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Background: Osteoarthritis (OA) primarily affects mechanical load-bearing joints. The
knee joint is the most impacted by OA. Knee OA (KOA) occurs in almost all demographic
groups, but the prevalence and severity are disproportionately higher in females. The
molecular mechanism underlying the pathogenesis and progression of KOA is unknown.
The molecular basis of biological sex matters of KOA is not fully understood. Mechanical
stimulation plays a vital role in modulating OA-related responses of load-bearing tissues.
Mechanical unloading by simulated microgravity (SMG) induced OA-like gene expression
in engineered cartilage, while mechanical loading by cyclic hydrostatic pressure (CHP), on
the other hand, exerted a pro-chondrogenic effect. This study aimed to evaluate the effects
of mechanical loading and unloading via CHP and SMG, respectively, on the OA-related
profile changes of engineered meniscus tissues and explore biological sex-related
differences.

Methods: Tissue-engineered menisci were made from female and male meniscus
fibrochondrocytes (MFCs) under static conditions of normal gravity in chondrogenic
media and subjected to SMG and CHP culture. Constructs were assayed via
histology, immunofluorescence, GAG/DNA assays, RNA sequencing, and testing of
mechanical properties.

Results: The mRNA expression of ACAN and COL2A1, was upregulated by CHP but
downregulated by SMG. COL10A1, a marker for chondrocyte hypertrophy, was
downregulated by CHP compared to SMG. Furthermore, CHP increased GAG/DNA
levels and wet weight in both female and male donors, but only significantly in females.
From the transcriptomics, CHP and SMG significantly modulated genes related to the
ossification, regulation of ossification, extracellular matrix, and angiogenesis Gene
Ontology (GO) terms. A clear difference in fold-change magnitude and direction was
seen between the two treatments for many of the genes. Furthermore, differences in fold-
change magnitudes were seen between male and female donors within each treatment.
SMG and CHP also significantly modulated genes in OA-related KEGG pathways, such as
mineral absorption, Wnt signalling pathway, and HIF-1 signalling pathway.
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Conclusion: Engineered menisci responded to CHP and SMG in a sex-dependent
manner. SMG may induce an OA-like profile, while CHP promotes chondrogenesis.
The combination of SMG and CHP could serve as a model to study the early
molecular events of KOA and potential drug-targetable pathways.

Keywords: disease modelling, human-engineeredmeniscus, mechanical stimulation, simulated microgravity, cyclic
hydrostatic pressure

INTRODUCTION

Osteoarthritis (OA) is the most common form of degenerative
disease and primarily affects loading-bearing joints, with the knee
joint being the most prevalent (Nicolella et al., 2012; Boyan et al.,
2013a). A hallmark feature of knee osteoarthritis (KOA) is the
atrophy of articular cartilage. Surrounding joint tissues, including
the menisci, will also undergo breakdown (Sun et al., 2010;
Blackburn et al., 2016). These abnormal changes can lead to
rapid loss of the knee joint’s function and mobility, making KOA
a leading cause of physical disability (Murray et al., 2012).
Although KOA occurs in almost all demographic groups, the
prevalence and severity of KOA increases with age and is
disproportionately higher in females than males (Badley and
Kasman, 2004; Breedveld, 2004; O’Connor, 2007; Boyan et al.,
2012; Pan et al., 2016). It has been reported by the World Health
Organization that 9.6% of males and 18% of females above the age
of 60 years have symptomatic OA (Osteoarthritis, 2014).

The molecular mechanisms and cellular events underlying the
pathogenesis and progression of KOA are not well understood.
As well, the molecular basis of biological sex matters has not been
previously investigated. Currently, there is no consensus model to
reflect the pathophysiology of KOA holistically. However, the
molecular and cellular characteristics of KOA resemble the
hypertrophic differentiation of chondrocytes as they progress
to the bone during endochondral ossification (Dreier, 2010).
Conveniently, this process includes the upregulation of
hypertrophic markers COL10A1 and MMP13, which can be
indicators for the KOA phenotype (Aigner et al., 1993;
D’Angelo et al., 2000). Healthy chondrocytes, on the other
hand, resist hypertrophic differentiation and lack expression of
these hypertrophic markers (Leijten et al., 2012). Given the
disproportionate incidence of KOA in females as compared to
males, we reasonably expect the cellular and molecular
characteristics of KOA to show sex-dependent differences.

Mechanical stimulation was reported by an abundance of
studies to play a critical role in modulating OA-related
responses of loading-bearing tissues. Applying mechanical
loading to joints through regular exercise is essential to
maintaining healthy cartilage and preventing breakdown from
prolonged disuse (Bader et al., 20112011). Cyclic hydrostatic
pressure (CHP) as a loading modality mimics physiological
loading patterns and can be easily recreated in-vitro using
specialized bioreactors (Elder and Athanasiou, 2009; Mellor
et al., 2017). Studies have shown that CHP applied to
engineered tissue constructs has induced a mostly pro-
chondrogenic effect. For example, Zellner et al. applied
dynamic hydrostatic pressure (cyclic at 1 Hz for 4 h per day,

0.55–5.03 MPa) for 7 days to cellular aggregates generated from
inner and outer meniscus fibrochondrocytes (MFCs) (Zellner
et al., 2015). After 14 additional days of static culture, aggregates
loaded initially for the 7 days showed immunohistochemically
enhanced chondrogenesis compared to unloaded controls
(Zellner et al., 2015). Further, Gunja et al. applied dynamic
hydrostatic pressure (0.1 Hz for 1 h every 3 days, 10 MPa) for
28 days to engineered tissue constructs using MFCs with added
TGF-β1 growth factors (Gunja et al., 2009). Loaded tissue
constructs with growth factors showed additive and synergistic
increases in collagen deposition (approximately 2.5-fold), GAG
deposition (2-fold), and enhanced compressive properties
compared to unloaded controls without growth factors (Gunja
et al., 2009).

Mechanical unloading of joints from long-term
immobilization has been shown to induce cartilage atrophy
that resembles characteristics of KOA. In a case study by
Souza et al., joint immobilization of healthy individuals
without prior history of OA resulted in magnetic resonance
imaging (MRI) parameters of their knee articular cartilage that
resemble KOA (Souza et al., 2012). When returning to standard
weight-bearing, the MRI parameters for the joints were restored
to baseline values consistent with healthy articular cartilage
(Souza et al., 2012). Mechanical unloading has also been
modelled by simulated microgravity (SMG) using rotating wall
vessel bioreactors (Yu et al., 2011; Jin et al., 2013; Mayer-Wagner
et al., 2014;Mellor et al., 2014; Mellor et al., 2017). Mayer-Wagner
et al. applied simulated microgravity for 21 days to human
mesenchymal stem cell (hMSC) pellets and found a decrease
in histological staining of proteoglycans and collagen type-II
compared to normal gravity controls (Mayer-Wagner et al.,
2014). SMG pellets also showed a lower COL2A1/COL10A1
expression ratio suggesting that mechanical unloading via
SMG reduced the chondrogenic differentiation of hMSCs
(Mayer-Wagner et al., 2014). Finally, in a comparative study,
CHP-loaded pellets from human adipose-derived stem cells
showed increased expression of ACAN, SOX9, and COL2A1,
and a 3-fold increase in GAG productions compared to
unloaded SMG groups (Mellor et al., 2017). However, none of
the above studies investigated the sex-dependent differences in
the magnitude of differential modulation by mechanical loading
and unloading via CHP and SMG, respectively.

A recent definition of OA from the Osteoarthritis Research
Society International includes the menisci of the knee joint as a
tissue undergoing breakdown and abnormal changes from the
disease (Blackburn et al., 2016). Knee menisci undergoing OA has
also been shown to have similar characteristics as knee articular
cartilage undergoing OA, such as focal calcification and the
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increased expression of hypertrophic markers COL10A1 and
MMP13 (Sun et al., 2010; Kiraly et al., 2017). This suggests
that MFC may play an active role in the pathogenesis of KOA
alongside knee articular chondrocytes, making MFC a reasonable
cell option to model OA in-vitro.

Taken together, the goal of this study was to evaluate the
effects of mechanical loading and unloading via CHP and SMG,
respectively, and determine sex-dependent differences in the
modulation of OA-related characteristics in bioengineered
human meniscus tissues. This would serve as an OA disease
model in-vitro to determine the cellular and molecular profiles
responsible for the sex-dependent incidence of the disease.

MATERIALS AND METHODS

The experiment is outlined in Figure 1. Most culture methods
and assays were performed identically to those described in
previous work (Liang et al., 2017; Szojka et al., 2021a; Szojka
et al., 2021b).

Ethics Statement
Human non-osteoarthritic inner meniscus samples were
collected from patients undergoing partial meniscectomies at
the University of Alberta Hospital and Grey Nuns Community

Hospital in Edmonton. The ethics of this study was approved by
the Health Research Ethics Board of the University of Alberta.
Non-identifying donor information is listed in Table 1.

Cell and Tissue Culture
Meniscus fibrochondrocytes (MFCs) were isolated from inner
meniscus tissue samples by type II collagenase (0.15% w/v of
300 units/mg;Worthington) mediated digestion, followed by 48 h
recovery. After recovery, cells were replated in tissue culture flasks
at the density of 104 cells/cm2 and expanded for 1 week in high
glucose Dulbecco’s modified Eagle’s medium (HG-DMEM)

FIGURE 1 | Experiment outlines. Created with Biorender.com (2021).

TABLE 1 | Non-identifying donor information.

Sex Donor number Age Population doubling (PD)

Female F1 33 2.687
F2 44 2.380
F3 30 2.774
F4 28 3.860

Male M1 19 3.349
M2 45 2.699
M3 22 3.247
M4 35 2.149
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supplemented with 10% v/v heat-inactivated fetal bovine serum
(FBS), 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid (HEPES), 100 U/mL penicillin, 100 μg/ml streptomycin
and 2 mM L-glutamine (PSG; Life Technologies, ON, Canada),
5 ng/ml of FGF-2 (Neuromics, MH, United States, catalogue #:
PR80001) and 1 ng/ml of TGF-β1 (ProSpec, catalogue #: CYT-
716) for 1 week

Expanded MFCs were resuspended in defined chondrogenic
medium (HG-DMEM supplemented with HEPES, PSG, ITS +1
premix (Corning, Discovery Labware, Inc, MA, United States),
125 μg/ml of human serum albumin, 100 nM of dexamethasone,
365 μg/ml ascorbic acid 2-phosphate, 40 μg/ml of L-proline, and
10 ng/ml of TGF-β3) and seeded onto bovine type I collagen
scaffolds (dimensions: 6 mm diameter, 3.5 mm height; Integra
LifeSciences, NJ, United States) at the density of 5×106 cells/cm3.
The cell-containing constructs were precultured statically in
standard 24-well plates with 2.5 ml/construct of the
chondrogenic medium described above for 2 weeks; media
changes occurred once per week.

Mechanical Stimulation
After the 2-weeks preculture, tissue constructs were randomly
assigned to a mechanical stimulation group. For the static control
group, constructs were placed in a tissue culture tube (Sarstedt,
Germany). For the mechanical unloading group, a commercially
available bioreactor (RCCS-4; Synthecon Inc.) was used to culture
tissue constructs in a simulated microgravity (SMG)
environment. The rotation speed was adjusted over time to
maintain constructs in suspension (30 rpm from day 1–2;
34 rpm from day 3–7; 37 rpm from day 8–13; 40 rpm from
day 14–21). For the mechanical loading group, cyclic
hydrostatic pressure (CHP) was applied to tissue constructs
using a MechanoCulture TR (CellScale, Canada). Constructs
were loaded 1 h per day and daily with 0.9 MPa cyclic
hydrostatic pressure at the frequency of 1 Hz. When not
loaded, tissue constructs were cultured in 6-well plates under
static conditions. All experimental groups were cultured with
chondrogenic medium with supplemented TGF-β3 growth
factor, and the volume of medium per tissue construct
(approximately 6.5 ml per tissue construct per week) was
equivalent among the different groups. The mechanical
stimulation was applied for 3 weeks, and medium change was
performed once a week. At the end of the 3-weeks treatment, the
CHP group was allowed 30 min of rest following the last loading
event for gene expression changes to occur. Tissue replicates for
RNA extraction were placed in TRIzol reagent and frozen at
−80°C. Constructs from SMG and static control groups were
harvested at approximately the same time.

Histology, Immunofluorescence, and
Biochemical Analysis
The wet weight of tissue constructs (n = 5–8 replicates) intended
for histology and biochemical analysis was recorded at the end
of the experiment. Constructs (n = 2 replicates, only one
replicate is presented) were then fixed in 1 ml of 10% v/v
buffered formalin (Fisher Scientific, MA, United States)

overnight at 4°C, dehydrated, embedded in paraffin wax, and
sectioned at 5 µm thickness. Tissue sections approximately from
the middle region of the constructs were stained with Safranin-
O (Sigma-Aldrich, United States, #S2255-25G), Fast Green FGF
(Sigma-Aldrich, United States, #F7258-25G), and Haematoxylin
(Sigma-Aldrich, United States, #MHS32-1L) for histological
examination of cell morphology and extracellular matrix
deposition. Briefly, for immunofluorescence staining, tissue
sections were labelled with primary antibody against human
type I, type II, and type X collagen (1:200 dilution of anti-human
rabbit type I collagen, Cedarlane, Canada, #CL50111AP-1; 1:200
dilution of mouse anti-human type II collagen, Developmental
Studies Hybridoma Bank, United States, #II-II6B3; 1:100
dilution of rabbit anti-human type X collagen, Abcam, UK,
#ab58632) and incubated overnight at 4°C (Anderson-Baron
et al., 2021). On the next day, the secondary antibody (1:200
dilution of goat anti-rabbit, Abcam, UK, #ab150080; 1:200
dilution of goat anti-mouse, Abcam, UK, #ab150117) and
DAPI (Cedarlane, Canada) was applied to visualize the
stained components.

Biochemical assays quantified the total content of
glycosaminoglycan (GAG) and DNA. Tissue constructs (n = 4
replicates for donors F1-3 and M1-3; n = 3 replicates for donors
F4 and M4) were digested overnight with proteinase K (Sigma-
Aldrich, United States, #P2308) at 56°C. GAG content was
measured with a 1,9-dimethyl methylene blue assay (DMMB,
Sigma-Aldrich, United States, #341088). Chondroitin sulphate
(Sigma-Aldrich, United States, #C8529) was used to generate the
standard curve. DNA content was measured with a CyQuant cell
proliferation assay kit (ThermoFisher Scientific, United States,
#C7026) with different dilutions of supplied bacteriophage λ
DNA as the standard.

Mechanical Property Assessment
Detailed sequence of the mechanical testing protocol is included
in Supplementary Material S3. A stepwise stress relaxation test
(Supplementary Figure S1) was used to assess the mechanical
properties of tissue constructs (n = 2 replicates for donor F1-3 and
M1-3) with the BioDynamic 5210 system (TA Instruments,
United States). The cross-section areas of tissue constructs
were measured before mechanical tests. For the test, constructs
were placed between two platens and the initial height was
determined by bringing tissue to near contact with platens.
Constructs were first preconditioned by 15 cycles of sine wave
dynamic loading with the amplitude of 5% tissue height at the
frequency of 1 Hz. The following stress relaxation test consisted
of 3 incremental strain steps. In the first two steps, the constructs
were subjected to a 10% strain ramp at the rate of 50% strain/sec
followed by 5 min relaxation under constant strain. In the third
step, the relaxation time was adjusted to 10 min. All tested
constructs were able to reach equilibrium within the given
relaxation period. Force was recorded as a function of time,
and stress was calculated by normalizing force to construct’s
cross-section area. The peak modulus was calculated by dividing
the maximum stress measured immediately after each strain
increment by the strain increment. The strain was applied in
10% increments up to a maximum of 30% strain.
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RNA Extraction, qPCR, and
Next-Generation Sequencing
Tissue constructs (n = 2 for donors F1-3 and M1-3; n = 3
replicates for donors F4 and M4) intended for transcriptome
analysis were preserved in Trizol (Life Technologies,
United States) immediately upon harvesting and stored at
−80°C until RNA extraction. RNA was extracted and purified
from ground constructs using PuroSPIN Total DNA Purification
KIT (Luna Nanotech, Canada) following the manufacturer’s
protocol. RNA was reversely transcribed into cDNA, and
genes of interest were amplified by quantitative real-time
polymerase chain reaction (RT-qPCR) using specific primers
(Supplementary Table S1). The expression level of genes of
interest was normalized to chosen housekeeping genes
(i.e., B-actin, B2M, and YWHAZ) based on the coefficient of
variation (CV) and M-value as measures of reference gene
stability (Hellemans et al., 2007), and the data was presented
using the 2-ΔΔCT method (Livak and Schmittgen, 2001;
Schmittgen and Livak, 2008). Next-generation RNA-
sequencing was performed on the Illumina NextSeq 500
platform with paired-end 42 bp × 42 bp reads, and FastQ files
were obtained for further bioinformatics analysis.

Bioinformatics
Next-generation sequencing data were analyzed with Partek®
Flow® software (Version 10.0.21.0302, Copyright© 2021, Partek
Inc, St. Louis, MO, United States). Raw input reads were first
trimmed from the 3′ end to achieve a quality score beyond 20 and
then aligned to the reference human genome hg38 using the
STAR 2.7.3a aligner. Aligned data were quantified to a transcript
model (hg38-RefSeq Transcripts 94–2020–05–01) using the
Partek E/M algorithm. Genes with maximum read counts
below 50 were filtered out to reduce noise. Quantified and
filtered reads were normalized in sequential order using the
Add: 1.0, TMM, and Log 2.0 methods. Statistical analysis was
performed using analysis of variance (ANOVA) for biological sex
and treatment. Within each sex, the donors were assigned as a
random variable. Differentially expressed genes (DEGs) for each
comparison were determined by p-values, adjusted p-values
(q-values), and fold change (FC). Gene ontology enrichment,
pathway enrichment, and the visualization of DEGs using Venn
diagrams were all conducted in Partek.

Statistical analysis
Statistical analyses were performed in Prism 9 (GraphPad) and
Partek® Flow® software. The statistical test used, and p-values
and q-values are indicated in the respective figure legends. For
analysis in Figure 3B, paired t-test were used between SMG and
CHP groups within each sex and unpaired t-test were used
between female and male groups within each mechanical
treatment. For analysis in Figure 4A, a repeated
measurement one-way ANOVA with Geisser-Greenhouse
correction was used to compare mechanical treatment groups
within each sex and a Tukey’s multiple comparison test was used
to find the adjusted p-value between each comparison. Within
each mechanical treatment, unpaired t-tests between female and

male groups were used. For the male cohort, no statistical
analysis was conducted for the SMG group in contraction
due to limited data points. For analysis in Figure 4B,
repeated measurement one-way ANOVA with Geisser-
Greenhouse correction was used to compare different strain
levels within each mechanical treatment group and a Tukey’s
multiple comparison test was used to find the adjusted p-value
between each comparison. Within each strain level, paired
t-tests were used to compare CHP and SMG groups. For the
male cohort, no statistical analysis was conducted for the SMG
group due to limited data points.

RESULTS

Dataset Overview
Transcriptome analysis included the expression profiles of 8
donors (4 females and 4 males), each individually exposed to
static, mechanical loading (CHP), and mechanical unloading
(SMG) conditions. After preprocessing as described in the
methods, 13,361 genes were preserved for downstream analysis.

Transcriptome Profiles of the Engineered
Meniscus to CHP and SMG
We first analyzed the overall effect of mechanical loading and
unloading on the transcriptome profiles of all donors combined.
Summarized results are shown in Figure 2. Fold-change of gene
expression levels in the CHP and SMG groups were calculated by
normalizing to its corresponding static group. Differentially
expressed genes (DEGs) were defined as genes with expression
fold-change over 2 and q-value less than 0.05. Mechanical loading
from CHP significantly modulated 236 genes, while mechanical
unloading from SMG significantly modulated 388 genes. The
overlay of DEGs between the two mechanical stimulation groups
showed only a small proportion of common DEGs (52 genes),
whereas the majority of DEGs were uniquely modulated by CHP
(184 genes) and SMG (336 genes) (Figure 2A). These results
indicated that CHP and SMG distinctly modulate the
transcriptome profile of donors in this study.

The most significant Gene Ontology (GO) terms enriched by
the DEGs for CHP and SMG were examined next (Figure 2B).
Although the top 3 most significantly enriched Gene Ontology
(GO) in biological components were identical for CHP and SMG
(“extracellular space,” “extracellular region,” and “extracellular
matrix”), the included gene expression profiles were different
between the treatment groups. The top 20 genes with the highest
absolute fold change participating in the ECM relevant activities
in CHP and SMG groups are listed in Table 2. For CHP, most of
the genes are signalling molecules or proteins associated with
ECM structure remodelling. For SMG, many of the strongly
regulated genes played a more general role, such as various
growth factors coding genes: IGFBP1, TGFA, and NGF.
Among the top regulated genes, only NETO1 and OLFML2A
were common between CHP and SMG; these two genes were
upregulated in both treatment groups.
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FIGURE 2 | Effect of CHP and SMG on the transcriptome profile alteration of engineered meniscus tissues. (A)Overlap of differentially expressed genes (DEGs) by
CHP and SMG. (B) Top non-redundant Gene Ontology (GO) terms enriched by DEGs of CHP and SMG. DEGs were identified based on all 8 donors. Top significant
enriched GO terms were selected by p-value and plotted to the number of genes included in each term.

TABLE 2 | Top 20 genes with the highest absolute fold change participating in the ECM relevant activities in CHP and SMG groups as compared to static controls.

Gene Description p-value:
CHP vs static

Fold change: CHP
vs static

EREG Epiregulin 1.20E-06 19.10
NET O 1 Neuropilin And Tolloid Like 1 2.53E-08 7.98
MMP3 Matrix metallopeptidase 3 1.22E-06 6.47
MMP10 Matrix metallopeptidase 10 1.14E-03 4.54
SBSPON Somatomedin B And Thrombospondin Type 1 Domain Containing 7.88E-04 3.97
CCL2 C-C Motif Chemokine Ligand 2 8.18E-07 3.62
UCN2 Urocortin 2 5.86E-05 3.61
PLA2G2A Phospholipase A2 Group IIA 7.00E-04 3.60
OLFML2A Olfactomedin Like 2A 1.15E-03 3.45
CXCL13 C-X-C Motif Chemokine Ligand 13 1.00E-03 3.40

SFRP2 Secreted Frizzled Related Protein 2 1.17E-05 −4.07
ADM Adrenomedullin 1.34E-06 −4.49
CPXM1 Carboxypeptidase X, M14 Family Member 1 1.95E-04 −4.53
SELENOP Selenoprotein P 3.90E-03 −5.82
FAM20A FAM20A Golgi Associated Secretory Pathway pseudokinase 2.24E-03 −5.92
MNDA Myeloid Cell Nuclear Differentiation Antigen 4.02E-03 −5.99
SCUBE1 Signal Peptide, CUB Domain And EGF Like Domain Containing 1 3.28E-03 −7.06
SFRP4 Secreted Frizzled Related Protein 4 6.83E-04 −8.17
ODAPH Odontogenesis Associated Phosphoprotein 3.30E-03 −9.07
APOE Apolipoprotein E 3.30E-07 −14.78

Gene Description p-value:
SMG vs static

Fold change:
SMG vs static

IGFBP1 Insulin Like Growth Factor Binding Protein 1 5.49E-04 15.94
OLFML2A Olfactomedin Like 2A 2.34E-05 6.34
NET O 1 Neuropilin And Tolloid Like 1 1.26E-06 5.00
ADAMTS14 ADAM metallopeptidase With Thrombospondin Type 1 Motif 14 8.34E-04 3.72
PCSK9 Proprotein convertase Subtilisin/Kexin Type 9 2.20E-03 3.48
VSTM2L V-Set And Transmembrane Domain Containing 2 Like 3.03E-04 3.47
BMPER BMP Binding Endothelial Regulator 1.91E-04 3.45
NTM Neurotrimin 1.30E-04 3.40
HMOX1 Heme oxygenase 1 5.06E-08 3.38
CAPG Capping Actin Protein, Gelsolin Like 2.94E-07 3.22

LEP Leptin 8.50E-04 −4.81
R3HDML R3H Domain Containing Like 8.67E-04 −4.93
APLN Apelin 8.68E-07 −4.94
STC1 Stanniocalcin 1 8.99E-05 −5.41
NGF Nerve Growth Factor 7.68E-05 −5.42
TGFA Transforming Growth Factor Alpha 8.23E-04 −5.47
VEGFA Vascular Endothelial Growth Factor A 6.33E-06 −5.68
DSCAML1 DS Cell Adhesion Molecule Like 1 3.09E-03 −6.17
ADAMTSL2 ADAMTS Like 2 4.74E-04 −7.23
PDE4C Phosphodiesterase 4C 2.48E-04 −8.73
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Sex-Dependent Response of Engineered
Meniscus to CHP and SMG
Next, we sought to explore the sex-dependent differences in the
engineered meniscus responses to CHP and SMG. Therefore, we
separated donors into female and male cohorts and evaluated
several factors involved in normal cartilage physiology and OA-
related alterations. The GAG and type II collagen content are
often used to characterize the degree of chondrogenesis for
cartilage tissues, and higher content is linked to higher
chondrogenic capacity. Type X collagen, on the other hand, is
a hypertrophic marker that suggests an OA-like phenotype. The
histological staining for GAG by Safranin-O and
immunofluorescence labelled type II collagen (Figure 3A)
showed highly variable chondrogenic capacities within the
female and male cohorts in the baseline static control group.
Regardless, tissue constructs exposed to CHP and SMG showed
an increase in type II collagen content, with CHP having a
generally more pronounced effect. Type X collagen staining
intensity was also modulated by mechanical stimulations
compared to baseline. A clear increase in type X collagen
content was observed in the SMG group, while the CHP
group showed comparable type X collagen intensity as the
baseline.

To further pursue sex matters in responses to CHP and SMG,
the gene expression of selected markers was examined by RT-
qPCR (Figure 3B). In addition to COL1A2, COL2A1, and
COL10A1, the transcription factor SOX9 and cartilage-specific
proteoglycan core protein ACAN were also quantified. The
observed increase of type II collagen level in the CHP group
was confirmed quantitatively by gene expression results. The
average COL2A1 expression level was upregulated 215.9-fold in
the CHP group for the female cohort compared to a 21.4-fold
increase in CHP for the male cohort. For ACAN, SOX9, and
COL1A2, the CHP group had a higher average fold-change than
the SMG group, but the differences between the sexes were not

significant. For COL10A1, the average fold-change of expression
level was comparable between the CHP and SMG groups for both
females and males. However, when taking individual female
donors into account, only female donor 2 showed a significant
increase in COL10A1 expression level in CHP (8.9-fold)
compared to SMG (5.7-fold) group. Generally, CHP, as
compared to SMG, reduced COL10A1 expression level for the
female cohort. The RT-qPCR data were consistent with the
histological observations, providing additional evidence on the
cellular andmolecular influence of CHP and SMG. The RT-qPCR
data also agreed with the RNA-sequencing data, thereby
providing additional validation for the observed trends
(Supplementary Figure S2).

Sex-dependent differences were also assessed in other related
aspects (Figure 4A). Quantitative GAG/DNA measurements
showed that CHP increased while SMG decreased the GAG
production per MFC. The tissue wet weights showed similar
trends as the GAG/DNA ratios; CHP tissues weighed more, and
SMG tissues weighed less on average than the static control
groups. This difference in tissue wet weight was significant in
only the female cohort between treatments. Further, at the end of
the mechanical stimulation period, tissue constructs from all
three experimental groups contracted to certain degrees. The
percentage of contraction (percentage reduction in area) was
quantified, and comparison among groups showed that SMG
tissues had increased contraction compared to the CHP tissues.
The contraction plot is presented as the percentage contracted in
Supplementary Figure S4.

The differences among stimulation groups were significant
within the female and male cohorts while also significant between
female CHP and male CHP groups. For the mechanical
properties of tissue constructs, SMG groups showed higher
peak modulus at all tested strain levels for both sexes as
expected based on contraction results, and the differences of
the average fold-change decreased with increasing strain level. No

FIGURE 3 | Effect of CHP and SMG on the chondrogenic and hypertrophic differentiation potential of female and male donors. (A) Histological and
immunofluorescent staining analysis. (B) Regulation of selected genes expression level. Gene expression level of individual samples were measured by RT-qPCR. Fold
change of expression level was calculated by normalizing expression level in the CHP or SMG group to its corresponding static group. Scale bar: 100 μm *Represents
p < 0.05.
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significant differences were observed between female and male
cohorts (Figure 4B).

To better understand the relationship among all factors of
interest and the sex-dependent differences, a Pearson correlation
network (Figure 4C) was generated for both the female and male
cohorts with data from all three treatment groups. Some
observations mentioned above were further confirmed with
correlation coefficients, such as the positive correlation
between GAG/DNA and wet weight, the negative correlation
between GAG/DNA and contraction, and the positive correlation
between SOX9 and COL2A1 expression levels. Overall, the
correlation analysis yielded different patterns between the
female and male cohorts, especially for two examined genes,
ACTA2 and TAGLN, that are characteristic of the contractile
phenotype in dedifferentiated articular chondrocytes compared
to the other factors (Parreno et al., 2017). The level of contraction
was positively correlated with ACTA2 and TAGLN expression
levels in both female and male groups, confirming their
indication for contraction levels. However, the female cohort
showed differently a mostly strong negative correlation between
the contractile genes and the rest of the factors compared to the
male cohort. ACTA2 and TAGLN activity is associated with
cytoskeletal composition and structure (Killion et al., 2017;
Tang and Gerlach, 2017), and thus results may suggest sex-
dependent differences of cytoskeletal activity in response to
mechanical stimulation.

Comparison of Female and Male
Transcriptome Response to CHP and SMG
Finally, we investigated the sex-dependent difference in the global
transcriptome profile in response to mechanical loading and
unloading. Consistent with the DEGs analysis for all donors
combined, CHP and SMG uniquely regulated a large
proportion of genes within each sex group (Figure 5A). We
identified the top 25 enriched KEGG pathways for female and
male tissues under CHP and SMG using the corresponding DEG
sets (Figure 5B). For CHP, the most enriched KEGG pathway for
both female and male groups was “mineral absorption.” Other
relevant terms, such as “IL-17 signalling pathway”, “HIF-1
signalling pathway”, and “glycosaminoglycan biosynthesis,”
were also observed for both sex groups. Although some of the
enriched pathways were shared, a distinct gene profile with
different magnitudes and sometimes the direction of
modulation was observed for each sex group (Table 3). For
example, the NOTUM gene in the Wnt-signalling pathway was
significantly upregulated by 6.7-fold in CHP for the female cohort
and only 1.8-fold in CHP for the male cohort. A large proportion
of the top 25 KEGG pathways enriched by SMG overlapped with
the pathways in CHP, but the corresponding gene profiles were
different. For example, SMG did not significantly regulate the
NOTUM, and it showed the opposite direction between female
and male cohorts. The MMP3 gene was downregulated by SMG
but upregulated by CHP. Interestingly, in addition to the

FIGURE 4 | Effect of CHP and SMG on chondrogenesis related factors of female and male donors (A) Biochemical and morphological analysis; contraction is
calculated as the % of area lost as compared to the original area. No statistical analysis was conducted for the contraction data with the male SMG group due to limited
data points (B)Mechanical property analysis. No statistical analysis was conducted for the mechanical property data with the male SMG group due to limited data points
(C) Pearson correlation heatmap of analyzed factors. Fold change value of characterized factors was calculated by normalizing the CHP or SMG group to its
corresponding static group. Heatmap was generated by calculating the pairwise Pearson correlation coefficient of included factors. *Represents p < 0.05.
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OA-related KEGG pathways, the “fluid shear stress and
atherosclerosis” pathway was enriched for both female and
male cohorts, suggesting an effect of mechanical stimulation
from CHP and SMG on engineered meniscus constructs.

In relation to mechanobiology of the meniscus, we
investigated the transcriptome profile changes of various
mechanosensitive molecules such as TRPV1/4, PIEZO1,
TMEM63A/B/C, and RUNX2 (McNulty and Guilak, 2015;
Servin-Vences et al., 2017; Agarwal et al., 2021; Hwang et al.,
2021; Lee et al., 2021). Furthermore, the mechanotransduction
function of FOSB in MFCs (Szojka et al., 2021a) was reported by
Szojka et al., and its function in the IL-17 signalling pathway was
well demonstrated (Benderdour et al., 2002). Finally, Vyhlidal
et al. recognized the potential of caveolae molecules such as
CAV1/2 in the mechanotransductive mechanism of the meniscus,
but this needs to be further verified in future studies (Vyhlidal and
Adesida, 2021). The transcriptome changes are summarized in
Table 4. Within our dataset, only CAV1, CAV2, and FOSB are
significant by q-value for loading regime comparison and sex-
based comparison. CAV2 was regulated in the opposite direction
by CHP and SMG. CHP upregulated FOSB by 49.5-fold
compared to 3.4-fold by SMG. The difference was even larger
in female tissues (137.8-fold by CHP and 2.8-fold by SMG), and
in comparison, the fold change of FOSB expression was similar by
CHP and SMG for male tissues (9.7-fold and 3.7-fold). Other
mechanosensitive molecules were not significantly modulated
from the treatments. The transcriptome profile changes
suggest sex-dependent differences in the mechanotransduction

mechanisms as well as varying capabilities to sense cytoskeletal
structural changes.

DISCUSSION

Currently, there is no existing model to reflect the physiological
mechanism of OA holistically, but several in-vitro and in-vivo
models have been developed to answer questions regarding the
mechanisms of OA (Cope et al., 2019). This study aimed to
evaluate the effects of mechanical loading and unloading via CHP
and SMG, respectively, on the OA-related profile changes of
engineered meniscus tissues and explore biological sex-related
differences. This can serve as an in-vitro model to investigate the
cellular and molecular profiles responsible for the sex-dependent
incidence of OA disease.

Cartilage is a highly mechanosensitive tissue, and appropriate
levels of mechanical stimulation are crucial for homeostasis and
healthy cartilage development. Mechanical stimuli are
transmitted by the pericellular matrix (PCM) (Melrose et al.,
2006; Youn et al., 2006) to the chondrocyte surface and sensed by
mechano-receptors, triggering a cascade of downstream activities
(Zhao et al., 2020). The importance of mechanical loading under
normal gravity environments has been demonstrated by studies
examining the protective effects of moderate loading against
tissue degradation as well as investigating the unwanted
consequences from unloading. From several in-vitro and in-
vivo models, mechanical loading has been shown to attenuate

FIGURE 5 | Transcriptome response of female and male donors to CHP and SMG. (A)Overlap of DEGs of female and male donors exposed to CHP and SMG. (B)
Top enriched KEGG pathways by identified DEGs. KEGG terms were selected by p-value and plotted to the enrichment score.
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inflammatory cytokine-induced expression of matrix-degrading
enzyme (Ohtsuki et al., 2019), upregulating the content of
sulphated glycosaminoglycan (sGAG), aggrecan, cartilage
oligomeric matrix protein, type II collagen, and lubricin
(PRG4) (Antunes et al., 2020), and modulating relevant
pathways such as the HIF-1 (Huang et al., 2017) and IL-4 (He
et al., 2019) signalling pathways. On the contrary, prolonged
mechanical unloading by space flight has been shown to

accelerate cartilage degeneration (Herranz et al., 2013;
Fitzgerald, 2017; Fitzgerald et al., 2019). Although several
studies suggested that SMG was beneficial for preserving a
chondrogenic phenotype through induction of 3D aggregates
from monolayer cultures (Aleshcheva et al., 2015; Wuest et al.,
2018; Wehland et al., 2020) and promoted cartilaginous
components deposition for scaffold cultures (Freed and
Vunjak-Novakovic, 1997), the degree of hypertrophic

TABLE 3 | Key enriched KEGG pathways and associated differentially expressed genes (DEGs) in CHP and SMG groups as compared to static controls within female and
male donor cohorts. *q < 0.05, **q < 0.01, ***q < 0.001 represent statistical difference of the two groups in each fold change value.

Gene Description Fold change: CHP/Static Fold change: SMG/Static

Female Male Combined Female Male Combined

KEGG: Mineral absorption

FTH1 Ferritin Heavy Chain 1 2.18* 3.47* 1.70* 3.47* 2.32* 2.77***
HMOX1 Heme oxygenase 1 2.94* 3.51** 2.83*** 3.51** 3.28** 3.38***
MT1E Metallothionein 1E 2.79** 1.96* 2.48*** 1.96* −1.09 1.32
MT1G Metallothionein 1G 8.25* 3.29 9.38** 3.29 1.11 2.21
MT1M Metallothionein 1M 2.59** 1.89* 2.20*** 1.89* −1.35 1.14
MT2A Metallothionein 2A 2.59* 1.57 2.79*** 1.57 1.18 1.35
SLC30A1 Solute Carrier Family 30 Member 1 2.21** 2.03* 1.70** 2.03* 1.23 1.57**
SLC8A1 Solute Carrier Family 8 Member A1 −2.13 1.15* −1.44 1.15* −3.13* −2.91**

KEGG: Wnt signaling pathway

FOSL1 FOS Like 1, AP-1 Transcription Factor Subunit 2.99* 3.88** 3.44*** 1.16 1.88 1.53
FZD2 Frizzled Class Receptor 2 −2.22* −1.25 −1.68* −1.48 −1.12 −1.30
NOTUM Notum, Palmitoleoyl-Protein carboxylesterase 6.71* 1.77 2.97* 1.17 −1.94 −1.48
SFRP2 Secreted Frizzled Related Protein 2 −6.22* −3.03* −4.07** −2.55 −3.15 −2.82*

KEGG: HIF-1 signaling pathway

EGLN3 Egl-9 Family Hypoxia Inducible Factor 3 1.00 2.49 1.58 −4.24* −5.75* −4.72***
EN O 2 Enolase 2 −1.24 1.48 1.11 −2.96* −2.51 −2.74**
GAPDH Glyceraldehyde-3-Phosphate dehydrogenase −1.14 1.24 1.06 −2.27* −2.21 −2.24**
HK2 Hexokinase 2 -1.61 1.03 −1.21 −2.20* −2.66* −2.41**
HMOX1 Heme oxygenase 1 2.94* 2.74* 2.83*** 3.51** 3.28** 3.38***
LDHA Lactate dehydrogenase A 1.21 1.31 1.26 −1.94* −2.04* −1.98***
PDK1 Pyruvate dehydrogenase kinase 1 −1.28 −1.13 −1.20 −2.89** −3.43** −3.11***
PFKFB3 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3 −1.80 −1.15 −1.44 −2.33* −2.34* −2.33**
PGK1 Phosphoglycerate kinase 1 1.17 1.23 1.20 −2.04* −2.24* −2.13***
TFRC Transferrin Receptor 2.80** 1.36 1.92** 2.55** 2.22* 2.35***
VEGFA Vascular Endothelial Growth Factor A −1.57 −1.11 −1.33 −5.48** -5.95* −5.68***

KEGG: IL-17 signaling pathway

CCL2 C-C Motif Chemokine Ligand 2 3.85* 3.48** 3.62*** 3.51** 1.41 2.17**
FOSB FosB Proto-Oncogene, AP-1 Transcription Factor Subunit 137.8* 9.70 49.48** 2.82 3.66 3.40
FOSL1 FOS Like 1, AP-1 Transcription Factor Subunit 2.99* 3.88** 3.44*** 1.16 1.88 1.53
MAPK13 Mitogen-Activated Protein kinase 13 −1.51 1.31 −1.07 −3.05* −3.01* −3.03***
MMP13 Matrix metallopeptidase 13 1.56* 1.38 1.51 1.64 2.57* 1.89**
MMP3 Matrix metallopeptidase 3 10.5** 4.36 6.47*** −1.80 −3.99* −2.82**

KEGG: Fluid Shear stress and atherosclerosis

CCL2 C-C Motif Chemokine Ligand 2 3.85* 3.48** 3.62*** 3.51** 1.41 2.17**
HMOX1 Heme oxygenase 1 2.94** 2.74** 2.83*** 3.51** 3.28** 3.38***
MAP3K5 Mitogen-Activated Protein kinase kinase 5 −1.37 −1.39 −1.38 2.38* 1.49 1.87**
MAPK13 Mitogen-Activated Protein kinase 13 −1.51 1.31 −1.07 −3.05* −3.01* −3.03***
MGST1 Microsomal Glutathione S-Transferase 1 2.21** 1.40 1.65** 1.86* 1.25 1.43**
NQ O 1 NAD(P)H Quinone dehydrogenase 1 3.83*** 2.40** 2.88*** 4.04*** 2.42** 2.97***
PLAT Plasminogen Activator, Tissue Type 1.51 2.27 1.88* 2.51* 2.43* 2.47**
PRKAA2 Protein kinase AMP-Activated Catalytic Subunit Alpha 2 −1.37 1.44 1.03 −4.63* -2.90 −3.70**
VEGFA Vascular Endothelial Growth Factor A −1.57 −1.11 −1.33 −5.48** −5.95* −5.68***
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differentiation was not investigated in these studies. Through
regulation of key genes and molecular pathways, SMG was also
reported to increase activities associated with cartilage catabolism
(Stamenković et al., 2010;Wang et al., 2010; Laws et al., 2016) and
promoted hypertrophic differentiation of chondrocytes (Jin et al.,
2013; Weiss et al., 2017).

In addition to cartilage, the meniscus also plays a critical role
in the biomechanics of the knee joint. Evidence has shown that
the role of meniscus fibrochondrocytes (MFCs) in response to
mechanical signals affects the physiological, pathological, and
repair response of the meniscus (McNulty and Guilak, 2015). The
PCM ofMFCs is also involved in mechanotransduction, although
it may play a protective role against larger stresses and strains
(Gupta and Haut Donahue, 2006). Various in-vivo studies have
documented that mechanical stimulation can drive both anti- and
pro-inflammatory responses inMFCs (Ferretti et al., 2005; Killian
et al., 2014), as well as the detrimental effects of mechanical
unloading from joint immobilization on meniscus development,
function, and repair (Videman et al., 1979; Klein et al., 1989;
Anderson et al., 1993; Djurasovic et al., 1998; Mikic et al., 2000;
Bray et al., 2001). Additionally, several in-vitro studies have
shown the anabolic effect of mechanical loading on MFCs
with enhanced meniscus ECM components like ACAN
expression and collagens and mechanical properties
(Aufderheide and Athanasiou, 2006; Puetzer et al., 2012).
Finally, there have been various in-vitro meniscus repair
models that utilized mechanical loading to suppress IL-1
mediated increases in MMP activity, enhance sGAG
production, and increase integrative strength of the engineered
tissue constructs (McNulty et al., 2007; McNulty and Guilak,
2008;McNulty et al., 2010; Riera et al., 2011; McNulty and Guilak,
2015).

Consistent with these previous reports, our results showed that
mechanical loading via CHP increased the deposition of type II
collagen and aggrecan, supported by immunofluorescence
staining and gene expression analysis. In addition, the
Safranin-O staining and biochemical quantification of GAG
production per cell confirmed that CHP increased the
chondrogenic potential of meniscus MFCs. As expected, the
wet weight of engineered constructs in the CHP group was the
highest among the three treatment groups since the GAG is a

major water-binding component of cartilage (KIANI et al., 2002).
The ratio of COL2A1 to COL1A2 has also been used to evaluate
chondrogenic capacity (Wuest et al., 2018; Wehland et al., 2020),
and in our results, CHP substantially increased the COL2A1/
COL1A2 ratio compared to SMG groups. Although upregulation
of type II collagen deposition and COL2A1 expression was
observed in the SMG groups compared to static controls, the
magnitude of upregulation was not less than in the CHP groups.
The GAG/DNA ratio of the SMG group was also lower than static
controls in addition to a stronger intensity of type X collagen
staining. Taken together, our data highlights the detrimental
effect of SMG on the chondrogenic capacity of the engineered
meniscus and suggests that mechanical unloading increases the
hypertrophic differentiation of MFCs, driving them to display
OA-like characteristics.

To the best of our knowledge, this is one of the first studies to
investigate the effect of mechanical loading and unloading on
cartilage models by examining global transcriptome profile
alterations. The ECM of chondrocytes is crucial for regulating
key functions through receptor-mediated matrix-cell
interactions. The composition of the ECM and the bound
signalling molecules largely influences the chondrogenic
capacity of embedded chondrocytes (Gao et al., 20142014). By
overlaying the DEGs, we found that CHP and SMG regulated
MFC functions through largely different mechanisms. As listed in
Table 2, several Wnt-signaling pathway-related genes were
strongly regulated by CHP, in addition to various matrix
remodelling enzymes. But for SMG, the genes with the highest
fold-change functioned in more general ways, such as the several
growth factors encoding genes identified to regulate general
development processes. The KEGG pathway analysis also
showed that several chondrogenesis- and OA-related pathways
such as mineral absorption, Wnt-signalling pathway, HIF-1
signalling pathways, and IL-17 signalling pathway were
enriched by both CHP and SMG. However, the expression
profile of related genes in terms of magnitude and direction
was quite different (Table 3). It is worth mentioning that no sex
hormone-related pathways were present in the top enriched
pathways. Thus, the observed sex-dependent differences are
independent of differences between sex-related hormones.
Taken together, the comparative transcriptome analysis

TABLE 4 |Relevant mechanosensitive molecules in CHP and SMG groups as compared to static controls within female andmale donor cohorts. *q < 0.05, **q < 0.01, ***q <
0.001 represent statistical difference of the two groups in each fold change value.

Gene Description Fold change: CHP/Static Fold change: SMG/Static

Female Male Combined Female Male Combined

CAV1 Caveolin 1 1.92* 1.51 1.68** 1.40 1.40 1.40*
CAV2 Caveolin 2 1.42* 1.28 1.34** 1.07 −1.15 −1.04
FOSB FosB Proto-Oncogene, AP-1 Transcription Factor Subunit 137.8* 9.70 49.48** 2.82 3.66 3.40
PIEZO1 Piezo Type Mechanosensitive Ion Channel Component 1 1.19 1.41 1.30 -1.02 1.09 1.04
RUNX2 RUNX Family Transcription Factor 2 1.13 −1.13 1.02 −1.14 1.07 −1.04
TMEM63A Transmembrane Protein 63A −1.05 −1.13 −1.09 1.15 1.22 1.19
TMEM63B Transmembrane Protein 63B 1.04 1.18 1.11 1.25 1.38 1.32
TMEM63C Transmembrane Protein 63C 1.43 1.42 1.43 −1.24 −1.20 −1.22
TRPV1 Transient Receptor Potential Cation Channel Subfamily V Member 1 −1.62 −1.21 −1.37 −1.16 −1.03 −1.08
TRPV4 Transient Receptor Potential Cation Channel Subfamily V Member 4 1.25 1.02 1.11 −1.10 −1.16 −1.13
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suggested a distinct effect of CHP and SMG on regulating
chondrogenesis, but further investigations are needed to
determine the specific underlying mechanisms.

The cellular and molecular mechanisms behind the well-
documented sex discrepancy in OA incident rates are poorly
understood. Many factors are believed to contribute to the higher
incidence and severity of OA in females, such as age, psychosocial
status, metabolic variables, hormonal differences, anatomical
variations, and inflammatory disease (Ferre et al., 2019). While
the focus of many previous studies was mainly on bone shape
(Yang et al., 2014; Wise et al., 2016; Frysz et al., 2020), gait
kinematics (Phinyomark et al., 2016; Ro et al., 2017; Allison et al.,
2018), and sex hormones (Zazulak et al., 2006; Brennan et al.,
2010; Boyan et al., 2013b; Wang et al., 2013; Antony et al., 2016),
little effort was invested into determining differences in the global
transcriptome profile. Two studies reported that female OA
patients have higher levels of inflammatory cytokines in the
synovial fluid than males (Hooshmand et al., 2015; Kosek
et al., 2018), but the underlying signalling mechanism was not
investigated. To explore the sex-dependent differences in OA
pathogenesis, we separated our donor cohort based on sex and
compared the OA-related characteristics.

Although the female and male donor cohorts included in this
study showed highly variable trends in terms of histological and
immunofluorescence staining for cartilage markers like aggrecan
and type II collagen, an expected similar trend was observed for
COL2A1, SOX9, ACAN, and COL2A1/COL1A2 average fold-
change levels across donor and treatment groups. The average
fold change level for COL10A1 was comparable between the CHP
and SMG groups for both sexes. However, one female donor
showed significantly higher fold-changes for COL10A1 while the
remaining female cohort showed a generally reduced expression
of COL10A1 in CHP compared to SMG, but not significant. The
observed deposition of type X collagen in immunofluorescence
staining shows high variability, and sex-dependent differences are
difficult to elucidate. Our results suggest overall that at the protein
level, the effect of mechanical stimulation is more dominant than
sex differences for the deposition of cartilaginous components.

A significant sex-dependent difference was observed for tissue
contraction between female and male CHP groups. Additionally,
the Pearson correlation network generated for the female and
male donor cohorts shows clear sex-dependent differences in
expression trends between contractile genes ACTA2 and TAGLN
in relation to the other factors investigated in this study. Firstly,
the measured contraction based on the percentage of reduction in
tissue area positively correlated with ACTA2 and TAGLN
expression levels in both female and male cohorts. This
suggests that these contractile genes are indeed correlated with
physical contraction levels in our study. Interestingly,ACTA2 and
TAGLN expression levels in relation to other factors show distinct
sex-dependent differences. Among the female cohort, the
contractile genes showed a mostly strong negative correlation
with the other factors, while the genes in the male cohort showed
a generally positive correlation. Mechanical loading has been
suggested to mediate the function of chondrocytes by stimulating
the reorganization of cytoskeleton (Killion et al., 2017; Tang and
Gerlach, 2017). And simulated microgravity was also reported to

alter the structure of cytoskeleton components (Wehland et al.,
2020) and regulate the expression of several cytoskeletal genes
(Aleshcheva et al., 2015). Since ACTA2 and TAGLN activity is
associated with cytoskeletal composition and structure, the
opposite trend in correlation with other factors between the
female and male cohort may suggest sex-dependent differences
from cytoskeletal activity in response to varying levels of
mechanical stimulation. Furthermore, the mechano-sensitive
gene FOSB in the IL-17 signalling pathway was identified in
our dataset to show a 137.8-fold upregulation from CHP in the
female cohort while only observing a 9.7-fold increase in the male
cohort. This may suggest sex-dependent differences in the
mechanotransduction mechanisms as well as varying
capabilities to sense cytoskeletal structural changes arising
from mechanical stimulation.

There are several limitations to our model explored in this
study. Firstly, we did not have any tissue samples fromOApatients
to confirm the OA-phenotype observed in our model. However,
the modulation of several OA markers (Kiraly et al., 2017) from
SMG such as the upregulation of MMP13 and the increased
staining of collagen type X, reasonably suggest that the SMG
treatment is pushing the engineered tissues constructs towards
an OA-phenotype, and this effect is likely to increase with longer
treatment periods. Another limitation is that even prolonged joint
mobility under normal gravity can induce an OA-phenotype, and
thus the static group in this study may also serve as an alternate
condition for simulating OA. However, the static group here is
meant as a baseline control between the twomechanical treatments
and serves to reduce donor-to-donor variability by normalizing
measurements to the static control within each donor. Finally, a
limitation in our model is that although the engineered meniscus
constructs contain the necessary component of fibrocartilage, the
tissue microenvironment experienced by the cells is likely different
from that of the native meniscus. In particular, the cells in the
nativemeniscusmay respond differently to receptor-mediated cell-
ECM interactions from mechanical load than in the engineered
meniscus models, especially due to differences in the matrix
stiffness. We hope to address this limitation in our future
studies by evaluating cytoskeleton factors and measurements
and using substrates with tunable stiffnesses such as hydrogels.

CONCLUSION

Taken together, our data suggest that engineered meniscus tissues
responded to mechanical loading and unloading via CHP and
SMG in a sex-dependent manner. Mechanical unloading via SMG
was shown to induce an OA-like profile, while mechanical loading
via CHP promotes elements of chondrogenesis. Within each
mechanical stimulation group, female and male donor cohorts
show sex-dependent differences in the magnitude and direction of
many differentially expressed genes, as well as tissue contraction
and correlation of contractile genes with the other factors
investigated in this study. The combination of CHP and SMG
can feasibly serve as an in-vitro model to study the cellular and
molecular mechanisms of KOA and provide a platform for
exploring potential drug-targetable pathways as therapeutics.
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