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Polyvinyl chloride (PVC) is a petroleum-based plastic used in various applications, polluting
the environment because of its recalcitrance, large content of additives, and the presence
of halogen. In our case study, a new, two-stage biodegradation technology that combined
composting process used for PVC pretreatment with a subsequent PVC attack by newly-
isolated fungal and bacterial strains under SSF conditions was used for biodegradation of
commercial PVC films. The novelty consisted in a combined effect of the two
biodegradation processes and the use for augmentation of microbial strains isolated
from plastic-polluted environments. First, the ability of the newly-isolated strains to
deteriorate PVC was tested in individual, liquid-medium- and SSF cultures. Higher
mass-reductions of PVC films were obtained in the former cultures, probably due to a
better mass transfer in liquid phase. Using the two-stage biodegradation technology the
highest cumulative mass-reductions of 29.3 and 33.2% of PVC films were obtained after
110 days with Trichoderma hamatum andBacillus amyloliquefaciens applied in the second
stage in the SSF culture, respectively. However, FTIR analysis showed that the mass-
reductions obtained represented removal of significant amounts of additives but the PVC
polymer chain was not degraded.

Keywords: polyvinyl chloride, biodeterioration, composting, SSF culture, Trichoderma hamatum, Bacillus
amyloliquefaciens

INTRODUCTION

The accumulation of plastics in the environment represents a great problem concerning the long-term
waste management. PVC, one of the most often used petroleum-based plastic polymers whose European
year demand was about 5 million tons in 2019, is used for food packaging, electronics coatings, medical
devices and other industrial applications (Plastics Europe, 2021). Plasticized PVCs contain additives, most
often phthalate esters, that improve mechanical properties and durability of the plastic and can represent
up to 50% W/W (Ru et al., 2020). Phthalates have been recognized to be endocrine disruptors with
genotoxic effects, but other components, such as heavy metals and chlorine atoms, are also of
environmental concern in connection with PVC deterioration in the environment and the disposal in
landfills (Glas et al., 2014; Wen et al., 2014; Al-Saleh et al., 2017; Siciňska et al., 2021).
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The PVC resistance to biodegradation under the conditions in
the environment was well documented by reporting no evidence
of degradation of a PVC cable coating buried in soil for
32–37 years (Otake et al., 1995) as well as by other studies
(Khatoon et al., 2019; Kumari et al., 2019). An extensive
research has been undertaken to specify microorganisms and
their consortia capable of degrading PVC, including those
colonizing plastic waste (e.g. Webb et al., 2000; Patil and
Bagde, 2012; Giacomucci et al., 2020; Malachová et al., 2020).
Measured gravimetrically, various weight losses values were
reported by different authors, for instance, 3–14% after a 28-
month exposure to a consortium of microoganisms from
biowaste fermentation plant applied under landfill simulation
conditions (Mersiowsky et al., 2001), 1.8–6.8% (W/W) after a 6-
week exposure to 20 different fungal strains isolated from PVC
surface (Webb et al., 2000), 13–19% for PVC films incubated with
Pseudomonas citronellolis for 30 days (Giacomucci et al., 2019), or
2–13% for PVC films incubated for 24 months with 16 different
anaerobic microcosms enriched from marine samples
(Giacomucci et al., 2020). However, the microorganisms
mentioned above metabolized predominantly plasticizer
molecules present in PVC rather than the PVC polymer chain.

The predominant plasticizers used for PVC plastics are
phthalic esters, other types of plasticizers include molecules
such as carboxylic acid esters, epoxides, polyesters or, more
recently, renewable resource-based plasticizers (OSPARCOM,
1997; Mukherjee and Ghosh, 2019). A vast number of bacteria
and fungi were reported to degrade phthalates under aerobic and
anaerobic conditions and the degradation pathways were
described. The enzymes involved are esterases, decarboxylases
and various redox active enzymes, dioxygenases and
dehydrogenases (Liang et al., 2008; Ahuactzin-Perez et al.,
2018; Zhang et al., 2018; Khatoon et al., 2019). The
biodegradation of phthalates involves a sequential hydrolysis
of the ester linkage and, subsequently, of phthalic acid.
Microbial assimilation of phthalates requires diverse metabolic
genes and enzymes and, thus, microbial consortia are much more
efficient in mineralization of phthalates (Wang et al., 2004;
Chatterjee and Dutta, 2008).

The attacks on the PVC polymer were reported in the case of P.
citronellolis and several anaerobic consortia proven by TGA andGPC
analyses, the GPC analysis showed a reduction in average molecular
weight of PVC of 10% in the case of P. citronellolis (Giacomucci et al.,
2019, 2020). Similarly, fungi of the genera Penicillium and Mucor
were reported to attack PVC films (Pardo-Rodríguez and Zorro-
Mateus, 2021). Patil and Bagde (2012) reported that aMicrococcus sp.
strain isolated from a plastic materials-polluted site showed a 0.36%
release of chloride and 8.9%mineralizationmeasured in terms of CO2

evolution over a period of 70 days in media containing PVC as a sole
carbon source. The enzymes involved in the microbial degradation of
PVC are unknown (Ru et al., 2020). Recently, Peng et al. (2020)
showed that Tenebrio molitor larvae were able to depolymerize PVC
(Mn 82,2, Mw 143,7, Mz 244.9 kDa) probably containing only traces
of PAEs and brominated flame retardants and this process was gut
microbe-dependent with the operational taxonomic unit of
Lactococcus bacteria being suspected to be the functional microbe
species.

Solid-state fermentation (SSF) is a method of growing
microorganisms in a solid-phase substrate containing low
amounts of free water used for production of biomolecules,
treatment of organic wastes, or in organopollutant-remediation
applications (Thomas et al., 2013). The conditions are well suited
especially for fungal organisms that can produce their
extracellular enzyme activities and use them for decomposition
of lignocellulosic substrates and organopollutants, but bacteria
can also be used in those technologies (Couto and Sanroman,
2006; Chang et al., 2018). The efficiency of the SSF method for
bioremediation of solid substrates and soils contaminated with
recalcitrant organopollutants, e.g. industrial dyes, bisphenol A,
dioxins, PAHs, as well as for degradation of biodegradable
plastics has been widely proven (Zeng et al., 2017; Folino
et al., 2020; Kaewlaoyoong et al., 2020; Vipotnik et al., 2021).

The introduction of hydroxyl- and carbonyl groups in the
recalcitrant polymer molecule is essential for the splitting of the
polymer chain by extracellular enzymes to small fragments that
can subsequently enter the intracellular metabolism to serve as
carbon and energy sources for growth (Arutchelvi et al., 2008).
Such groups can be formed, for instance, by a pretreatment
procedure including a combination of γ-irradiation and high-
temperature treatments, as demonstrated for the LLDPE polymer
(Novotny et al., 2018). Other pretreatment methods include
photooxidation, UV treatment, thermal aging or an outdoor
weathering process (Chiellini et al., 2006; Briassoulis et al.,
2015; Anunciado et al., 2021). Colonization of PE materials
surfaces by bacteria and fungi was found to be the first stage
of a microbial attack by changing the surface appearance and
making it more hydrophilic. Simultaneously, changes of carbonyl
index resulting from the formation of ketone or aldehyde groups
that can further undergo β-oxidation to produce CO2 and water
were observed (Gu, 2007; Sudhakar et al., 2008; Nowak et al.,
2011). Composting process is an exothermic biooxidation in
which the organic substrate is biodegraded by a mixed
population of microorganisms, including bacteria, archaea, and
fungi (Nozhevnikova et al., 2019). It has a large remediation
potential for degradation and removal of various persistant
pollutants, such as petroleum hydrocarbons, polyaromatic
hydrocarbons, dioxin, and pharmaceuticals, from
contaminated soil, sewage sludge and other waste materials
(Iranzo et al., 2018; Guo et al., 2020; Tran et al., 2020; Tran
et al., 2021). Composting process can accelerate biodegradation of
additives, for instance phthalic acid esters (PAEs) and
polyhydroxyalkanoates (PHAs), and thus reduce mass of PVC
film (Amir et al., 2005; Chang et al., 2009; Anunciado et al., 2021).
The surface of PVC and PHA microplastics exposed to a
composting process was found to be eroded, their carbon
contents decreased, and the amount of functional O-H, C=O,
and C-O groups increased after the compost treatment (Sun et al.,
2021). The effect of compost is in this aspect similar to physico-
chemical pretreatment processes (Martinez et al., 2020).

Because of the PVC recalcitrance the research perspective
concerning PVC biodegradation should focus on both an efficient
pretreatment resulting in massive formation of functional groups on
PVC surface and on finding new strains and consortia of
microorganisms possessing enzyme activities capable of
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depolymerization of PVC.Maximization of plastic surface exposed to
biodegradation, for instance by using PVCmicroparticles, can also be
an important factor (Giacomucci et al., 2020; Peng et al., 2020). The
aim of our case study was to investigate the efficiency of a newly-
developed, two-stage biodegradation process combining the effect of
composting with a subsequent SSF degradation by fungal and
bacterial strains isolated from plastic-polluted environments. The
novelty consisted in using the composting process for the
pretreatment of PVC followed by application of new isolated,
fungal and bacterial strains for PVC degradation. To our
knowledge such a combined technology has so far not been used
for the degradation of PVC. The biodegradation of PVC in the two-
stage process was measured gravimetrically and using FTIR analysis,
the biodeterioration of PVC was also documented by SEM. The
results were compared with PVC weight losses obtained by exposure
to the isolated fungal and bacterial strains applied in a liquid growth
medium and in SSF cultures under aseptic conditions.

MATERIALS AND METHODS

Microorganisms and Material
The following strains of microorganisms were used in the case study:
the fungiTrichoderma hamatumHF4 (origin: plastics from soil along
a highway, Belgium),TrichaptumabietinumCA (origin: plastics from
a composting plant, Schendelbeke, Belgium), Pseudoallescheria
ellipsoidea ZF51 (origin: plastics from a composting plant,
Schendelbeke, Belgium), Aspergillus terreus CCF 3315 (origin
Czech Collection of Fungi), and the bacterium Bacillus
amyloquefaciens JB4 (origin: plastics from a composting plant,
Schendelbeke, Belgium). Except for A. terreus CCF 3315, they
were isolated from weathered plastics in the environment and
characterized in a previous study of Malachová et al. (2020).
Other strains also isolated from the surface of plastics collected in
the environment whose origin and taxonomical characterization are
described in detail by Malachova et al. (2020), namely Byssochlamys
nivea JM5, Pseudoallescheria ellipsoidea ZF51, Aspergillus coesiellus
ZB52, Graphium sp. ZF56, Trametes suaveolens F1, Penicillium
olsonii ZF52, Scopulariopsis brevicaulis ZF53. The GenBank
Accession Nos. of all the isolated strains used in this study were
published by Malachova et al. (2020). Penicillum variabile CCF3319
and Aspergillus terreus CCF 3315 were obtained from Czech
Collection of Fungi, Charles University, Prague. Rhodococcus ruber
C208 strain (seawater isolate, Norway) was obtained from
Fachhochschule Nordwestschweiz, Muttenz, Switzerland.

The microorganisms were stored on MEG agar slants (per
litre: malt extract 20 g, glucose 20 g, peptone 1 g, agar 20 g, pH
5.4) at 4°C.

PVC films were produced by Gruppo Fabbri Spa. (Italy). They
contained plasticizers whose formulation was confidential.

PVC Degradation in Liquid Growth Media
Under Aseptic Conditions
Before used in a two-stage degradation process, the fungal strains
were tested for the ability to attack PVC films in liquid Czapek-
Dox medium, pH 6.8 (g/L: sucrose 30, sodium nitrate 2,

dipotassium phosphate 1, magnesium sulfate 0.5, potassium
chloride 0.5, ferrous sulfate 0.01) and the bacteria in Bushnel-
Haas medium, pH 7.0 (g/L: magnesium sulfate 0.2, calcium
chloride 0.02, potassium hydrogenphosphate 1, potassium
dihydrogenphosphate 1, ammonium nitrate 1, ferric chloride
0.05, glucose 5, Fluka, Germany). The aim was to select
efficient and robust strains for the case study experiments. The
protocol used in the biodegradation experiments was the same as
described by Novotný et al. (2018). Before the treatment, the films
were cut into small pieces (20–30 mg) and degreased by
immersion in 70% ethanol for 10 min at 120 rpm (ELMI
orbital shaker DOS-20L, ELMI Ltd., Latvia). Plastic samples
were weighed after drying and sterilized in 70% ethanol for
30 min at 120 rpm. By rinsing in sterile distilled water the
samples were prepared for experiments (Peixoto et al., 2017).

The biodegradation by fungal strains was carried out
aseptically in liquid Czapek Dox medium, pH 6.8. The
inoculum was prepared by growing the fungi statically in
MEG medium pH 4.5 (g/L: malt extract 5, glucose 10) for
7 days, gently homogenized (UltraTurrax T25, IKA
Labortechnik, Germany) and used at 5% (V/V) for inoculation
of 500-ml erlenmeyer flasks containing 100 ml of the medium.
After inoculation, the cultures were incubated statically (stirred
manually every other day) at 28°C for 2 months, aerated by air
diffusion. The fungal precultures in MEG medium were
inoculated from fresh agar plate cultures.

The biodegradation by B. amyloliquefaciens occurred under
aseptic conditions in liquid Bushnel-Haas medium pH 7.0 (Fluka,
Germany) enriched with 1 g/L glucose. The medium does not
contain any carbon source and, thus, a small amount of glucose
was added to support the cometabolic process and maintain the
bacterial culture viable and active during the 2-month
experiment. The aeration was ensured by shaking at 120 rpm
using an orbital shaker. The bacterial inoculum (5%, V/V) was
prepared by overnight growth in a shaken culture at 28°C using
Boyd-Kohlmeyer medium pH 6.8 (g/L: glucose 10, peptone 2,
yeast extract 1).

When the cultivation was terminated, the plastic samples were
collected and microbial biofilm removed from their surface by
immersion in 2% SDS for 2 h at 50°C, followed by a 15-min
ultrasonication, then the PVC films were rinsed with distilled
water and immersed in 70% ethanol, vortexed and finally washed
with distilled water and dried. This procedure was repeated five
times (Sivan et al., 2006) and was used in all biodegradation
experiments. The degradation was measured gravimetrically
(ABT 220-5DM, KERN, Germany), after drying. Each
experiment was conducted in triplicates and always included
an abiotic control.

Sterilization of all media was by autoclaving (120°C, 20 min)
(Systec VX-5, Systec GmbH, Germany).

PVC Degradation in Laboratory-Scale SSF
Cultures Under Aseptic Conditions
The SSF culture used in the laboratory-scale, solid-state
degradation experiments consisted of wheat bran flakes (500 g)
moisturized with a salt solution (pH 5.0) containing (per L)
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ammonium nitrate 4.3 g, sodium sulfate 0.21 g, magnesium
sulfate 0.77 g, zinc sulfate 0.42 g, potassium chloride 1.62 g,
and calcium hydroxide 0.11 g (Rodríguez-Fernández et al.,
2012) to reach 50–60% moisture. PVC films were cut into
20–40 mg pieces, degreased with 70% ethanol and dried
overnight. They were weighed and sterilized in 70% ethanol
for 30 min, washed with sterile distilled water and dried. Then
they were wrapped in a nylon mesh (16 × 8 cm, 0.5 × 0.5 cm pore
size) and inserted inside the solid phase layer. The system was
inoculated with a volume of 150 ml of a homogenized, 7-day-old
culture grown in liquid MEG medium at 28°C. The initial
moisture of the solid phase was 50–60% and was kept
constant during the experiment by adding sterile distilled
water. The duration of the experiment was 2 months, the
temperature was maintained between 24 and 28°C. The
aeration was by air diffusion and ensured by regular manual
turning once a week.

Two-Stage Pilot-Scale, Aerobic
Degradation of PVC Films
The SSF process combined a controlled composting phase that
served for a pretreatment of the virgin PVC material and a
following biodegradation process when the compost material
containing the PVC samples, resulting from the previous
stage, was inoculated by a fungal or bacterial strain tested
(Figure 1). The solid phase consisted of a wastewater
treatment plant sludge (WTP, Teva Czech Industries, Opava,
Czech Republic), solid municipal green waste and bush- and
small-tree branches chipped into small pieces (Supplementary
Figure S2). The process was started in the first step by
composting of the material in which the PVC samples were
buried. The first step included a thermophilic phase during which
the inner temperature was maintained at 50–70°C for 10 days,
followed by mesophilic and maturation phases taking about

3 weeks, when the material cooled down to 30–40°C. The
process was controlled by aeration according to a computer
program developed by Janites, s.r.o. (Havířov, Czech Republic)
using the optimal composting curve. The temperature and
humidity inside the composted material were measured daily.
The PVC films wrapped in nylon mesh were inserted in the
compost material before the composting process was started. At
the beginning of the second step, the selected fungal or bacterial
strains were added in the form of a homogenized, liquid-medium
inoculum (7-day-old MEG culture, 2,500 ml) in the case of the
Janites KS 1.2 reactor or in the form of a wheat bran-grown
inoculum (3-week-old, 2,500 g, moisture 50%) amended with a
salt solution (cf. section 2.3) in the case of the Janites AK 2.0
reactor. The inocula were thoroughly mixed with the composted
material. The degradation phase took place at outdoor
temperature. The experiment was carried out in the period of
mid-May-mid-September in order to ensure convenient outdoor
temperatures, the experiment was terminated when the outdoor
temperate dropped to 15°C. In the controls, no microorganism
was added in the second step.

Two types of pilot-scale reactors were used in the
biodegradation process. In a Janites KS 1.2 reactor (Janites
s.r.o., Havířov-Prostřední Suchá, Czech Republic,
Supplementary Figure S1), the composting and subsequent
SSF degradation were carried out in polyethylene bags (PE)
1 m long, filled with the compost mixture and aerated with an
inside aeration tube. The controlling factor was the amount and
frequency of aeration by a compressor that controlled the inside
temperature and humidity, that were daily monitored using
stabbing probes, a thermometer and a hygrometer connected
to a COMET S3631 recorder (Micronix, spol s r.o., Prague, Czech
Republic). The composting process was computer-controlled
using a composting program (Janites, s.r.o., Havířov, Czech
Republic). The number of bags connected to the device was
six in maximum, the reactor worked in the conditions of the
outdoor temperature and forced aeration ensured by an air
compressor (Janites, s.r.o., Havířov, Czech Republic). The
reactor operated in closed-system conditions.

The other reactor type used was a Janites AK 2.0 reactor
(Janites s.r.o., Havířov-Prostřední Suchá, Czech Republic,
Supplementary Figure S2) where the degradation process
was realized in a two-chamber, horizontal, rotating drum
system. The rotation speed controlled the aeration of the
system and the inside humidity. The reactor consisted of a
metallic cylinder mounted horizontally on a stand that was
divided into two 1 m3 chambers. Solids were separately filled
in the chambers that worked in a closed system mode and
could thus be used as two reactors running in parallel. The
controls and controlling systems were the same as in the case
of the reactor Janites KS 1.2. The reactor was working at the
outdoor temperature and the aeration was ensured by air
diffusion depending on the speed of drum rotation that was
operated by an electric drive fuelled by a 12 V-battery. The
inoculation of the two reactor chambers was separate using a
solid-state fungal inoculum with either a volume of 5 L of a
homogenized liquid-medium microbial culture or with 2.5 kg
of a solid-state fungal inoculum.

FIGURE 1 | Schematic diagram of two-stage pilot scale, aerobic
degradation of PVC films carried out in Janites KS1.2 and AK 2.0 reactors. For
details see section 2.4.
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Formulation of the solid phase for the first stage was
controlled by KOMPOST program (Janites s.r.o., Havířov-
Prostřední Suchá, Czech Republic) and is shown in Table 1
and Supplementary Figure S3. The final values before the
composting process was started were C:N 33.6 and humidity
58.0%.

Scanning Electron Microscopy
A JSM-6610LV scanning electron microscope (JEOL Ltd.,
Peabody, MA, United States) was used in the secondary
imaging electron mode for the assessment of changes of the
surface of PVC films surface treated by microorganisms. The
samples were fixed with 3% glutaraldehyde, dehydrated through
alcohol series, critical-point-dried, and putter-coated with gold.
Then they were analysed in the above scanning electron
microscope using the following conditions: accelerating voltage
17 kW, spot size 30, working distance 22 mm.

Fourier Transform Infrared Spectroscopy
All studied polymers were analysed in the mid-infrared region
using infrared spectroscopy. A Nicolet 6700 FTIR spectrometer
(Thermo scientific, United States) equipped with KBr
beamsplitter and DTGS/KBr detector was used. The samples
were measured using the attenuated total reflectance (ATR)
method with single bounce diamond crystal. A total of 64
scans with a resolution of 4 cm−1 were collected for each
spectrum. The spectra were collected in the region
4,000–400 cm−1. Each sample was measured three times and
the spectra were averaged.

Mutagenicicty Tests
Mutagenicity of culture liquids obtained by 60-day exposure of
virgin PVC to fungal and bacterial strains in liquid Czapek-Dox
and Bushnel-Haas media, respectively, was measured using the
Ames test and SOS Chromotest. In the Ames test (OECD, 2020;
Mortelmans and Zeiger 2000), a plate-incorporation version of
the Salmonella typhimurium His− reversion assay was used, with
or without the in vitro metabolic activation with the rat liver S9
microsomal fraction and cofactor mixture. The auxotrophic
strains TA100 and TA98 were used for detection of the base
substitution mutations and frameshift mutations, respectively.
The mutagenic activity was expressed as a number of revertant
colonies (Rt) obtained with the treated sample compared to the
number of revertant colonies obtained with the control sample
(Rc). The mutagenicity index was calculated as a ratio of Rt/Rc
and a twofold increase of the index was considered to be
significant. Mutation potential represented the mutagenicity
index for the concentration of the compound tested that was
read from the linear region of the dose-response curve (Ames

et al., 1975). Each test was repeated at least three times using two
replicate plates for each sample and the results were calculated
using SALM software (Broekhoven and Nestmann, 1991).

The SOS Chromotest (Quillardet et al., 1982), a quantitative
bacterial assay for genotoxins based on an induction of SOS
function by these compounds, used the E. coli K12 strain PQ37.
The mutagenic activity of the samples was determined by the
ratio of the inducible ß-galactosidase activity to the
constitutively-synthesized alkaline phosphatase. The induction
factor for a compound at a certain concentration was defined as a
ratio Rc/Ro where Rc and Ro were the respective mutagenic
activities measured in the presence and absence of the compound
tested. The SOS-inducing potency (SOSIP) was a single
parameter representing the induction factor per concentration
of the tested compound. SOSIP was determined from the linear
region of a dose-response curve (Quillardet and Hofnung, 1985).
The Rc/Ro value of 0.5 or more was considered to be significant
and demonstrated a positive mutagenic effect.

RESULTS AND DISCUSSION

Selection of Strains in Liquid-Medium and
SSF Conditions
Before used in a two-stage degradation in compost and the SSF
culture, the strains were tested for the ability to attack PVC
material in liquid media, namely the fungal strains in a Czapek-
Dox medium pH 6.8 and the bacterium B. amyloliquefaciens in a
Bushnel-Haas medium pH 7.0 (Table 2). Maximal mass
reductions of virgin PVC films measured gravimetrically
obtained with T. hamatum, T. suaveolens and P. ellipsoidea
were in the range of 18–20% after a 60-day treatment. The
mass reduction caused by the attack of B. amyloliquefaciens
was slightly lower (Table 2). The abiotic controls showed mass
reduction values of 9–10%, probably due to the leaching of
additives (Kastner et al., 2012; Suhrhoff and Scholz-Bottcher,
2016). The mass reduction values obtained were higher than

TABLE 1 | Formulation of the compost solid phase.

Solid phase material C/N ratio Humidity (%) Amount (kg)

WTP sludge 21.7/3.1 94 7
Municipal green waste 57.8/3.4 82 63
Chipped wood 53.0/1.0 15 41

TABLE 2 | Mass-reduction of PVC film by new isolated strains in liquid medium
after 60 days at 28°C.

Microorganisms PVC mass reduction, %

Fungi

Trichoderma hamatum 19.9 ± 0.4
Byssochlamys nivea 15.5 ± 0.9
Trametes suaveolens 18.3 ± 0.7
Pseudallescheria ellipsoidea 18.3 ± 0.7
Penicillium olsonii 9.0 ± 0.7
Penicillum variabile 11.5 ± 3.3
Scopulariopsis brevicaulis 7.1 ± 0.7
Aspergillus caesiellus 8.7 ± 0.3
Aspergillus terreus 10.1 ± 1.7
Graphium sp 10.5 ± 3.9
Abiotic control 9.9 ± 2.9

Bacterium

Bacillus amyloliquefaciens 17.5 ± 0.2
Abiotic control 8.8 ± 0.5
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those reported byWebb et al. (2000) for various fungal organisms
in a mineral medium where the weight loss values ranged from
1.4 to 6.8% after 6 weeks at 25°C. Similarly, 5.7–11.7% weight
reductions of PVC films serving as major carbon and energy
source by marine anaerobic consortia after 24 months were
documented (Giacomucci et al., 2020) whereas a 13.1 ± 0.4%
virgin PVC weight decrease was reported after an exposure to
Pseudomonas citronellolis for 90 days at 30°C (Giacomucci et al.,
2019).

PVC contains large amounts of additives, mostly phthalate
esters, and chlorine atoms (Glas et al., 2014; Wen et al., 2014).
Phthalate esters have been proven to exhibit endocrine
disrupting and genotoxic effects (Al-Saleh et al., 2017;
Sicinska et al., 2021). Similarly, chlorine and its
compounds, when reacting with organic molecules, can
produce compounds with genotoxic effects (Richardson
et al., 2007; Rincon-Bedoya et al., 2013). Therefore,
genotoxicity of culture liquids obtained by a 60-day
exposure of virgin PVC films to fungal and bacterial
strains listed in Table 2 were measured using the Ames
test and SOS Chromotest. No genotoxicity was detected in
the culture liquids obtained after the exposure of PVC films to
any of the microorganisms used.

T. hamatum, A. terreus and B. amyloliquefaciens were chosen
for a test in the SSF culture because of their efficient attack of
virgin PVC films in the liquid-medium and a robust growth
under various conditions. In addition, two other fungal strains, T.
abietinum and S. apiospermum and a strain of bacterium R. ruber,
that were isolated during the study, were also included in the SSF
biodegradation tests. The results measured in wheat bran-based
SSF cultures showed mass reduction values of 7–9%, the highest
values were obtained with A. terreus (8.6 ± 0.3%), T. hamatum
(8.3 ± 0.5%) and B. amyloliquefaciens (9.2 ± 0.3%) (Table 3). The
weight losses were about two times lower compared to a weight
loss of a PVC cable exposed to a consortium of microorganisms
from a biowaste fermentation plant under anaerobic landfill
simulation conditions for 28 months that were caused by the
removal of plasticisers (Mersiowsky et al., 2001). The weight loss
was much faster in our SSF cultures as Mersiowski and co-
workers (2001) did not observe any until 15th month of
incubation.

Lower PVC films mass reduction values obtained in SSF
conditions, compared to the liquid-medium conditions, could
be explained by a better mass transfer in liquid phase, compared
with the solid phase in the SSF culture (Stotzky and Burns, 1982).
In the liquid phase, the accessibility of PVC film surface to
extracellular enzymes produced by the microorganisms is
better as the enzymes are distributed in the liquid medium
whereas in the solid phase, they are more localized, which
may hinder their contact with the PVC film surface (Novotny
et al., 2004).

The PVC films after degradation under SSF conditions were
scanned by SEM to show whether the surface was changed by the
exposure to the microorganisms. An example can be seen in
Figure 2 where a slightly different structure of the PVC film
surface was recognized before and after the 60-day treatment with
B. amyloliquefaciens. Efficient colonization of the PVC film
surface by B. amyloliquefaciens and other microorganisms was
observed in our experiments. In order to measure the weight
reduction, the bacterial and fungal colonies had to be removed by
the effect of SDS, sonication and intense washing with ethanol
and distilled water (Sivan et al., 2006). We cannot exclude that
certain changes of the PVC film surface could also be caused by
this washing procedure. A number of studies documented that
the colonization of plastic surfaces by microbial biofilms often
resulted in their damage and is considered to be the first step in
the microbial attack (Gu, 2007). Colonization by bacteria of the
Bacillus genus resulting in an increased surface roughness
accompanied by a weight loss was observed in the case of PE
plastic (Nowak et al., 2011).

Aerobic Degradation of PVC Films in a
Combined, Two-Stage Pilot-Scale Process
The selection of strains for the two-stage degradation process
combining the compost-pretreatment and SSF biodegradation
included the fungi A. terreus, T. hamatum, T. abietinum P.
ellipsoidea and the bacterium B. amyloliquefaciens that
exhibited high PVC film mass reduction rates in the liquid
medium- and SSF cultures. The pilot-scale biodegradation
experiments were realized using Janites KS 1.2 and AK 2.0
reactors. The pretreatment of virgin PVC films by the
composting process took 42 days, then the compost was
augmented by massive inoculation with a selected

TABLE 3 | Mass-reduction of PVC film by new isolated strains under SSF
conditions after 60 days at 28°C.

Microorganisms PVC mass reduction, %

Fungi

Aspergillus terreus 8.6 ± 0.3
Trichoderma hamatum 8.3 ± 0.5
Trichaptum abietinum 7.2 ± 1.1
Pseudallescheria ellipsoidea 5.7 ± 2.4

Bacteria

Bacillus amyloliquefaciens 9.2 ± 0.3
Rhodococcus ruber 7.7 ± 0.9
Abiotic control 7.7 ± 0.1

FIGURE 2 | PVC film surface before (left) and after (right) biodegradation
in the presence of B. amyloliquefaciens under SSF conditions; SEM
conditions: SEI, WD 22, SS 30, 17 kV.
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microorganism, and the degradation continued under SSF
conditions for further 68 days. During both stages the former
reactor was kept under forced aeration by a compressor whereas
in the latter one the aeration was ensured by air diffusion
depending on the drum rotation. The first collection of PVC
samples was after the end of the composting phase and the second
one at the end of the SSF phase. Hence, the total length of the
period when PVC films were exposed to the microbial attack was
110 days, first to the native microbiome of compost
microorganisms acting during the first stage and,
subsequently, to a combined attack by the native compost
microbiome and the microorganism added in the second stage.

A significant PVC film mass reduction occurred already
during the first compost phase, ranging between 8 and 11% in
KS 1.2 reactor. Further weight decrease of the PVC samples was
observed at the end of the subsequent SSF treatment after the
culture was amended by inoculation with a selected microbial
strain. When T. hamatum or B. amyloliquefaciens were added to
the SSF cultures, the total PVC film mass reductions attained
29.3 ± 19.8 and 33.2 ± 22.2%, respectively, surpassing the values
that were obtained after a 30-day incubation with P. citronellolis
in a liquid medium (14%, Giacomucci et al., 2019) or in a landfill-
simulation experiment after 28 months (14%, Mersiowsky et al.,
2001). However, FTIR measurements (see section 3.3)
documented that the weight reductions probably represented
degradation and removal of molecules of the additive rather
than of the PVC polymer, which was in keeping with other
reports (e.g. Mersiowsky et al., 2001; Giacomucci et al., 2019; Ru
et al., 2020). Sun et al. (2021) composted PVC microplastics for
60 days to observe a carbon loss of 17% and an oxygen increase of
3% due to biological oxidation resulting in the formation of
oxygen-containing functional groups, namely the alcohol
hydroxyl group. Such an increase in the amount of oxygen-
containing functional groups is similar to the effect of various
pretreatment procedures (e.g. Chiellini et al., 2006; Novotny et al.,
2018) and can improve the biodegradability of the plastic (Chen
et al., 2020). However, the FTIR analysis showed that the
pretreatment by composting did not make PVC polymer
susceptible to the attack by the microorganisms.

Unfortunately, GPS analysis was not available and thus the
plastic depolymerization pattern resulting from the
biodegradation, as described by Wu and Criddle (2021), could
not be established.

Other microorganisms tested (Table 4) were able to increase
the weight reduction in the second stage much less than T.
hamatum and B. amyloliquefaciens, when added for
augmentation. Comparably, low PVC weight losses were
reported with various micromycetes and yeasts (1.8–6.8% after
6 weeks at 25°C; Webb et al., 2000) or with anaerobic marine
consortia (up to 11.7 ± 0.6% after 7 months at 20°C; Giacomucci
et al., 2020).

In AK 2.0 reactor where aeration was ensured by drum
rotation, two fungi, T. hamatum and A. terreus, were tested to
investigate the effect of shear forces and less intensive aeration on
the effectivity of biodeterioration of PVC films. When the latter
fungus was added in the second stage the cumulative weight
reduction reached 14.2 ± 5.8%, compared to that of 11.3 ± 0.7%
obtained in the aerated bags of KS 1.2 reactor. However, in the
case of T. hamatum, no weight decrease occurred in the second
stage, the total PVC film mass reduction was 1.8 times lower
compared to the aerated-bag-reactor process (Table 4). We may
speculate that the conditions for T. hamatum in KS 1.2 reactor
that included a static culture and forced aeration were more
favorable compared to the exposure to shear forces and aeration
only by air diffusion in the AK 2.0 reactor. This effect was not
observed with A. terreus (Table 4). Mycelia of some filamentous
fungi have been shown to be sensitive to shear forces caused by
friction (Gong and Zhong, 2005; Tang et al., 2007).

High standard deviation values measured with some
microorganisms (Table 4) can be attributed to both the
fragmentation of PVC films into small pieces that were not
easy to collect and/or small amounts of microbial biofilms that
could remain attached to the plastic surface even after washing
(Briassoulis et al., 2015; Malachova et al., 2020).

FTIR Analysis
The PVC samples collected after a two-stage degradation
process in the KS 1.2 reactor using B. amyloliquefaciens in

TABLE 4 |Mass-reduction of PVC film during the compost pretreatment and a subsequent treatment with selected fungal and bacterial strains under SSF conditions in KS
1.2 and AK 2.0 reactors.

Organism After compost pretreatment%
(W/W)

After subsequent SSF
treatment with selected

strain% (W/W)

Janites KS 1.2 reactor

A. terreus 9.9 ± 0.1 11.3 ± 0.7
T. hamatum 10.3 ± 0.6 29.3 ± 19.8
T. abietinum 11.4 ± 0.5 10.8 ± 0.2
P. ellipsoidea 9.0 ± 0.5 10.7 ± 0.3
B. amyloliquefaciens 8.8 ± 2.1 33.2 ± 22.2
Control 8.5 ± 0.7 10.0 ± 0.4

Janites AK 2.0 reactor

A. terreus 10.8 ± 0.6 14.2 ± 5.8
T. hamatum 16.9 ± 7.9 16.3 ± 3.5
Control 8.2 ± 0.4 9.6 ± 0.3
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the second stage, where the largest weight reduction was
measured (Table 4), were analyzed by FTIR (Figures 3, 4).
The spectra were compared with the PVC standard before
biodegradation. The used material was commercially available
foil, therefore the bands of PVC as well as of the additives were
present in the spectrum. Spectrum of pure PVC without
additives contains only bands between 3,000 and
2,800 cm−1 which can be assigned to the stretch vibration
of C–H bonds, bands around 1,430 cm−1 which belong to
the–CH2– deformation vibrations, and a band around
605 cm−1 which can be assigned to C–Cl stretch vibration.
The spectrum in Figure 3 included other bands as well which
probably belonged to additives. Especially the band around
1,730 cm−1 which can be assigned to the stretch vibration of
carbonyl group (C=O). Carbonyl is not present in the PVC
molecule but it is part of the most common plasticizers used in
PVC such as phthalates or adipates. Bands in the region
1,200–900 cm−1 belonged probably to the additives as well.
Moreover, additives are often organic compounds and they
contribute to the absorbances of bands between 300 and
2,800 cm−1, too. A decrease of the bands’ absorbances
occurred mainly in the regions of C–H stretch vibrations
(3,000–2,800 cm−1), C=O stretch vibrations (1,730 cm−1),
C–H and N–H deformation vibrations (1,500–1,300 cm−1),
and C–O stretch and skeletal vibrations (1,300–800 cm−1).
However, a negligible decrease was observed for the band of
C–Cl stretch vibration after the biodegradation process.
Bonds C–Cl are present only in the PVC polymer itself and
they were not affected during biodegradation. Therefore, the
conclusion was that the biodegradation affected primarily
the additives and the degradation of PVC was negligible
(Socrates, 2007). The shape of bands in the region of the
C–H stretch vibrations (Figure 4) varied as well. The change
of the bands’ shape supported the conclusion affirming
the preferential degradation of additives in the studied
material because C-H bonds were present both in PVC and
the additives.

The plasticizers most often used in PVC are phthalic acid
esters whose biodegradability by various bacteria and fungi
has been well proven (e.g. European Commission DGXI.E.3,
2001; Amir et al., 2005; Liang et al., 2008; Chang et al., 2009).
As the type and amount of plasticizers used in PVC films
were not indicated by the producer, their formulation
being confidential, and the relevant analytical method
was not available, we had to rely in the discussion on
indirect evidence concerning the removal of the additives
during biodegradation. Despite a high mass reductions of
PVC films obtained by the combined attack by compost
microorganisms and B. amyloliquefaciens (Table 4), the
PVC polymer chains were not degraded, as evidenced by
FTIR. However, FTIR analysis confirmed the presence of
bands characteristic of plasticizers used in PVC materials
whose shape was changed during biodegradation
(Figure 2). Consequently, the conclusion was that the
massive biodeterioration of the plastic material that
occurred, most probably resulted from the biodegradation
of additives in first and second stages (cf. Mersiowsky et al.,
2001; Ru et al., 2020).

A pretreatment of plastics can result in a formation of
functional groups that increase the plastics susceptibility to
microbial attack. It was evidenced for PE plastics exposed to
thermal oxidation carried out at temperatures ranging from
55 to 80°C (e.g. Volke-Sepulveda et al., 2002; Manzur et al.,
2004; Corti et al., 2010). Here the PVC films were pretreated in
biooxidative conditions at a high temperature ensured by the
composting process that included a thermophilic phase of
60–70°C, where the plastic was also exposed to the action of
the compost microorganisms. However, the pretreatment by
composting did not make the PVC polymer prone to
microbial attack as evidenced by FTIR analysis. This is in
agreement with the observation of Pardo-Rodriguez and
Zorro-Mateus (2021) who compared the biodegradation of
heat-treated- (150°C, 1 h) and virgin PVC by Penicillium sp.

FIGURE 3 | Spectra of PVC treated in a two-stage degradation
procedure by composting (first stage, 42 days; PVC Composting) and by B.
amyloliquefaciens (second stage, 68 days; PVC SSF) compared to virgin PVC
standard.

FIGURE 4 | Spectra of C-H stretch vibrations region of PVC treated in a
two-stage degradation procedure by composting (first stage, 42 days; PVC
Composting) and by B. amyloliquefaciens (second stage, 68 days; PVC SSF)
compared to virgin PVC standard.
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and Mucor sp. fungi and found no difference between the
pretreated and virgin PVC.

The results indicated that not even a combination of the
highly degradative actions of the composting process and
bacterial and fungal strains with broad biodegradation
activities were able to degrade the recalcitrant PVC
polymer (Zafra and Cortes-Espinosa, 2015; Meng et al.,
2019; Yuan et al., 2019; Davolos et al., 2021). Further
characterization of depolymerization of PVC material is
needed to understand the patterns describing the extent of
PVC depolymerization during the two-stage process, as
observed during plastics degradation by other researchers
(Wu and Criddle, 2021). Future research should also focus
on determination of chlorine release during the treatment to
find out whether mineralization of PVC polymer occurred
(Peng et al., 2020).

CONCLUSION

The resistance of PVC to biodegradationmakes it amatter of concern
with respect to the environmental pollution due to its high
production and wide industrial applications. Compared to other
petroleum-based plastics, PVC contains much higher percentage of
additives, mostly phthalates, that are biodegradable and have been
recognized to be endocrine disruptors. In our case study, virgin PVC
films were treated in a two-stage process that included, first, a
pretreatment by biological oxidation at a high temperature by
compost microorganisms and, second, an exposure to selected
strains of fungi and bacteria isolated from the surface of
composted plastics. Gravimetric measurements documented
significant weight losses both in the first and second
biodegradation stages when T. hamatum and B. amyloliquefaciens
were used for augmentation but FTIR analysis detected no
biodegradation of PVC polymer. Comparably to other studies
only the additives were removed to diminish the mass of PVC
films in both stages of the biodeterioration process. Further
research is needed to characterize the enzyme activities capable to
depolymerise PVC polymer whose existence was revealed in some
recent studies.
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