
performance of the network model. In the experiment, an LED
was used as the light source, different loads were applied in a
circularly polarized light field, and the photoelastic images were
captured by the camera sensor DCC3260. The ground truth is
generated by simulation. The test results are shown in Figure 11
and Table 10.

5 CONCLUSION

We propose a deep convolutional neural network based on the
encoder–decoder structure and design an objective optimization
function weighted with multiple loss functions to recover the stress
field distribution from color photoelastic fringe patterns.
Verification results on open data sets show that our stress field
recovery model can achieve an average performance of 0.99 on the
SSIM. Other indexes also show that the model has the ability to
accurately recover the stress map. When testing the photoelastic

TABLE 9 | All the metric values of the recovered stress maps in Figure 10.

Method SSIM PSNR MSE RMSD

(1) 0.9948 44.36 4.02e-5 0.9352
(2) 0.9903 38.35 1.51e-4 1.1121
(3) 0.9695 32.75 5.38e-4 1.0268
(4) 0.9583 30.49 8.94e-4 0.9543
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fringe patterns with complex geometry under different
experimental conditions, our model still shows excellent
generalization performance and strong unwrapping ability.

However, the proposed method only calculates the
difference of principal stress. In practice, we also want to
know the specific component of principal stress. In the

FIGURE 11 | Stress recovery results of experimental cases. First column: photoelastic color fringe pattern; second column: ground truth generated by simulation;
third column: predicted stress map.
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future, a dataset containing principal stress components will be
built, and then the principal stress can be obtained through the
deep convolutional neural network.
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