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Drug-carrying nanoparticles have obtained great attention for disease treatments due to
the fact that they can improve drug solubility, provide drug protection and prolong release
duration, thus enhancing drug bioavailability and increasing therapeutic efficacy. Although
nanoparticles containing drugs can be administered via different routes such as oral,
intravenous and ocular, transdermal delivery of nanoparticles mediated by microneedles
has attracted considerable interest due to the capability of circumventing enzymatic
degradation caused by gastrointestinal track, and increasing patient compliance by
reducing pain associated with hypodermic injection. In this review, we first introduce
four types of nanoparticles that were used for drug delivery, and then summarize strategies
that have been employed to facilitate delivery of drug-loaded nanoparticles via
microneedles. Finally, we give a conclusion and provide our perspectives on the
potential clinical translation of microneedle-facilitated nanoparticles delivery.
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INTRODUCTION

Due to the unique advantages, such as protection from enzyme degradation, prolonged half-life of
drugs, desired targetability, ability to achieve sustained release, nanoparticles have been extensively
used for delivering a wide variety of drugs that are applied for multiple disease treatments, such as
diabetes, wound healing and cancers (Baetke et al., 2015). Although drug-loaded nanoparticles can
be administered via different routes for therapies such as oral, intravenous and ocular
administration, transdermal delivery of nanoparticles mediated by microneedles (MNs) has
drawn considerable attention due to the capability of circumventing enzymatic degradation
caused by gastrointestinal track, and increasing patient compliance by reducing pain associated
with hypodermic injection (Table 1). MNs are array of micro-scale needles that can penetrate the
outmost skin layer, termed stratum corneum, and enter the skin to achieve transdermal drug delivery
in a minimally invasive manner (Prausnitz, 2017). Using MNs, many kinds of drugs have been
successfully and efficiently delivered into the skin, such as levonorgestrel (Li et al., 2019), insulin (Zhu
et al., 2020), calcitonin (Tas et al., 2012) and influenza vaccine (Stinson et al., 2021). As portable and
minimally invasive devices, MN patches that contain hundreds of MNs connecting with supporting
layers can effectively overcome the barrier of stratum corneum to facilitate transdermal delivery of
nanoparticles that are far greater than pure drugs, either by producing reversible microchannels for
enhancing skin permeation of topically applied nanoparticles (e.g., solid MNs), or by getting
dissolved under the skin to achieve direct delivery of nanoparticles in the skin (e.g., coated MNs
and dissolvable MNs) (Figure 1). Although the topic about transdermal delivery of nanoparticles via
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MNs has been recently reported by some review papers (Chen
et al., 2020; Alimardani et al., 2021; Ruan and Zhang, 2021; Salwa
et al., 2021), this work put a different emphasis on this subject that
include the design and summarization of drug-carrying
nanoparticles integrated with MNs. In this review, we first
introduce the four types of nanoparticles capable of carrying
drugs, including nanocrystals, lipid nanoparticles, polymeric
nanoparticles and inorganic nanoparticles, and then describe
MN-based strategies that have been adopted to aid
transdermal delivery of these nanoparticles for drug delivery.
Finally, we provide our perspectives on the potential translation
of MNs-mediated delivery of nanoparticles in the skin.

NANOPARTICLES FOR DRUG DELIVERY
MEDIATED BY MICRONEEDLES

There have been a great number of drug-carrying nanoparticles
that are developed for transdermal drug delivery mediated by
MNs, either for localized delivery or for systemic release to treat a
variety of diseases, such as skin cancer, contraception, diabetes or
cardiovascular diseases (Chen et al., 2020; Salwa et al., 2021; Vora
et al., 2021) (Table 2). These nanoparticles can be classified into
four types based on their fabricating materials, including
nanocrystals that are made of pure drugs, lipid-based
nanoparticles that are fabricated with lipids, polymeric

TABLE 1 | The comparison of different administration routes for drug-carrying nanoparticles.

Administration
routes

Microneedles Oral Intravenous Topical

Advantages No pain; self-administration; enabling
localized drug delivery; High bioavailability;
increase patient compliance; reduced side
effects; low cost

Easy to use; no pain High bioavailability Easy to use; no pain

Drawbacks Limited drug dose Low bioavailability; poor
distribution; requiring frequent
administration; undesirable side
effects

Pain; reduced patient
compliance; requiring
healthcare providers; systemic
toxicity

Poor bioavailability; extremely
low absorption; only for small
lipophilic drugs use

FIGURE 1 | The schematic illustration of MNs-mediated transdermal delivery of nanoparticles.
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nanoparticles that are comprised of natural or synthetic
polymers, and inorganic nanoparticles that are composed of
inorganic materials (e.g., silicas, metals).

Nanocrystals
Generally, low bioavailability and small absorption of poorly
soluble drugs represent major problems in the pharmaceutical
drug development (Savjani et al., 2012). Numerous efforts have
been made to increase the solubility and biodistribution of poorly
soluble drugs (Nagarwal et al., 2011), among which nanocrystal
technology plays an important role in addressing the problems
associated with low solubility of drugs. Nanocrystals are carrier-
free drug particles within nanometer size range, and have
increased dissolution rate due to increased surface area, thus
possessing enhanced bioavailability (Srivalli and Mishra, 2015).
Moreover, owing to the structure of non-polymer covering,
nanocrystals have high drug loading capability (as high as
100%), which makes them extremely attractive for treatments
of the diseases that usually require high drug doses. A further
characteristic of nanocrystals is that they can achieve sustained
release of the drug for an extended period at the administration
site due to the slow dissolution in the aqueous environment
(Permana et al., 2020).

Lipid-Based Nanoparticles
Lipid-based nanoparticles are most typically spherical vesicles
with single or multi-lipid bilayers that encapsulate aqueous
droplets, and the lipid-based nanoparticles mainly include:
liposomes, nanoemulsions, solid lipid nanoparticles (SLNs),
nanostructured lipid carriers (NLCs) (Vitorino et al., 2014).
Due to the lipophicity of the nanoparticles, they are beneficial
to increase solubility of poorly water-soluble drugs, thereby
enhancing bioavailability. Besides, lipid layers of nanoparticles
can fuse with stratum corneum lipids to further improve the drug
transport through the skin (Kuntsche et al., 2008). As one kind of
the most prevalent lipid-based nanocarriers, liposomes are
usually made of phospholipids that can form unilamellar and
multilamellar vesicular structures, which makes liposomes
suitable to carry and deliver hydrophilic, hydrophobic or
lipophilic drugs (Mitchell et al., 2021).

Polymeric Nanoparticles
Polymeric nanoparticles used for drug delivery offer many special
advantages over other kinds of nanoparticles, including increased
target ability after surface modification, improved biocompatibility,

reduced cytotoxicity and prolonged drug release duration (Begines
and Ortiz, 2020). A variety of natural or synthetic polymers have
been used in polymeric nanoparticle formulations, such as poly (D,
L-lactide-co-glycolide) (PLGA), poly (lactic acid) (PLA),
polyethylene glycol (PEG), polyacrylates, chitosan, alginate,
gelatin and albumin (De Jong and Borm, 2008). Among the
above polymers, PLGA is the most frequently used hydrophobic
polymer because of its excellent biocompatibility and slow
biodegradation rate, which makes it appealing for the
development of controlled release formulations (Naves et al.,
2017), and PEG is the most commonly used hydrophilic polymer
with non-immunogenic, biocompatible and flexible nature, which
makes it suitable for the delivery of hydrophilic drugs or bioactive
molecules that usually require mild condition during encapsulation
process (Jeyhani et al., 2019).

Inorganic Nanoparticles
Inorganic nanoparticles are non-toxic, hydrophilic, biocompatible
and highly stable, which makes them ideal for drug delivery.
Inorganic nanoparticles for drug delivery mainly include
mesoporous silica nanoparticles (MSNs), superparamagnetic iron
oxides (SPIONs), quantum dots and metallic nanoparticles. MSNs
have been widely used as controlled release carriers for drugs due to
their large specific surface area, regular pore structure, adjustable
pore size and good biocompatibility. Meanwhile, their unique
mesoporous structure can prevent drugs from enzyme
degradation or early release. In addition, the porous surface is
covered with a large number of silica hydroxyl groups, which
enables mesoporous silica nanoparticles to be functionalized by
post-modification with a variety of polymers or specific drugs,
forming intelligent drug control systems (Choi et al., 2021).
SPIONs are kind of magnetic nanoparticles that can be guided
by the direction of external magnetic field. Besides, they can also be
used as contrast agents for magnetic resonance imaging (MRI) for
diagnosis of diseases (Zhu et al., 2017). Quantum dots are
semiconductor nanomaterials with diameters between 2 and
100 nm, usually prepared from III–V or group II–VI elements.
Quantum dot excitation light has wide band range, narrow emission
spectrum width, high fluorescence intensity, good stability, long life
and certain antibacterial activity (Ren et al., 2020), which makes it
have a good application prospect in wound healing (Salleh and
Fauzi, 2021), drug transport (Fakhri et al., 2017), fluorescent
biosensors (Hu et al., 2021) and disease diagnosis (Mansuriya
and Altintas, 2021). In recent years, metallic nanoparticles have
attracted growing interest in drug delivery, and the modification and

TABLE 2 | The representative applications of transdermal delivery of drug-loaded nanoparticles via MNs.

Type of nanoparticle Type of MNs Carried drug Application References

Nanocrystals Dissolvable MNs Rilpivirine Anti- human immunodeficiency virus (HIV) Mc Crudden et al. (2018)
Dissolvable MNs Methotrexate Treatment of psoriasis Tekko et al. (2020)

Lipid-based nanoparticles Dissolvable MNs doxycycline, diethylcarbamazine and albendazole Antifilariasis drugs Permana et al. (2019)
Coated MNs Cisplatin Anticancer Lan, (2018)

Polymeric nanoparticles Solid MNs Insulin Diabetes treatment Zhang et al. (2020)
Hollow MNs Ovalbumin Vaccine antigen de Groot et al. (2017)

Inorganic nanoparticles Dissolvable MNs Doxorubicin Anticancer Dong et al. (2018)
Coated MNs Ovalbumin Vaccine antigen Tu et al. (2017)
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functionalization of metallic nanoparticles with specific functional
groups allow them to bind to antibodies, drugs and other ligands,
making metallic nanoparticles promising in biomedical applications
(Patra et al., 2018).

STRATEGIES OF MN-MEDIATED
TRANSDERMAL DELIVERY OF
NANOPARTICLES
Although many research have confirmed the benefits of
nanoparticles as drug reservoirs for transdermal drug delivery,
a lot of evidences demonstrate that nanoparticles still stay in the
upper layer of stratum corneum and are restricted to deep
penetration in the skin after topical application (Lademann
et al., 2007; Sahle et al., 2017). In order to address the issue,
minimally invasive MN-based strategies have been developed to
facilitate transdermal delivery of therapeutics-loaded
nanoparticles, including topical application of nanoparticles
after MN penetration, transdermal delivery via coated MNs,
transdermal delivery via dissolvable MNs, and transdermal
delivery by the combination of iontophoresis and MNs.

Topical Application Through the
MN-Punctured Pores
The most typical strategy of MN-mediated transdermal delivery of
nanoparticles is the topical application of a formulation containing
nanoparticles after MNs pretreatment, which created microscopic
puncture holes in the skin allowing nanoparticles to diffuse through
the skin (Figure 2) (Eneko et al., 2016). Zhang et al. used confocal
laser scanningmicroscopy to visualize the distribution of fluorescent
PLGA nanoparticles in the skin through the microchannels
produced by solid MNs application, and they observed a great
number of nanoparticles could travel and deposit in Epidermis
located below the stratum corneum, demonstrating the enhanced
transdermal delivery of nanoparticles facilitated by solid MNs
pretreatment (Zhang et al., 2010). This strategy has the advantage
of enhancing skin permeation of nanoparticles, while it still suffers
from limited drug amount that can be transported through the skin
(Alimardani et al., 2021).

Transdermal Delivery of Nanoparticles by
Hollow MNs
Hollow MNs are also beneficial for transdermal delivery of
nanoparticles, which allows for continuous delivery of liquid
nanoparticle formulations, like nanoparticle suspensions, into

the skin through the inserted hollow needles. Such kind of
MNs is possibly capable of precisely delivering larger amounts
of nanoparticles with spatial and temporal resolution compared
to solid MNs (Roxhed et al., 2008). For example, Mir et al.
developed a liquid injection system (AdminPen®) by combining
bacterial enzyme-responsive nanoparticles with hollow MNs. In
vivo skin insertion and dermatokinetic studies suggested that the
system delivered about 8.5 times higher concentrations of the
drug, carvacrol (CAR), in the form of NPs as compared with
topically applied hydrogel containing pure CAR, indicating a
great potential of increasing transdermal delivery of nanoparticles
by hollow MNs (Mir et al., 2020). In spite of the capability of
enabling transdermal delivery of precise and increased
nanoparticles facilitated by hollow MNs, such strategy is
compromised by the use of complicated setups.

Transdermal Delivery of Nanoparticles via
Coated MNs
Coated MNs that contain a nanoparticle formulation at the surface
can completely dissolve the coating and subsequently deliver the
nanoparticles at the administration site upon skin insertion. Coated
MNs are generally made of solid MNs and surface coatings that can
be prepared by various methods such as dip coating (Ma and Gill,
2014), spray coating (Ning et al., 2020) and other sophisticated
methods (Tort and Mutlu Agardan, 2020). For example, DeMuth
et al. designed PLGA MNs coated with cationic poly (β-amino
ester) (PBAE) and negatively charged interbilayer-cross-linked
multilamellar lipid vesicles (ICMVs) for delivery of protein
antigen and the antigen adjuvant (DeMuth et al., 2012). This
coating of PBAE and ICMV rapidly transferred from the MNs to
the skin after MNs insertion, leading to an efficient delivery of
antigens to antigen-presenting cells and inducing a robust immune
response (Figure 3) (DeMuth et al., 2012). Although this method is
very straightforward, but it still suffers from limited amount of
nanoparticles that can be delivered into the skin via coated MNs
(Kim et al., 2012).

Transdermal Delivery of Nanoparticles via
Dissolvable MNs
The grim situation of poorly soluble drugs in the topical
application has encouraged the combination of drug
nanocrystals or drug-loaded nanoparticles with dissolvable
MNs (Figure 4) (Lee et al., 2014). Unlike coated MNs,
dissolvable MNs can get dissolution of the whole MNs and
then release the encapsulated nanocrystals or nanoparticles at
the administration site under skin, which makes dissolvable MNs

FIGURE 2 | A schematic representation of solid MNs pretreatment for increasing the permeability of nanoparticles by creating micro-holes across the skin (Eneko
et al., 2016).
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be able to deliver more nanoparticles compared with coatedMNs.
For example, methotrexate sodium salt (MTX Na), a drug for
psoriasis treatment, is poorly water soluble and hard to be used
topically. Such drug could be made into nanocrystals and
incorporated into dissolvable MNs. After skin insertion, the
MTX nanocrystal-carrying MNs exhibited desired drug
delivery efficiency, showing approximately 322-fold higher
accumulation in the skin 24 h after administration than free
MTX. In vivo studies in rats revealed that 72 h after
administration, there was still about 12.5% of the MTX
nanocrystals deposited in the skin, suggesting a localized and
sustained drug delivery facilitated by the strategy of dissolvable
MNs and nanotechnology (Tekko et al., 2020).

Combination of Iontophoresis With MNs for
Transdermal Delivery of Nanoparticles
Electric-field related methods have been used as auxiliary
means for better drug transport (Niamlang and Sirivat, 2009).

Transdermal iontophoresis is a physically noninvasive method
that involves applying a low electrical potential gradient across
the skin to facilitate the passage of charged or polar substances
through the skin (Katikaneni et al., 2009). However, the use of
iontophoresis alone still has limited improvement and do not
significantly promote drug penetration from stratum corneum to
deeper layers (e.g., Epidermis and dermis), especially for those
biological macromolecules such as proteins or DNA. The strategy
of combining iontophoresis with MNs can significantly improve
the transdermal delivery efficiency as well as broaden the diversity
of drugs ranging from small chemicals to large molecules or drug-
loaded nanoparticles (Katikaneni et al., 2009; Lanke et al., 2009;
Vemulapalli et al., 2012; Gaware et al., 2019). For example, Chen
et al. investigated the transdermal delivery of insulin-loaded
nanovesicles driven by iontophoresis through microchannels
created by solid MNs (Chen et al., 2009). Facilitated by MNs
puncture, in vivo permeation study exhibited 86.1–166.7 times
higher drug permeability than that without MNs pretreatment.
Further, under the influence of a forward current, the positive

FIGURE 3 | The schematic graph of PLGA MNs coated with PBAE and ICMVs for co-delivery of the antigen and adjuvant (DeMuth et al., 2012).

FIGURE 4 | The schematic graph of the synthesis of HA MNs containing lipophilic NR-loaded lipid nanoparticles. Abbreviation: HA (hyaluronic acid), NR (Nile red),
NLCs (nanostructured lipid carrier) (Lee et al., 2014).
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charged nanovesicles accelerated the movement towards deeper
site of skin through the microchannels created by MNs and
showed 3.4–7.1 times higher than nanovesicles with MNs
pretreatment alone, suggesting the greatly improved delivery
efficiency of nanoparticles when using MNs and iontophoresis
together. Although this method possesses significantly enhanced
efficiency for transdermal delivery of drug-carrying
nanoparticles, it is only restricted to polar substance and has
limited effect for neutral nanoparticles compared with the
approach of MNs pretreatment alone.

CONCLUSION AND PERSPECTIVES

Due to the unique advantages, drug-carrying nanoparticles have
been demonstrated to be valuable drug delivery systems in a
variety of biomedical applications, and some drug-loaded
nanoparticles have even been applied for clinical use (Mitchell
et al., 2021). Although nanoparticles can be administered via
different routes, like oral taken and intravenous injection, MN-
mediated transdermal delivery of nanoparticles has attracted
considerable interest since this administration method can
significantly improve drug bioavailability while avoiding pain
associated with hypodermic injection. In this review, we
introduced four types of currently used nanoparticles for drug
delivery and summarized the strategies that had been explored to
facilitate the transdermal delivery of drug-loaded nanoparticles.

The development of microfabrication technology and
nanotechnology will enhance drug stability during preparation
of nanoparticles and fabrication of MNs, increase drug amount

for each MN patch, and promote transdermal drug delivery
efficiency after skin insertion. Also, special designs (e.g., core-
shell structure) can be incorporated in the nanoparticle-
encapsulated MNs, and facilitate the delivery systems to
achieve sustained release of drugs for an extended period
under the skin (e.g., 3 or 6 months), which will make the
systems appealing for the treatment of chronic diseases by
reducing dosing frequency and increasing patient compliance,
such as type 2 diabetes, cancer, obesity, psoriasis or spinal cord
injury. It is optimistically envisioned that expanded academic
research in MNs and nanoparticles will accelerate clinical
translation of MN-mediated delivery of nanoparticles for
transdermal drug delivery.
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