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Long-distance running has gained massive popularity in recent years, yet the intra-foot
adaptations during this event remain unclear. This study aimed to examine the kinematic
and ground reaction force alterations induced within the foot following a 5 and 10 km run
using the Oxford Foot Model Ten marathon-experienced recreational runners participated
in this study. Five-kilometer running led tomore rearfoot dorsiflexion, rearfoot eversion, and
rearfoot rotation while less forefoot plantarflexion during the stance phase. Increased
rearfoot plantarflexion, while decreased forefoot plantarflexion, supination, adduction, and
hallux plantarflexion were observed at 10 km. In addition, the forefoot space of footwear
was found to play a role in hallux kinematics. Concerning GRFs, only a lesser propulsive
force was presented after a 10 km run. Findings of this study showed that 5 km of running
would induce excessive foot motion while 10 km of running may gradually change the foot
posture and lead to reduced propulsive forces, which could potentially increase the risks of
running-related injuries (RRI) due to overuse or fatigue. Nevertheless, further research is
warranted, and this study could be used as a preliminary reference to evaluate and predict
foot running-related injuries.
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1 INTRODUCTION

As one of the most accessible sports to achieve better physical health and prevent diseases, running,
especially long-distance running, has attracted extensive participation worldwide (Kim et al., 2018;
Mei et al., 2018). It has been reported that the number of runners has doubled, and the number of
marathon finishers has shown an exponential increase over the past decade (Nikolaidis et al., 2021;
van Poppel et al., 2021). For instance, at least 344,000 marathon runners finished the “New York City
Marathon” from 2010 to 2017, which is more than 10 times compared to ~25,000 in 1970–1979 (Vitti
et al., 2020). In China, a total of 2.8 million people participated in long-distance running races across
the country in 2016, which hit a record high at the time (ChinaDaily, 2016). Unfortunately, broad
participation in long-distance repetitive exercise may also bring in a higher rate of running-related
injuries (RRI), particularly to the lower extremities and the foot (Van Gent et al., 2007; Hulme et al.,
2017; Mei et al., 2019).
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As the primary interface of the lower limb with the external
environment, the foot has been previously demonstrated to be a
common injury site (Kindred et al., 2011; Zhou et al., 2019;
Dempster et al., 2021). In addition, some foot biomechanical
changes during running may further potentially increase the
risk of RRI of the lower limbs (Mei et al., 2018; Takabayashi
et al., 2018; Mei et al., 2019; Matias et al., 2020). For example,
increased foot pronation during running would contribute to a
significantly higher medical knee contact force, consequently
increasing knee injury risks (Mei et al., 2019). Different landing
techniques, i.e., rearfoot strike and forefoot strike, would lead to
relatively distinct foot joint rotations and bone orientations,
which may further be associated with different RRI (Matias
et al., 2020). Moreover, excessive rearfoot eversion angles
exhibited during running would further result in excessive
dorsiflexion of midfoot due to kinematic coupling. This
abnormal foot motion has been proved to be a risk factor
for lower limb RRI (Takabayashi et al., 2018). The above
evidence clearly showed that the human foot is a particularly
deformable and vulnerable structure during long-distance
running. Further analysis of the foot biomechanics is
therefore of great importance. At this time, numerous foot
models are available for gait analysis. However, it is assumed
that, based on previous studies, a multi-segment foot model is
required for the in-depth foot kinematics analysis (Wolf et al.,
2008; Dixon et al., 2011). The Oxford Foot Model (OFM),
which divides the foot into several rigid segments, has shown
robust reliability on inter-segmental angles through the gait
cycle (Milner and Brindle, 2016; Balsdon and Dombroski,
2018). It has been extensively applied to explore the
biomechanical properties of the foot during different
movement tasks, such as walking (Sun et al., 2018), running
(Xiang et al., 2020a), and jumping (Xiang et al., 2020b).
Nevertheless, information concerning the influence of
prolonged running activities on foot inter-segment
kinematics is still limited.

Kinetic gait parameters, such as ground reaction forces (GRFs)
and the corresponding impact loading rate exhibited strong
correlations with running distance (Derrick et al., 2002; Morin
et al., 2011; Degache et al., 2013). Decreased vertical GRFs and
lower vertical average loading rate (VALR) were detected after
long-distance running, which was speculated as an indicator that
the runner tends to shift the running style toward a smoother
pattern to alleviate the increased mechanical stresses and avoid
RRI (Morin et al., 2011). Since the OFM is a kinematics-only
model, a combination of kinetics with this multi-segment foot
model shall yield more insight into foot function during long-
distance running. Therefore, the purpose of this study was to
investigate the differences in inter-segment foot kinematics and
GRFs before (baseline test (0 km)), during (interval test after
5 km), and after (final test after 10 km) long-distance running. It
was hypothesized that: 1) the inter-segment foot kinematics
would change after 5 and 10 km of running, and that 2) the
vertical GRFs and VALR would decrease as running distance
increased and some differences may also be detected on
horizontal GRFs after 5 and 10 km of running.

2 MATERIALS AND METHODS

2.1 Participants
A total of 10 marathon-experienced recreational runners
(demographic information: age, 25.63 ± 2.88 years; height,
171.88 ± 3.64 cm; weight, 64.73 ± 5.68 kg; BMI, 21.99 ±
2.75 kg/m2; training status: running experiences, 4.25 ±
1.81 years; running frequency, 3.13 ± 0.64 times/week; running
distance: 7.88 ± 3.76 km per time) were recruited to participate in
this study. All of them have regularly joined in the half or full
marathon race within 3 years and they were free from any lower
limb and foot injuries at least 6 months before this experiment.
All runners prefer a rear-foot strike at the beginning of long-
distance running and the dominant leg was confirmed to be the
right one based on the kicking test. Informed written consent was
obtained and this study was approved by the Ethics Committee in
Ningbo University (RAGH20201013).

2.2 Experimental Protocol and Procedure
A Vicon motion capture system (Oxford Metrics Ltd., Oxford,
United Kingdom) with 8 infrared cameras was applied to
collect the foot inter-segment kinematics during running at
200 Hz. A total of 30 spherical reflective markers with 9 mm in
diameter were attached to the corresponding bony landmarks
through the hole cut in the shoes based on a previously
established protocol (Song et al., 2020), and three markers
(LD1M, LMMA, and LCPA) were removed after the static
calibration trials (Figure 1). GRFs data and gait cycle were
obtained using an AMTI force platform (Advance Mechanical
Technology Inc, Watertown, United States) embedded in the
middle of a 20-m indoor walkway at a frequency of 1000 Hz.
The Vicon Nexus software (Version 1.8.5, Oxford Metrics
Ltd., Oxford, United Kingdom) was used to record the
kinematics and kinetics data synchronously. The same
pants and running shoes were provided and participants
were required to wear them while running at least 1 week
before the test for adaptation.

The baseline data were first collected during the test day after a 10-
min basic warm-up and environment familiarization. Participants
were instructed to run on the 20-m indoor track at 3.3m/s (equal to
12 km/h), with the above motion capture system and force platform
used to record data and a timing gate to monitor the running speed.
After that, participants were asked to run for 10 km on a treadmill at
12 km/h. This running protocol was chosen because a running
distance of 10 km is long enough to initiate changes, and 12 km/h
corresponds to the average moderate running speed for recreational
runners (Kim et al., 2018). The marker and GRFs data were again
measured immediately after 5 km of running. After the interval test,
participants kept running for another 5 km and did the final 10-
km test.

2.3 Data Collection and Processing
Demographic information and training experience were collected
and calculated before the test. Gait data were first labelled and run
in Vicon Nexus. An experienced technician further checked the
traces and removed all the inconsistent trials. Five successful trials
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for each participant were extracted for further analysis. The
dominant foot inter-segment kinematics, including forefoot
with respect to hindfoot angles (FFHFA) and hindfoot with
respect to tibia angles (HFTBA) in the sagittal, frontal, and
transverse planes, as well as hallux with respect to forefoot
angle (HXFFA) in the sagittal plane, were measured. Angle
values at initial contact (IC) and toe-off (TO), as well as peak
values and range of motion (ROM) in the stance phase, were then
derived. For GRFs parameters, the 1st and 2nd vertical GRFs,
peak propulsive, and breaking GRFs in the stance phase, together
with the 1st and 2nd VALR, were extracted. The peak propulsive
and breaking GRFs refer to the peak positive and negative GRF in
X-axis (anteroposterior direction), and VALR were calculated by
dividing the corresponding vertical GRF with the time from IC.
All kinetic parameters were normalized to body weight for further
analysis.

2.4 Statistical Analysis
For peak variables analysis, one-way repeated-measures analysis
of variance (ANOVA) through SPSS 17.0 software (SPSS,

Chicago, IL, United States) was taken to examine the
significance of foot inter-segment kinematics and GRFs at
critical points between the baseline condition, 5 km, and
10 km of running. The Shapiro-Wilk test was first performed
to assess data normality and data were presented as mean ± SD
(standard deviation). The mean differences (confidence intervals
(95%CI)) among groups were also calculated. Moreover,
ANOVA of one-dimensional statistical parametric mapping
(SPM1d) was also conducted to further observe foot
kinematics changes over the stance phase by using MATLAB
2019b software (The MathWorks, Natick, MA, United States).
The statistical significance level was set at p < 0.05.

3 RESULTS

3.1 Foot Inter-segment Kinematics
The time-series data of foot inter-segment kinematics and the
corresponding SPM1d analysis during the stance phase among
three conditions are shown in Figure 2. Table 1, Table 2, Table 3

FIGURE 1 | Illustration of Oxford Foot Model marker placement protocol ((A): Lower limb model; (B): Foot multi-segmental model). Note: 1, RASI: right anterior
superior iliac spine; 2, LASI: left anterior superior iliac spine; 3, LPSIS: left posterior superior iliac spine; 4, SACR Sacral marker; 5, RPSIS: right posterior superior iliac
spine; 6, RTHI: right thigh marker; 7, LTHI: left thigh marker; 8, RKNE: right lateral knee; 9, LKNE: left lateral knee; 10, RHFB: right lateral head of fibula; 11, RTUB: right
tibial tuberosity; 12, RTIB: right tibial marker; 13, RSHN: right anterior aspect of the shin; 14, LTIB: left tibial marker; 15, RHLX: right hallux; 16, RD1M: right 1st
metatarsal, distal medial; 17, RP1M: right 1st metatarsal, proximal dorsal; 18, RTOE: right toe; 19, RD5M: right 5th metatarsal, distal lateral; 20, RP5M: right 5th
metatarsal, proximal lateral; 21, RANK: right ankle; 22, RMMA: right medial malleoli; 23, RSTL: right sustaniculum tali; 24, RLCA: right lateral calcaneus; 25, RHEE: right
heel; 26, RPCA: right posterior calcaneus proximal; 27, RCPG: right peg marker; 28, LTOE: left toe; 29, LANK: left ankle; 30, LHEE: left heel; The yellow markers were
removed after static calibration.
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exhibits test statistics for all kinematic parameters at critical
points.

3.1.1 Forefoot with Respect to Hindfoot Motion
Through the SPM1d analysis, it was found that FFHFA was
significantly different after 5 km of running compared to baseline
and 10 km (Figure 2A). The larger dorsiflexion and adduction
angles during the mid-stance phase and the larger supination
throughout the stance phase were found at 5 km. In addition,
10 km of running resulted in relatively smaller dorsiflexion at the
early stance phase compared to baseline and 5 km. In the
meantime, significantly less plantarflexion was also found after
5 and 10 km of running by comparing the angles at TO with
baseline. The critical point differences among conditions can be
found in Table 1.

3.1.2 Hallux with Respect to Forefoot Motion
As for HXFFA in the sagittal plane, smaller plantarflexion angles
were presented during the early to midstance phase (Figure 2B)

at 10 km of running, and the peak value of plantarflexion also
decreased after 10 km of running when compared to baseline and
5 km of running (Table 2).

3.1.3 Hindfoot with Respect to Tibia Motion
Similar trends were also found for hindfoot with respect to tibia
motion by examining the full-time series of angles (Figure 2C),
especially in the frontal and transverse planes, 5 km of running
led to larger eversion and external rotation angles during the mid-
stance phase. A consistent result was also found after 5 km of
running when comparing the peak angles, angles at IC and TO
instant, and ROM. Additionally, some significant differences
were presented at 10 km compared to baseline and 5 km. The
critical point differences among conditions are shown in Table 3.

3.2 Ground Reaction Forces
The group average and statistics of GRFs during the stance phase
are presented in Table 4. No significant differences were found
among conditions except peak propulsive, with its value

FIGURE 2 | The time-series data and SPM1d analysis of foot inter-segment kinematics during stance phase at baseline condition and immediately after 5 and
10 kmof running, (A): forefoot with respect to hindfoot motion; (B): hallux with respect to forefoot motion; (C): hindfoot with respect to tibia motion. Note: FFHFA, forefoot
with respect to hindfoot angles; HXFFA, hallux with respect to forefoot angle; HFTBA, hindfoot with respect to tibia angles; DF, dorsiflexion; PF, plantarflexion; SP,
supination; PR, pronation; ADD, adduction; ABD, abduction; IV, inversion; EV, eversion; IR, internal rotation; ER, external rotation.
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decreasing significantly after 10 km compared to 5 km of
running.

4 DISCUSSION

This study set out to measure the inter-segment foot
kinematics and GRF differences after a continuous 5 and
10 km of running compared to the baseline. Consistent with
our first hypothesis, significant kinematic deviations among
conditions were found. However, the second hypothesis was
partially supported since only the difference in propulsive
force was detected.

4.1 Forefoot Motion
By exploring the forefoot motion with respect to rearfoot, it is
possible to gain further insight into the plantar dynamic changes
during long-distance running. In the sagittal plane, the
plantarflexion angle at TO was found to significantly decrease
both after 5 and 10 km of running. Although the differences seem
relatively small at first glance (2.45° between baseline and 5 km,
2.01° between baseline and 5 km), several studies have revealed
that the intricate foot inter-segment movement could have a
significant effect on the plantar fascia function (Ferber and
Benson, 2011; Michael E Graham et al., 2011; Chang et al.,
2014). For instance, a tiny distance change between the
forefoot and rearfoot (< 1 mm) would contribute to a 34.8%

TABLE 1 | Forefoot with respect to hindfoot motion kinematics at baseline and immediately after 5 and 10 km of running.

Running distance p-values, mean difference (95%CI)

Baseline 5 km 10 km Baseline/5 km Baseline/10 km 5km/10 km

Mean (SD) Mean (SD) Mean ± SD

FFHFA (°)

X

IC −1.30 ± 3.88 −0.77 ± 4.63 −1.29 ± 3.47 0.470, −0.53 (−1.43 to 0.38) 1.000, −0.01 (−0.80 to 0.78) 0.458, 0.52 (−0.37–1.40)
TO −10.55 ± 2.53 −8.11 ± 4.83 −8.54 ± 3.94 0.007, −2.45 (−4.33 to −0.57) 0.013, −2.01 (−3.69 to −0.34) 1.000, 0.44 (−0.74–1.61)
DF (max) 13.98 ± 6.44 14.14 ± 6.79 13.42 ± 5.45 1.000, −0.16 (−1.24 to 0.92) 0.561, 0.56 (−0.48–1.60) 0.252, 0.72 (−0.29–1.74)
PF(MAX) −16.35 ± 2.65 −14.96 ± 6.21 −15.46 ± 5.10 0.125, −1.39 (−3.03 to 0.26) 0.278, −0.89 (−2.17 to 0.40) 0.369, 0.50 (−0.29–1.29)
ROM(DF/PF) 30.33 ± 6.30 29.10 ± 7.45 28.88 ± 6.03 0.304, 1.23 (−0.59–3.04) 0.071.1.45 (−0.09–2.98) 1.000, 0.22 (−1.04–1.48)

Y

IC 11.95 ± 1.84 12.07 ± 1.28 11.52 ± 2.55 1.000, −0.12 (−0.75 to 0.52) 0.172, 0.43 (-0.12–0.99) 0.368, 0.55 (−0.32–1.42)
TO 12.92 ± 2.26 13.38 ± 2.16 12.56 ± 1.74 0.104, −0.46 (−0.98 to 0.07) 0.601, 0.36 (-0.33–1.06) 0.001, 0.82 (0.29–1.35)
SP(max) 13.93 ± 2.93 14.41 ± 2.21 13.46 ± 2.17 0.060, −0.48 (−0.98 to 0.01) 0.141, 0.47 (-0.10–1.03) < 0.001, 0.95 (0.50–1.40)
ROM(SP/PR) 4.61 ± 1.12 4.64 ± 1.25 4.66 ± 0.82 1.000, −0.04 (−0.46 to 0.39) 1.000, −0.05 (−0.60 to 0.49) 1.000, −0.02 (−0.61 to 0.57)

Z

IC 14.01 ± 2.07 13.52 ± 2.37 13.70 ± 2.85 0.143, 0.50 (−0.11–1.10) 0.501, 0.31 (−0.24–0.87) 1.000, −0.18 (−0.73 to 0.37)
TO 14.04 ± 2.26 14.40 ± 1.68 13.89 ± 2.42 0.177, −0.37 (−0.83 to 0.10) 1.000, 0.15 (−0.42–0.71) 0.127, 0.51 (−0.10–1.12)
ADD (max) 20.00 ± 3.60 20.66 ± 3.20 19.57 ± 3.54 0.049, −0.66 (−1.32 to -0.01) 0.775, 0.43 (−0.50–1.35) 0.002, 1.09 (0.34–1.83)
ROM(ADD/ABD) 13.02 ± 2.16 14.04 ± 1.81 12.96 ± 1.92 0.001, −1.02 (−1.67 to −0.38) 1.000, 0.06 (−0.96–1.08) 0.007, 1.09 (0.24–1.93)

Note: FFHFA, forefoot with respect to hindfoot angles; SD, standard deviation; CI: confidence interval; IC, initial contact; TO, toe-off; DF, dorsiflexion; PF, plantarflexion; SP, supination; PR,
pronation; ADD, adduction; ABD, abduction; ROM, range of motion.

TABLE 2 | Hallux with respect to forefoot motion kinematics at baseline and immediately after 5 and 10 km of running.

Running distance p-values, mean difference (95%CI)

Baseline 5 km 10 km Baseline/5 km Baseline/10 km 5km/10 km

Mean (SD) Mean (SD) Mean ± SD

HXFFA (°)

X

IC −5.41 ± 5.37 −4.99 ± 7.34 −4.22 ± 6.78 1.000, −0.41 (−1.86 to 1.04) 0.055, −1.18 (−2.38 to 0.02) 0.420, −0.77 (−2.04 to 0.50)
TO 3.37 ± 4.81 2.28 ± 4.69 3.77 ± 5.12 0.452, 1.10 (−0.77–2.96) 1.000, −0.40 (−2.00 to 1.21) 0.180, −1.49 (−3.42 to 0.43)
DF (max) 21.39 ± 5.52 21.02 ± 4.37 22.28 ± 4.74 1.000, 0.37 (−1.13–1.87) 0.214, −0.89 (−2.09 to 0.31) 0.102, −1.26 (−2.69 to 0.17)
PF(max) −10.87 ± 4.03 −11.40 ± 5.42 −9.79 ± 5.40 0.739, 0.54 (−0.60–1.67) 0.074, −1.08 (−2.24 to 0.08) 0.006, −1.62 (−2.85 to −0.38)
ROM(DF/PF) 32.25 ± 5.02 32.42 ± 3.84 32.06 ± 4.20 1.000, −0.17 (−1.24 to 0.91) 1.000, 0.19 (−1.10–1.48) 1.000, 0.36 (−0.78–1.50)

Note: HXFFA, hallux with respect to forefoot angle; SD, standard deviation; CI: confidence interval; IC, initial contact; TO, toe-off; DF, dorsiflexion; PF, plantarflexion; ROM, range of motion.
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change of plantar fascia strain (Michael E Graham et al., 2011).
Also, a change of 1° in arch angle can lead to a plantar fascia tension
change of 0.4–0.7 times of body weight during the early stance
phase (Ferber and Benson, 2011). Thus, we speculated that the
decreased forefoot plantarflexion motion during the stance phase
may result in the increased stress and strain of plantar aponeurosis
and consequently higher injury risks. In addition, smaller forefoot
dorsiflexion angles were found during the early (15–20%) stance

phase at 10 km of running compared to baseline and 5 km of
running, which indicates that runners may tend to a relative
midfoot strike pattern after long-distance running, probably
because of compensating for local muscle fatigue (Kim et al., 2018).

Concerning forefoot motion in the frontal plane, decreased
supination angles were observed throughout the stance phase
after 10 km of running compared to 5 km, which may also
correlate with the changes of foot posture after long-distance

TABLE 3 | Hindfoot with respect to tibia kinematics at baseline and immediately after 5 and 10 km of running.

Running distance p-values, mean difference (95%CI)

Baseline 5 km 10 km Baseline/5 km Baseline/10 km 5km/10 km

Mean (SD) Mean (SD) Mean ± SD

HFTBA (°)

X

IC 20.96 ± 3.13 23.19 ± 3.71 20.78 ± 4.48 0.002, −2.23 (−3.72 to −0.73) 1.000, 0.19 (−1.33–1.70) 0.002, 2.41 (0.81–4.02)
TO −16.03 ± 9.05 −16.66 ± 13.00 −18.08 ± 12.18 1.000, 0.63 (−2.30–3.57) 0.205, 2.05 (−0.68–4.77) 0.077, 1.42 (−0.11–2.94)
DF (max) 34.82 ± 5.59 37.62 ± 5.96 36.98 ± 5.84 < 0.001, −2.79 (−4.04 to −1.54) 0.005, −2.15 (−3.76

to −0.55)
0.976, 0.64 (−0.96–2.24)

PF(max) −16.29 ± 8.80 −16.78 ± 12.78 −18.23 ± 11.89 1.000, 0.50 (−2.30–3.29) 0.194, 1.94 (−0.61–4.49) 0.047, 1.45 (0.01–2.88)
ROM(DF/
PF)

51.11 ± 8.38 54.40 ± 11.47 55.20 ± 10.12 0.031, −3.29 (−6.35 to −0.24) 0.001, −4.10 (−6.64
to −1.56)

0.997, −0.81 (−2.85 to 1.23)

Y

IC −2.72 ± 9.85 −7.14 ± 10.33 −1.92 ± 13.82 < 0.001, 4.42 (1.93–6.91) 1.000, −0.81 (−5.04 to 3.43) 0.008, −5.23 (−9.30
to −1.15)

TO 11.86 ± 12.84 6.27 ± 10.31 8.96 ± 13.80 < 0.001, 5.59 (3.38–7.80) 0.583, 2.90 (−2.56–8.35) 0.325, −2.70 (−6.79 to 1.39)
IV(max) 12.83 ± 13.06 8.14 ± 11.59 10.90 ± 12.35 < 0.001, 4.70 (2.81–6.58) 0.953, 1.94 (−2.82–6.69) 0.267, −2.76 (−6.70 to 1.18)
EV (max) −24.54 ± 11.84 −28.92 ± 11.26 −24.75 ± 13.37 < 0.001, 4.38 (2.02–6.74) 1.000, 0.20 (−2.85–3.25) 0.019, −4.18 (−7.81

to −0.54)
ROM(IV/EV) 37.38 ± 11.47 37.06 ± 10.82 35.64 ± 8.49 1.000, 0.31 (−2.86–3.49) 0.543, 1.73 (−1.43–4.89) 0.161, 1.42 (−0.36–3.19)

Z

IC 4.78 ± 4.87 2.18 ± 4.71 4.70 ± 6.77 0.001, 2.60 (0.96–4.24) 1.000, 0.08 (−1.90–2.05) 0.006, −2.52 (−4.44
to −0.60)

TO 7.38 ± 9.36 8.81 ± 10.23 6.69 ± 8.82 0.053, −1.43 (−2.86 to 0.01) 0.578, 0.69 (−0.60–1.98) 0.014, 2.12 (0.35–3.88)
IR (max) 10.62 ± 5.92 11.40 ± 7.18 9.08 ± 7.46 0.713, −0.78 (−2.39 to 0.84) 0.060, 1.54 (−0.05–3.13) 0.017, 2.32 (0.34–4.30)
ER (max) −18.55 ± 3.32 −22.30 ± 4.70 −22.24 ± 7.36 < 0.001, 3.75 (2.34–5.17) < 0.001, 3.69 (1.55–5.83) 1.000, −0.06 (−2.05 to 1.93)
ROM(IR/ER) 29.17 ± 8.16 33.70 ± 8.87 31.32 ± 10.98 < 0.001, −4.53 (−6.47 to −2.59) 0.095,−2.15 (−4.55 to 0.26) 0.128, 2.38 (−0.46–5.22)

Note: HFTBA, hindfoot with respect to tibia angles; SD, standard deviation; CI: confidence interval; IC, initial contact; TO, toe-off; DF, dorsiflexion; PF, plantarflexion; IV, inversion; EV,
eversion; IR, internal rotation; ER, external rotation; ROM, range of motion.

TABLE 4 | Ground reaction forces at baseline and immediately after 5 and 10 km of running.

Running distance p-values, mean difference (95%CI)

Baseline 5 km 10 km Baseline/5 km Baseline/10 km 5km/10 km

GRFs Mean (SD) Mean (SD) Mean ± SD

First peak
vertical (BW)

1.95 ± 0.28 1.99 ± 0.29 2.03 ± 0.26 1.000, −0.04 (−0.15 to 0.08) 0.268, −0.08 (−0.20 to 0.04) 0.837, −0.05 (−0.16 to 0.06)

Second peak
vertical (BW)

2.67 ± 0.18 2.66 ± 0.21 2.60 ± 0.27 1.000, 0.01 (−0.05–0.07) 0.229, 0.07 (−0.02–0.15) 0.134, 0.06 (−0.01–0.12)

First VALR (BW/s) 45.64 ± 15.69 48.11 ± 14.04 47.58 ± 11.04 0.684, −2.47 (−7.48 to 2.54) 1.000, −1.94 (−8.04 to 4.16) 1.000, 0.53 (−4.64–5.69)
Second VALR (BW/s) 27.14 ± 4.59 28.14 ± 3.29 27.85 ± 4.53 0.599, −1.00 (−2.90 to 0.91) 1.000, −0.71 (−2.58 to 1.17) 1.000, 0.29 (−1.37–1.96)
Peak braking (BW) −0.17 ± 0.05 −0.18 ± 0.07 −0.18 ± 0.08 1.000, 0.01 (−0.02–0.04) 1.000, 0.01 (−0.03–0.04) 1.000, −0.01 (−0.03 to 0.03)
Peak propulsive (BW) 0.14 ± 0.07 0.14 ± 0.08 0.12 ± 0.07 0.741, −0.01 (−0.02 to 0.01) 0.443, 0.01 (−0.01–0.03) 0.005, 0.02 (0.01–0.03)

Note: SD, standard deviation; CI: confidence interval; GRFs, ground reaction forces; VALR, vertical average loading rate; BW, body weight.
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running (Mei et al., 2019). Specifically, it has been proved that
long-distance running would result in a more pronated foot
posture and a redistributed forefoot plantar load with
increased pressure under the 2nd and 3rd metatarsal while
decreasing under 4th and 5th metatarsals (Bisiaux and
Moretto, 2008; Mei et al., 2019). Moreover, the significantly
reduced peak forefoot adduction angle and ROM, as well as
relatively smaller forefoot adduction during early (15–21%) and
mid-stance (37–51%) phase at 10 km of runnimg, could be
another possible explanation for the above findings since
forefoot adduction is a part of foot supination during the
propulsion phase (Levinger et al., 2010). Similar kinematic
changes in frontal and transverse planes were also found in
individuals with flat arch during walking (Hunt and Smith,
2004). It has been demonstrated that the pronated foot
posture after long-distance running could further lead to a
reduced arch height (Fukano et al., 2018), which could let the
foot move with a relatively “flat arch” pattern and may induce
plantar pain during running.

4.2 Hallux Motion
Compared to previous data, a relatively different result of hallux
motion was observed in this study. Generally, rearfoot-strike
runners would present great hallux dorsiflexion during the
early and last stance phase of running because of the rollover
mechanism (Samson et al., 2014). However, our findings showed
that, although there was no significant difference among
conditions, the hallux exhibited considerably smaller
dorsiflexion angle both at IC and TO. A possible explanation
for this difference may be the narrow forefoot part of footwear
due to modern aesthetic needs. Previous research has
demonstrated that the insufficient forefoot space (width and
height) may limit the ambulatory function of toes, affect its
kinematic performance during locomotion, and potentially
lead to foot injuries (such as bruised toenails) because of
repetitive friction (Runners Connect, 2013; Wallden, 2016;
Xiang et al., 2018). Two studies measuring the foot inter-
segment kinematics while walking or running barefoot
presented normal hallux dorsiflexion during the stance phase
(Sun et al., 2018; Xiang et al., 2020a). Therefore, more
comparisons concerning the effects of forefoot space of
footwear on hallux biomechanics are warranted. In addition,
the strike pattern may also contribute to this difference.
Although all participants in this study preferred rearfoot strike
at the beginning of the long-distance running test, it was
demonstrated above that runners may shift to a relative
midfoot landing strategy as indicated by the smaller forefoot
dorsiflexion angles from early to mid-stance phases. Compared to
baseline and 5 km of running, it was also found that the
plantarflexion angles decreased during the early stance phase
at 10 km of running. Together with the smaller peak propulsive
force found after 10 km of running, it was speculated that the toes’
dynamic control function, such as gripping, may gradually reduce
after long-distance running, which was also consistent with
previous findings (Kim et al., 2018; Mei et al., 2018).
Nevertheless, more studies concerning the hallux biomechanics
during long-distance running are recommended.

4.3 Rearfoot Motion
Most of the distinct effects concerning foot inter-segment kinematics
were observed in rearfoot motion. As for the sagittal plane, higher
dorsiflexion angles at IC and during the early (0–5%) and mid-late
(56–75%) stance phase were presented after 5 km of running, and a
higher peak dorsiflexion angle and ROMwere presented after both 5
and 10 km of running. Although stride length was not measured in
this study, it was previously demonstrated that the increase in rearfoot
dorsiflexion resulted in a greater stride length (Sun et al., 2018).
Similarly, the decreased dorsiflexion angle at IC and increased peak
plantarflexion angle, and larger plantarflexion during the early
(15–18%) stance phase may indicate the stride length was reduced
again after 10 km of running when compared to 5 km. As muscular
fatigue may happen during long-distance running, the lower limb is
likely to shift its gait to a shorter but quicker step frequency (Millet
et al., 2009; Kim et al., 2018), which could be a possible explanation
for the stride length change at 10 km of running.

In the frontal plane, higher eversion angles throughout the
stance phase were found after 5 km of running compared to
the other two conditions. Previous research provided evidence
that increased rearfoot eversion motion would be an injury
indicator, which may potentially increase the risk of plantar
fasciitis because of excessive use (Ryan B Graham et al., 2011;
Chang et al., 2014). Moreover, excessive rearfoot eversion
would further lead to excessive midfoot dorsiflexion, and this
abnormal kinematic coupling foot motion has been proved a
risk factor for lower limb RRI (Takabayashi et al., 2018). In
addition, greater internal to external rotation, especially
during the mid-late stance (34–75%) phase and
consequently increased ROM in the transverse plane, were
also observed at 5 km of running. An increase in the rearfoot
rotation was demonstrated to be associated with an increase in
tibial rotation and then would further affect the proximal
joints’ function (such as the knee joint) because of the
coupling motion (Lundberg et al., 1989; Williams et al.,
2001; Levinger et al., 2010). This could also serve as an
underlying mechanism for knee injuries after long-distance
running, such as iliotibial band syndrome (Aderem and Louw,
2015).

4.4 Ground Reaction Forces
A comparison with previous data also revealed some different
results in GRFs in our study. Kim et al. (2018) conducted a
systematic review to investigate the effect of long-distance
running on lower-limb biomechanical parameters in healthy
runners. They summarized that lower vertical GRFs and
loading rate would be presented after long-distance
running due to the increased mechanical stress with
decreased musculoskeletal capacities. However, no
significant differences among conditions were found in this
study except a lower peak propulsive force at 10 km of running
compared to 5 km. The participants’ heterogeneity between
studies would be the primary explanation for these differences
since the fatigue-related changes were speculated to initiate at
10 km of running according to our findings in kinematics.
Investigating longer-distance running (such as 20 km) based
on participants involved in this study will be performed for
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further verification. Moreover, the inconsistent GRF results of
this study may also be due to the equipment accuracy and
future studies using more precise devices (e.g., insole-type
pressure mat) could add insight (Lung et al., 2008; Jung et al.,
2014).

4.5 Limitations
Some limitations of this study should be considered. Firstly,
the main purpose of the current study was to investigate the
effect of long-distance running on foot adaptions, thus many
other parameters, such as running surface, running shoes, and
gender were not addressed. Secondly, the plantar pressure
differences and the repeated stress loading on soft tissue
stiffness before and after long-distance running were not
measured, which may add more conclusive explanations for
the findings of this study (Pu et al., 2018; Duan et al., 2021).
Moreover, the muscular fatigue after 10 km of running was
only speculated based on previous research results and further
investigation about muscle activity before and after running is
warranted for verification. In addition, distinct individuals
may show different foot kinematic responses during running
and a cluster analysis may help find the particular baseline
patterns among them (Watari et al., 2021). Lastly, we only
investigated the foot kinematic differences during the stance
phase as it is the only time for foot–ground interaction.
However, the swing phase kinematics shall present more
preparatory foot adaptations during long-distance running
(Dixon et al., 2011). Further large sample size studies
concerning these aspects would reveal more profound
knowledge.

5 CONCLUSION

In summary, this study revealed that the foot inter-segment
kinematics and GRFs were significantly influenced by long-
distance running. Excessive foot motion after 5 km of running
may potentially increase the risks of RRI, while 10 km of
running changed foot posture, decreased propulsive force,
and may also result in high RRI risks because of muscle

fatigue. In addition, the forefoot space of footwear may affect
foot biomechanics in response to long-distance running,
specifically in the hallux region. Findings from the current
study give further insight into how inter-segments of foot
interact and how GRFs vary during a long-distance running
event, adding references for future studies aiming at foot RRI
evaluation and prediction.
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