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Collagens are the major structural component in animal extracellular matrices and are
critical signaling molecules in various cell-matrix interactions. Its unique triple helical
structure is enabled by tripeptide Gly-X-Y repeats. Understanding of sequence
requirements for animal-derived collagen led to the discovery of prokaryotic collagen-
like protein in the early 2000s. These prokaryotic collagen-like proteins are structurally
similar to mammalian collagens in many ways. However, unlike the challenges associated
with recombinant expression of mammalian collagens, these prokaryotic collagen-like
proteins can be readily expressed in E. coli and are amenable to genetic modification. In
this review article, we will first discuss the properties of mammalian collagen and provide a
comparative analysis of mammalian collagen and prokaryotic collagen-like proteins. We
will then review the use of prokaryotic collagen-like proteins to both study the biology of
conventional collagen and develop a new biomaterial platform. Finally, we will describe the
application of Scl2 protein, a streptococcal collagen-like protein, in thromboresistant
coating for cardiovascular devices, scaffolds for bone regeneration, chronic wound
dressing and matrices for cartilage regeneration.

Keywords: collagen, prokaryotic collagen-like protein, streptococcal collagen-like protein, integrin, integrin-
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INTRODUCTION

Collagen is the most abundant protein found in humans and other animals (Shoulders and Raines
2009; Pallela, Ehrlich, and Bhatnagar 2016). It is a major component of the extracellular matrix
(ECM) that provides structural stability (Chang and Buehler 2014). Collagen also regulates cell and
tissue biology by interacting with various cellular receptors and other extracellular components
(Frantz, Stewart, and Weaver 2010). Its ubiquity within every animal signifies its importance in the
formation and maturation of an organism; thus, it has been the target of many studies from the
earlier 1900s through today (Siegfried 1902). These studies have improved the understanding of the
structural features of collagens including the Gly-X-Y repeat necessary for its characteristic triple
helical structure (Qiu et al., 2021; Chen, Chen, and Horng 2011). Understanding the sequence
requirement for the triple helix formation led to the discovery that organisms other than animals
such as prokaryotes can produce collagen-like proteins as well (Xu et al., 2002; Lukomski et al., 2000).
Many different species of bacteria have been shown to produce collagen-like proteins, referred in this
review article as prokaryotic collagen-like proteins, though the predominantly studied proteins come
from the Streptococcus and the Bacillus families of bacteria (Lukomski et al., 2017; Qiu et al., 2021).
The discovery of these prokaryotic collagen-like proteins has provided a new experimental platform.
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The streptococcal collagen-like protein, Scl2.28, provides a “blank
slate” for protein engineering studies due to its inability to bind to
any known ligand (Xu et al., 2002). The ability to recombinantly
produce collagen-like molecule, based on Scl2.28 in E. coli has
enabled the usage of collagen-like protein for multiple
engineering applications from endothelialization of vascular
grafts to bone regeneration (Cosgriff-Hernandez et al., 2010;
Parmar et al., 2016a; Parmar et al., 2016b; Becerra-Bayona
et al., 2018; Post et al., 2019).

In this review, we will first discuss the properties of
mammalian collagen and provide a comparative analysis of
mammalian collagen and prokaryotic collagen-like proteins.
We will then review the use of prokaryotic collagen-like
proteins to both study the biology of conventional collagen
and develop a new biomaterial platform. The application of
prokaryotic collagen-like proteins in integrin-targeting
hydrogels in a range of biomedical applications will be
highlighted. Overall, this review lays a foundation for utilizing
recombinant bacterial collagen to perform fundamental studies
on the structure and function of mammalian collagen and pursue
advanced biomaterials that orchestrate specific cellular behaviors.

HUMAN AND MAMMALIAN COLLAGEN

Based on genetic sequence, 28 different types of collagens have
been documented in humans (Söderhäll et al., 2007). In addition,
several proteins, such as C1q, ficolins, and adiponectin contain
minor collagenous domains but are not usually regarded as
collagens since their functions and overall structures are not
related to conventional collagens (Ricard-Blum, 2011).

Structure of Collagen
Collagens are defined by the presence of a unique Gly-X -Y
tripeptide repeat where X is usually a proline and Y is usually
hydroxyproline, which is required by eukaryotic collagen for
stable triple-helix formation. Each collagen molecule is made
up of three individual α-chains where each α-chain has the
structure of a left-handed polyproline Type II-like helix. The

three α-chains together form a tightly packed right-handed helix
with a 1.5 nm diameter (Figure 1) (Lodish et al., 2000; Berisio
et al., 2002; Adzhubei, Sternberg, and Makarov 2013; Qiu et al.,
2021). Supercoiling of the individual α-chains in the trimeric
structure leads to a rise of 2.9Å per residue and 3.33 residues per
turn of the individual α-chains (Persikov et al., 2000). This
packing requires each strand to rotate such that the glycine
residues lie within the center (Lodish et al., 2000; Berisio et al.,
2002). As anything larger than a glycine residue in the center
would not fit in the trimeric helix due to steric hindrance (Chen,
Chen, and Horng 2011).

Collagen molecules can be formed by three identical α-chains
or by a mixture of two to three different α-chains. The α-chain
composition of different collagens is reviewed elsewhere (Birk
and Peter, 2011; Ricard-Blum, 2011). Formation of homotrimer
or heterotrimer is directed by a 20 to 250 amino acids long non-
collagenous domain (Snellman et al., 2000; Boudko, Engel, and
Bächinger 2012; Boudko and Bächinger 2016; Sharma et al.,
2017). When collagen α-chains align to form a trimer, a
staggered formation is produced where each α-chain has
glycine residues in the center of the structure, with the leading
strand being the first α-chain to have glycine on the inside of the
helix. The middle and lagging strands are the second and third α-
chain with the glycine on the inside of the helix, respectively
(Figure 1). The stagger of α-chains must be specifically controlled
because an incorrect stagger prevents appropriate interactions
from occurring (Boudko and Bächinger 2016; 2012).

Collagen Superstructures
These triple helical collagen molecules then assemble into
different supermolecular structures leading to the fibers and
networks found in mammalian tissues. Based on the
supermolecular structure and assemblies, collagen can be
divided into different classes: fibrillar collagens, anchoring
fibrils, beaded-filament forming collagens, network-forming
collagen, fibrillar associated collagens with interrupted triple
helices (FACIT), membrane associated collagen with
interrupted triple helices (MACIT), multiplexins, and
uncategorized collagens (Kucharz 1992; Ottani et al., 2002;

FIGURE 1 |Crystal structure of a collagen peptide with the sequence (PPG)10, accessed from PDB ID: 1K6F. The crystal structure shows the structure of the triple
helical collagen. Three individual peptides are shown with green representing the leading strand of collagen, pink representing the middle strand, and blue representing
the lagging strand.
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Kielty and Grant 2003; Birk and Peter, 2011; Ricard-Blum, 2011).
These different classes are reviewed below briefly.

Fibrillar collagens, which includes Type I, II, III, V, XI, XXIV,
XXVII Collagens, is the most prominent class of collagen (Birk
and Peter, 2011). Fibrillar collagens represent the largest
percentage of collagen present in humans and are dominant
structural components in the extracellular matrix in mammals
(Gelse, Pöschl, and Aigner 2003). As the name suggests, fibrillar
collagens form fibrils, which in turn form fascicles, and fascicles
then assemble to form fibers (Fratzl 2003).

The non-fibrillar collagens form a variety of superstructures,
encompassing all of the classes of collagen except the fibrillar
collagen class. The beaded filament-forming collagen include
Type VI, Type XXVI and Type XXVIII collagens, non-
covalently assembling into thin and beaded filaments where
globular domains appear as “beads” (Knupp and Squire 2003;
Birk and Peter, 2011). The network-forming collagens, which
includes Types IV, VIII, and X collagens, form non-covalent
networks similar to the beaded filament-forming collagens but in
a diamond or a hexagonal shape (Knupp and Squire 2003; Birk
and Peter, 2011). Type IV Collagen; the archetype of network-
forming collagens, is found in basement membrane, and is
essential for basement membrane function (Khoshnoodi,
Pedchenko, and Hudson 2008; Sand, Genovese, and Karsdal
2016). Anchoring fibril collagen i.e. Type VII Collagen,
associates laterally via C-terminal of collagen monomers while
the N-terminal attaches to the basement membrane (Chung and
Uitto 2010; Birk and Peter, 2011). FACITs include Type IX, XII,
XIV, XVI, XIX, XXI, and XXII Collagens, and interact with larger
fibrillar collagens, such as Type I Collagen or Type II Collagen
(Birk and Peter, 2011). In addition, Type IX Collagen can also
incorporate into the fibrillar collagens of cartilage (Birk and Peter,
2011). MACITs, also known as membrane collagens, includes
Type XIII, XVII, XXIII, and XXV collagens, and integrate into the
cell membrane and anchor the cell to the respective basement
membrane (Birk and Peter, 2011; Ricard-Blum, 2011).
Multiplexin collagens, Type XV and XVIII, are integrated into
the basement membrane (Birk and Peter, 2011).

Post-Translational Modifications of
Collagen
All mammalian collagens undergo post-translational
modifications that happen both before and after collagen is
secreted from the cell. Individual α-chains are post-
translationally modified before trimerization and secretion
from the cell. These post-translation modifications include: 1)
hydroxylation of some proline residues into 3-hydroxyproline or
4-hydroxyproline by prolyl-3-hydroxylase or prolyl-4-
hydroxylase respectively, 2) hydroxylation of some lysine
residues into hydroxylysine by lysyl hydroxylase, and 3)
glycosylation of some of the hydroxylysine residues by
hydroxylysyl galactosyltransferase and galactosylhydroxylysyl-
glucosyltransferase (Gelse, Pöschl, and Aigner 2003). These
post-translational modifications of individual α-chains cannot
occur once the trimeric structure has been formed (Patino et al.,
2002). Next, C-terminal non-collagenous regions are linked

together by disulfide bonds catalyzed by protein disulfide
isomerase to ensure correct strand alignment and trimer
formation (Gelse, Pöschl, and Aigner 2003; Seibel, Robins, and
Bilezikian 2006). Once the trimeric collagen molecule is
assembled, it can be secreted out of the cell. Once outside the
cell, the N-terminal and C-terminal pro-peptides of collagen
molecule are cleaved by procollagen N-proteinase and
procollagen C-proteinase, respectively (Patino et al., 2002).
Finally, after the cleavage of N- and C-terminal propeptides,
the collagen molecule is cross-linked to other collagen molecules
through hydroxylysines, forming the fibril superstructure (Gelse,
Pöschl, and Aigner 2003).

PROKARYOTIC COLLAGEN-LIKE
PROTEINS

For a long time, it was believed that non-eukaryotes cannot
produce collagen. However, in the year 2000 Streptococcus
pyogenes, a Gram-positive bacteria, was discovered to produce
collagen-like protein named Streptococcal collagen-like protein A
(SclA) (Lukomski et al., 2000). Later discoveries revealed that S.
pyogenes encodes two genes, which produce two different
proteins containing a collagen-like region: SclA and SclB
(Whatmore 2001). These proteins have since been renamed,
and are known today as Scl1 and Scl2 (Humtsoe et al., 2005).
At the time, this discovery was surprising because it was believed
that the characteristic triple helix cannot be formed without post-
translational modification of proline into hydroxyproline, a post-
translational mechanism specific to eukaryotes. Yet, Scl1 and Scl2
proteins were confirmed to have triple helical structure using
circular dichroism (CD) where peak around 220 nm was
observed (Xu et al., 2002). The peak at 220 nm is
characteristic for the collagen triple-helical structure. In
addition, rotary shadowing microscopy of Scl1 and Scl2
proteins showed a lollipop-like structure similar to human
collagens (Xu et al., 2002; Adzhubei, Sternberg, and Makarov
2013). Since then, other bacterial species such as, Bacillus
anthracis, Clostridium difficile, Clostridium perfringens,
Legionella pneumophila, and Burkholderia have been shown to
produce collagen-like proteins (Rasmussen, Jacobsson, and
Björck 2003; Yu et al., 2014; Bachert et al., 2015; Schnicker
and Dey 2016; Ellison et al., 2020). Both pathogenic and non-
pathogenic soil bacteria, like Bacillus amyloliquefaciens, produces
collagen-like proteins (Yu et al., 2014).

Admittedly in 1990, i.e., prior to the discovery of prokaryotic
collagen-like proteins, viruses were discovered to produce
collagen-like proteins, though these have been predominantly
recognized in bacteriophages (Bamford and Bamford 1990;
Rasmussen, Jacobsson, and Björck 2003). Some giant viruses
even produce collagen and have the ability to hydroxylate and
glycosylate their collagen, namely the mimivirus which infects
amoebas (Luther et al., 2011; Yamada 2011). However, the
bacteriophage collagens are only about 18 residues found
within capsid proteins, and the collagens found within giant
viruses rely on eukaryotic systems to be produced (Bamford and
Bamford 1990). Consequently, the corresponding viral genes may
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not lend themselves to direct manipulation and expression in
prokaryotic expression systems. These viral genes will not be
further discussed in this review.

Domain Organization of Prokaryotic
Collagen-Like Proteins
There are a few different domain organization formats of
prokaryotic collagen-like proteins. Such as, the prototype Scl
proteins from S. pyogenes, have an N-terminal variable
domain that is able to nucleate trimerization of the collagen-
like region with the characteristic Gly-X-Y repeats followed by a
C-terminal non-collagenous repeat with motifs required for cell
wall anchoring (Lukomski et al., 2017). The variable domain is
significantly different between Scl1 and Scl2, and differs between
M-types of S. pyogenes (Caswell et al., 2010). Both Scl1 and Scl2
proteins contain a variable number of Gly-X-Y repeats and
sequence in their collagen-like region. For example, Scl1
protein from S. pyogenes M1 serotype contains 50 Gly-X-Y
repeats whereas Scl2 from serotype M28 contains 79 Gly-X-Y
repeats (Xu et al., 2002; Lukomski et al., 2017; Qiu et al., 2021)
(Figure 2).

Some prokaryotic collagen-like proteins have different
domains flanking the collagen-like region. For example, the
collagen-like proteins Bucl3 and Bucl8 from Burkholderia
bacteria also contain the Talin-1 domain for binding to
integrins, and outer membrane efflux protein domains to form
an efflux channel in the outer membrane of the bacteria (Bachert
et al., 2015; Grund et al., 2020). S. pneumoniae protein PclA has a
collagen-like region interspersed with a non-collagen domain and
other small interruptions, and a large C-terminal domain
containing an LPXTG motif (Paterson et al., 2008). Within the
Bacillus genus, a variety of collagen-like proteins have been
reported (Qiu et al., 2021; Leski et al., 2009). These are named
as Bcl proteins with a corresponding letter at the end e.g. BclA,
BclB (Parenteau-Bareil, Gauvin, and Berthod 2010). Bcl proteins
are composed of a N-terminal domain, a linker region present in

some Bcl proteins, a collagen-like region of 27 to 1,158 residues,
and finally a C-terminal domain that can have different predicted
folds (Figure 2) (Leski et al., 2009). The similarly named BclA1,
BclA2, and BclA3 found in C. difficile has a basic domain
structure of a N-terminal domain between 5 and 193 residues,
a collagen-like region with 354–422 residues, and a C-terminal
domain with 131–148 residues (Figure 2) (Pizarro-Guajardo
et al., 2014). Each N- and C-terminal domain of the BclA1,
BclA2, and BclA3 proteins are currently not well studied and thus
have unknown structures within C. difficile.

In summary, prokaryotic collagen-like proteins have diverse
domain organization but generally contain a collagen-like region
flanked by non-collagenous N-terminal and C-terminal domains.
It is noticeable that a similar domain organization is also seen for
fibrillar eukaryotic collagens (Figure 2).

Structure of Collagen-Like Regions
Similar to vertebrate collagen, prokaryotic collagen-like
proteins contain Gly-X-Y tripeptide repeats, where glycine
is required every third residue. The X and Y positions of
prokaryotic collagen-like proteins can be occupied by any
amino acids, but some residues are preferred (see below).
Despite the lack of hydroxyproline, prokaryotic collagen-
like proteins form triple helical structures that show the
characteristic 220 nm peak in CD (Xu et al., 2002). In
addition, the ratio of intensity of the peak at 220 nm over
intensity of the peak at 198 nm for the collagen-like region of
Scl 2.28 from S. pyogenes is similar to that of mammalian
collagen, indicating that the triple helix is fully formed. The
collagen-like region of Scl 2.28 from S. pyogenes forms a triple-
helix with a diameter of 4–5 nm (Yoshizumi et al., 2009).
Similar to mammalian collagen, the collagen-like region of
prokaryotic collagen-like proteins is resistant to trypsin
digestion (Xu et al., 2010). Prokaryotic collagen-like
proteins also appear as lollipop-like structures in rotary
shadowing microscopy similar to human collagens (Xu
et al., 2002; Adzhubei, Sternberg, and Makarov 2013).

FIGURE 2 | Domain organization of various eukaryotic and prokaryotic collagens. All numbers in parenthesis below species name and protein name is the
accession number for the protein as found in the NCBI Protein database. Numbers below the domains indicate the last residue of that domain. Abbreviations are as
follows: NTD = N-terminal Domain, CTD = C-terminal Domain, V = Trimerization Domain, C = C-terminal domain and anchor to cell membrane, N = N-terminal Domain
and anchor to cell membrane, CLR = Collagen-like Region.
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Most bacteria cannot produce hydroxyproline. So how do
bacteria produce stable collagen-like structures? Collagen-like
region of S. pyogenes Scl proteins contain a large number of
polar or charged residues in X and Y positions (Mohs et al., 2007).
The most common residue in bacterial collagens present in the X
position is proline, similar to vertebrate collagen, whereas
threonine is the predominant residue in the Y (Rasmussen,
Jacobsson, and Björck 2003; Ghosh et al., 2012). Polar residues
in the Scl protein interact with the water molecules to create an
extensive network of water-mediated hydrogen bonding, similar
to the role that hydroxyproline has in eukaryotic collagen. Such
networks are called hydration networks. It stabilizes the triple
helix and provides Scl2 with a higher thermal melting
temperature of 36°C (Mohs et al., 2007). NMR studies of rat-
tail tendon and crystal structures of synthetic collagen peptides
have shown that a hydration network occurs in human collagen
as well (Migchelsen and Berendsen 1973; Mohs et al., 2007).
Mohs et al. demonstrated the effect of hydration network on
bacterial collagens by measuring the thermal melting temperature
shift that occurs when bacterial collagen is placed in a neutral and
an acidic buffers, respectively (Mohs et al., 2007). Scl2.28 protein,
which has a low proline percentage but higher percentage of
lysine and aspartic acid residues, has a melting temperature of
35.6°C at neutral pH and shifts to 24.2°C at 2.2 pH (Mohs et al.,
2007). This large shift is believed to be caused by the loss of charge
on aspartic acid and glutamic acid residues in Scl2.28, thus
preventing the formation of an extensive hydration network
(Mohs et al., 2007).

For those in the phylum Firmicutes, which includes Bacillus
and Streptococcus, the collagen-like regions of the proteins are
composed of approximately 16.42% threonine, 10.09% proline,
9.17% alanine, and 7.89% glutamine residues (Qiu et al., 2021).
Firmicutes have the highest total ratio of threonine and glutamine
residues, revealing the importance of hydration network
formation for these collagen-like proteins to form stable triple
helices (Qiu et al., 2021). Other phyla of bacteria have higher
percentages of alanine or proline residues within the collagen-like
regions (Qiu et al., 2021).

Post-Translation Modifications of
Prokaryotic Collagen-Like Proteins
Prokaryotes are unable to generate all the post-translation
modifications observed in vertebrates. While bacteria may not
be able to employ all post-translational modifications required
for collagen formation in mammals, they do employ some
post-translational modifications that are thought to lead to
stable triple-helical collagens (Sylvestre, Couture-Tosi, and
Mock 2002; Dell et al., 2011). B. anthracis produces a
prolyl-4-hydroxylase enzyme that converts proline to
hydroxyproline in synthetic peptides, implying the ability
for B. anthracis to improve the stability of their collagen
proteins by introducing hydroxyproline. Although the
bacillus enzyme does not work as consistently as eukaryotic
prolyl-4-hydroxylase (Schnicker and Dey 2016). BclA is also
known to be glycosylated in B. anthracis and B. cereus spores
(Tan and Turnbough 2010; Thompson et al., 2012). It is

believed this glycosylation of BclA protein improves
hydration network formation and interaction because the
sugar moiety is able to interact with multiple water
molecules in solution (Sylvestre, Couture-Tosi, and Mock
2002; Boydston et al., 2005; Yu et al., 2014). Similarly,
BclA1 protein from C. difficile has been shown to be
glycosylated (Pizarro-Guajardo et al., 2014). Additionally,
the C. difficile BclA1 protein is cleaved from a ~72 kDa
protein into a 33 kDa protein, though not much more is
known about this process (Díaz-González et al., 2015).

Function of Prokaryotic Collagen-Like
Proteins
Bacterial collagen-like proteins can have very different
functions. Some of the functions are in the non-collagenous
domains while others depend on the motifs in the collagen-like
region. For example, Scl1 and Scl2 proteins from the M1
serotype of S. pyogenes can intertwine with wounded
(denatured) human collagen found within wounded tissue,
aiding in invasion and adherence to the wounded site during
the infection process (Ellison et al., 2020). In addition, Scl1
protein binds to fibronectin and integrins (α2β1 and α11β1)
and mediates bacterial adherence to the wound
microenvironment, intracellular invasion, and evasion of the
immune system (Caswell et al., 2008, 2010; Oliver-Kozup et al.,
2011; Oliver-Kozup et al., 2013; Lukomski et al., 2017). The S.
pneumoniae PclA protein has been shown to play a role in
adherence and invasion of host cells (Paterson et al., 2008).
BclA1 from C. difficile is required for colonization and
infection in animals (Pizarro-Guajardo et al., 2016). B.
anthracis BclA protein is known to play a role in stabilizing
the exosporium of the spore and has reported melting
temperatures of up to 95°C due to the very stable
C-terminal domain (Boydston et al., 2005). Collagen-like
protein expressed by B. amyloliquefaciens, a bacteria found
in soil, enables it to adhere to plant roots where they promote
plant growth (Zhao et al., 2015). Two of the four collagen-like
proteins in B. amyloliquefaciens have also been reported to be
present within the flagella of the cell and play a role in motility
(Zhao et al., 2016).

STRUCTURAL SIMILARITIES AND
DIFFERENCES BETWEEN EUKARYOTIC
AND PROKARYOTIC COLLAGENS
Both vertebrate and prokaryotic collagen-like proteins have Gly-
X-Y repeats in their primary sequence. Despite the absence of
hydroxyproline in prokaryotic collagen-like proteins, its’
individual chains form Type II helices as observed in
mammalian collagen and form a triple-helical structure
characteristic of mammalian collagen (Xu et al., 2002).
Although mammalian collagen can form superstructures, such
self-assemblies have not been observed for collagen-like proteins
found in prokaryotes (Table 1). Proline occupies approximately
one-third of the X position within the Gly-X-Y repeat of both
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human collagen and collagen-like proteins in Gram-positive
bacteria (Ghosh et al., 2012). Human collagen often contains
hydroxyproline in the Y position whereas Gram-positive bacteria
often use threonine at the Y position (Ghosh et al., 2012)
(Table 1). The differences between mammalian and bacterial
collagens are summarized in Table 1.

USING PROKARYOTIC COLLAGEN-LIKE
PROTEIN TO INVESTIGATE EUKARYOTIC
COLLAGEN BIOLOGY
Various tools have been used to investigate the specific
interaction sites on eukaryotic collagen, e.g. imaging of

TABLE 1 | Characteristics of eukaryotic collagens and prokaryotic collagen-like proteins.

Eukaryotic collagen Prokaryotic
collagen-like protein

References

Domain Organization Has a N-terminal domain, a collagen region, and a
C-terminal domain

Has a N-terminal domain, a collagen region, and a
C-terminal domain

Qiu et al., 2021

Might have some interruptions within the collagen region Might have some interruptions within the collagen region Bachert et al., 2015
Paterson et al., 2008
Lukomski et al., 2017
Leski et al., 2009
Tan and Turnbough
2010
Pizarro-Guajardo et al.
(2014)

Residue Composition of
collagen region (X/Y)

Gly-X-Y (Percentages based on human collagen) Gly-X-Y Rasmussen et al.
(2003)

X: 31.1% Proline (fibrillar), 24.6% Proline (non-fibrillar) X: 31.0% Proline (Gram-positive), 19% Proline (all
bacteria)

Ghosh et al., 2012;
Hynes 2012

Y: 33.5% Proline/hydroxyproline (fibrillar), 42.2%
Proline/hydroxyproline (non-fibrillar)

Y: 48.3% Threonine (Gram-positive), 31.6% Threonine
(all bacteria)

Post-translational
modification

Hydroxylation of proline to hydroxyproline and lysine to
hydroxylysine, glycosylation of hydroxylysine residues,
removal of N-terminal and C-terminal pro-peptides, and
cross-linking of lysine and hydroxylysine residues

In most cases, there is no hydroxylation of proline to
hydroxyproline, no glycosylation of the collagen
structure, and no cleavage of the protein

Schnicker and Dey
2016

A limited number of bacteria have their own post-
translational modifications, allowing for hydroxylation,
glycosylation, or cleavage of proteins

Tan and Turnbough
2010

Thompson et al., 2012
Gelse et al. (2003)

Function Provides mechanical properties (load bearing, tensile
strength, and torsional stiffness), cell signaling either
directly or through other ECM components, filtration,
adhering materials together

Adhesion to specific environments, formation of biofilm,
internalization into host, evasion of immune system, use
for motility, and spore formation

Qiu et al., 2021
Gelse et al. (2003)
Bachert et al., 2015
Paterson et al., 2008
Lukomski et al., 2017
Leski et al., 2009
Tan and Turnbough
2010
Pizarro-Guajardo et al.,
2014
Zhao et al., 2015
Zhao et al., 2016
Hynes 2002
Paten et al., 2019
Shaw and Olsen 1991
Izzi et al., 2020
Brazel et al. (1988)

Location Present within the matrix, with some cellular receptor
binding (such as integrin)

N-terminal or C-terminally bound to bacteria cell wall,
Bucl8 has two outer transmembrane domains

Qiu et al., 2021

A few collagens can be found integrated within cell
membranes

Bachert et al., 2015

Lukomski et al., 2017
Izzi et al. (2020)

Ability to form
superstructures

Fibrillar collagen can come together to form larger fibrils,
fascicles, and tendons

Unable to form larger superstructures, none are currently
known

Qiu et al., 2021
Gelse et al. (2003)
Boydston et al., 2005
Canty and Kadler
(2002)
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TABLE 2 |Binding sites on human collagen to various ECM proteins and cellular receptors. Symbol Definition: * - computational modeling used to define residues, ~ denotes
protease cut site in the protein sequence, † protease cut site was determined using Mass Spectroscopy, “O/P”means that both hydroxyproline and proline have been
used and were shown to interact, “x” represents any amino acid unless otherwise stated.

Target protein Collagen binding site Investigated using References

Decorin “Gx1x2GDR GEx3GP site, where x1 = K or A, x2 = N,
K, S, or P, x3 = P or T” *

Full-length Type I Collagen Fibril Orgel et al. (2009)

Biglycan Known to share a binding domain with decorin,
though exact residues are unknown

Full-length Type I Collagen Wiberg et al. (2001)

Discoidin Domain Receptor 1 GVMGFO Synthetic collagen peptide Xu et al., 2011
Discoidin Domain Receptor 2 GVMGFO +2 other sites Synthetic collagen peptide Konitsiotis et al., 2008

Orgel and Madhurapantula
(2019)

Integrin α1β1 GF″O/P″GEN, GF″O/P″GER, GLOGER, GASGER,
GVOGEA, and GLOGEN

Synthetic collagen peptide & Prokaryotic
collagen-like protein

Xu et al., 2000
Hamaia et al., 2012
Knight et al., 2000
Cosgriff-Hernandez et al.
(2010)

Integrin α2β1 GF″O/P″GER Synthetic collagen peptide & Prokaryotic
collagen-like protein

Humtsoe et al., 2005
Xu et al., 2000
Knight et al., 2000
Cosgriff-Hernandez et al.,
2010
Knight et al. (1998)

Integrin α10β1 GFOGER Synthetic collagen peptide Hamaia et al. (2017)
Integrin α11β1 GFOGER Synthetic collagen peptide Sweeney et al., 2008

Zhang et al. (2003)

Fibronectin GLAGQR GIVGLP GQRGER Prokaryotic collagen-like protein & Synthetic
collagen peptide

An et al., 2014
Erat et al. (2009)

Secreted protein, acidic and rich in
cysteine known as “SPARC”

GPOGPS GPRGQO GVMGFO GPKGND GAO Cyanogen bromide peptides & Synthetic
collagen peptide

Giudici et al. (2008)

Osteopontin Binds Type I Collagen at an unknown binding site Full-length Type I Collagen Liu et al., 2007
GpVI GAOGLR GGAGPO GPEGGK GAAGPO GPO,

(POG)10

Synthetic collagen peptide Jarvis et al., 2008
Horii et al. (2006)

Collagen V Cross-linked in LPQPPQ EKAHDG GRY region Full-Length Type I Collagen Sweeney et al. (2008)

Platelet derived growth factor-BB Binds Type 1 Collagen at an unknown binding site Full-length Type I Collagen Lin et al., 2006
Endo180/uPARAP GPPGPP GPPGPP GPPSAG FDFSFL PQPPQE

KAHDGG RYYRA
Full-length Collagen Sweeney et al., 2008

Thomas et al., 2005
Jürgensen et al. (2011)

Thrombospondin1 Known to bind to Type I, VI, XI Collagen, and to
Endostatin

Full-length Collagen Faye et al. (2009)
THBS1
Procollagen C-proteinase
enhancer-1 (PCPE-1)

Binds to the C-terminal propeptide region, the lysine
residues C-terminal of the BMP-1 cut site on α1 Type
III Collagen

Type I Procollagen, & recombinant Type III
Collagen C-propeptide

Kessler and Adar 1989
Bourhis et al. (2013)

Bone morphogenetic protein-1
(BMP-1)

YRA ~ DDA NVVRDR D α1 (I) Type I and III Procollagen Kessler et al., 1996
YRA ~ DQP RSAPSL R α2 (I) Lindahl et al. (2011)
YYG ~ DEP MDFKIN T α1 (III)

SMADs C-terminal propeptide of Type I, III, and V Collagen Recombinant Type I, III, and V Collagen
C-propeptide

Ellis et al. (2003)

Osteoclast-associated receptor
(OSCAR)

GxOGPx GFx, GPOGPA GFO, GAOGAS GDR Synthetic collagen peptide Zhou et al., 2016
Barrow et al., 2011
An and Brodsky (2016)

Bone SialoProtein-2 In the triple-helical region of Type I Collagen, and a
binding site within Type XI Collagen KKKSNY
TKKKRT LATNSK KKSKM, KKKSNY TKKKRT
LATNSK KK

Type I Collagen (treated with pepsin), &
peptides of non-collagen regions of Type XI
Collagen

Baht et al. (2008)
Gorski et al. (2021)

Periostin Binds Type I and V Collagenwith an unknown binding
site

Full-length Type I and V Collagen Takayama et al., 2006
Norris et al., 2007
Kii and Ito 2017
Kudo and Kii (2018)

Pigment epithelium-derived factor
(PEDF)

KGHRGF SGL, KGHRGY SGL Synthetic collagen peptide Sekiya et al., 2011
Broadhead et al. (2010)

Heparin GBBGB, where “B” is a base residue Type I Collagen, Prokaryotic collagen-like
protein, & Synthetic collagen peptide

Capila and Linhardt 2002
Sweeney et al., 1998
(Continued on following page)

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 8409397

Picker et al. Prokaryotic Collagen-Like Proteins

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


complexes for locating binding sites, cyanogen bromide to cleave
the collagen into smaller peptides, synthetic collagen peptides to
determine residues involved in binding to a target, and there is
production of recombinant and mammalian collagen using yeast
and transgenic plants (Farndale et al., 2008; Brodsky and Kaplan
2013; Farndale 2019; Fertala 2020). These techniques each have
their unique strengths and weaknesses. Cyanogen bromide
cleavage might lead to cleavage of the binding site or generate
too large of a collagen fragment to accurately locate the binding
residues. The success of an imaging approach depends on the
resolution and availability of reference structures (Perumal,
Antipova, and Orgel 2008; Sweeney et al., 2008; Orgel et al.,
2009). Synthetic collagen peptide works effectively for shorter
sequences but has difficulty if the binding sequence is large.
Although synthetic collagen peptides provide the opportunity to
insert peptide binding sequences into a triple helical framework,
binding regions larger than nine residues cannot be investigated
(Farndale 2019). There have been limited advancement in
producing recombinant collagen from yeast and transgenic
plants; however, both of these routes are significantly more

time-intensive and expensive than utilizing E. coli for
production of bacterial recombinant collagen-like proteins
(Brodsky and Kaplan 2013; Fertala 2020).

Prokaryotic collagen-like protein provides a novel strategy for
investigating interactions of vertebrate collagen with other
proteins. Prokaryotic collagen-like proteins can serve as a
“host” to a “guest” eukaryotic collagen sequence. Collagen-like
region from S. pyogenes protein Scl2.28 comprising 79 Gly-X-Y
repeats does not interact with known collagen binding partners in
vertebrates and has thus been named a “blank slate” (Qiu et al.,
2021; Cereceres et al., 2015; Xu et al., 2002). This “blank slate”
collagen can act as a “host” to “guest” sequence from vertebrae
collagen sequences. This “host-guest” collagen, referred to as
recombinant bacterial collagen in this review, can be used to
insert sequences from human collagen allowing for the discovery
of longer binding sequences or investigating multiple binding
sequences within one protein. An et al. inserted 24 amino acids
into blank slate Scl 2.28 protein to identify fibronectin binding
site in Type II collagen (An et al., 2014). Previously, fibronectin
binding site in Type II collagen was defined to be GLO GQR GER

TABLE 2 | (Continued) Binding sites on human collagen to various ECM proteins and cellular receptors. Symbol Definition: * - computational modeling used to define
residues, ~ denotes protease cut site in the protein sequence, † protease cut site was determined using Mass Spectroscopy, “O/P”means that both hydroxyproline and
proline have been used and were shown to interact, “x” represents any amino acid unless otherwise stated.

Target protein Collagen binding site Investigated using References

GRPGKR GKQGQK, RGTPGK PGPRGQ RGPTGP
RGERGPR, GRKGR, GKRGK

Peng et al., 2014
Ricard-Blum et al., 2006
Parmar et al. (2016a)

Heparan-Sulfate KGHRGF, RGTPGK PGPRGQ RGPTGP RGERGPR Type I Collagen & Synthetic collagen peptide Sweeney et al., 2008
Capila and Linhardt 2002
Sweeney et al., 1998
Ricard-Blum et al. (2006)

Leukocyte associated Ig-like
receptor-1 (LAIR-1)

GAOGLR GGAGPO GPEGGK GAAGPO GPO Synthetic collagen peptide Lebbink et al., 2009
Brondijk et al. (2010)

Heat Shock Protein-47 (HSP47) xGxRG Synthetic collagen peptide Koide et al. (2006)
Fibromodulin KGHR Synthetic collagen peptide Di Lullo et al., 2002

Kalamajski et al. (2016)
Trypsin-1 Cleaves after lysine or arginine, except when followed

by proline
Human collagen, 90% Type I and 10%
Type III

Mirigian et al., 2013

Only works on non-triple helical collagen Simpson (2006)
Elastase 2 KLK ~ AR, FVR ~ NK, And GDR ~ GL as found in

Type XVII Collagen, GPLGIA GITGAR GLA in Type III
Collagen

Full-length Type XVII Collagen† &
recombinant Type III Collagen

Lin et al., 2012
Williams and Olsen (2009)

Matrix Metalloproteinase-1 (MMP-1) GPQG ~ LA GQRGIV GLP Prokaryotic collagen-like protein, Full-length
Type I Collagen

(Birkedal-Hansen et al., 1993;
Yu et al., 2012)

MMP-2 GPQG ~ LA GQRGVV GLP Full-length Type I Collagen Sweeney et al., 2008
Birkedal-Hansen et al. (1993)

MMP-8 GPQG ~ LA GQRGVV GLP Full-length Type I Collagen Sweeney et al., 2008
Birkedal-Hansen et al. (1993)

MMP-13 G ~ LAGQR GIVGLO GQRGER, GLOGER GRTGPA
GAAGAR

Synthetic collagen peptide Howes et al. (2014)

Prolyl-4-hydroxylase (P4H) “X”PG, with “X” being preferred to be Proline Synthetic collagen peptide Rapaka et al., 1978
Kivirikko et al., 1972
Gorres and Raines (2010)

von Willebrand Factor (VWF) RGQOGV MGF Synthetic collagen peptide Lisman et al. (2006)
Nidogen Can bind 80 nm away from the C-terminus of Type IV

Collagen, and with the ectodomain of Type XIII
Collagen

Full-length Type IV Collagen and
recombinant Type XIII Collagen ectodomain

Aumailley et al., 1989
Tu et al. (2002)
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(Erat et al., 2009; 2010). Using recombinant collagen, An et al.
determined that the binding site for fibronectin in Type II
collagen is at least 18 amino acids long (Table 2). Similarly,
recombinant bacterial collagen has been shown to be useful in
studying the interactions between collagen and integrin, and
describing the stability of a Type I Collagen homotrimer
against MMP degradation (Humtsoe et al., 2005; An et al.,
2014; Mekkat et al., 2018). As can be seen in Table 2, there
are still many interactions within eukaryotic collagen that are not
well-defined. Recombinant bacterial collagen could be used to
identify the residues in vertebrate collagen that are involved in
these various interactions.

The stability of the triple helix structure in different regions of
the recombinant bacterial collagen can be controlled by choosing
triplets with different predicted melting temperature (Persikov,
Ramshaw, and Brodsky 2005). This change in stability of
recombinant bacterial collagen can be used to alter the affinity
of various interactions (Persikov, Ramshaw, and Brodsky 2005).
The nature, number and spacing of specific binding motifs can
also be easily manipulated in the recombinant bacterial collagen
sequence (Peng et al., 2014). When heparin and integrin binding
sites were inserted into blank slate Scl 2.28 protein, recombinant
bacterial collagen binding to both proteins could be observed
(Peng et al., 2014). This strategy can be used to replicate a collagen
sequence that has multiple binding partners and will allow
determination of competition for binding to the collagen
sequence between multiple ECM components.

While recombinant bacterial collagens as a tool provide a great
opportunity to learn more about collagen interactions with other
molecules, it has some drawbacks. Recombinant bacterial
collagens cannot perfectly replicate eukaryotic collagen yet.
The recombinant bacterial collagens produced in E. coli do not
have the same post-translational modifications as eukaryotic
collagen. The lack of collagen monomer cross-linking prevents
the formation of larger superstructures found in eukaryotes
(Canty and Kadler 2002; Gelse, Pöschl, and Aigner 2003).
Additionally, prokaryotic collagen-like proteins are
homotrimers, therefore, studying interactions of heterotrimeric
eukaryotic collagens remains a challenge.

Some of these issues are currently being addressed, such as the
lack of hydroxyproline within prokaryotic collagen-like proteins
(Buechter et al., 2003; Pinkas et al., 2011; Schnicker and Dey
2016). Schnicker and Dey expressed B. anthracis prolyl-4-
hydroxylase enzyme in E. coli (and purified) to hydroxylate
(P-P-G)5 and (P-P-G)10 peptides (Schnicker and Dey 2016).
While hydroxylation of the peptides using B. anthracis prolyl-
4-hydroxylase was observed, both the X-position and Y-position
prolines were hydroxylated with the Y-position prolines being
favored, which might not replicate the exact eukaryote proline
hydroxylation (Schnicker and Dey 2016). Using a different
approach, Buechter et al. produced a fragment of Type III
collagen with hydroxyproline in E. coli by supplementing
growth media with hydroxyproline and sodium chloride.
However, this method does not discriminate in X and Y
positions in Gly-X-Y tripeptide (Buechter et al., 2003). Pinkas
et al. created a strain of E. coli that expresses human prolyl-4-
hydroxylase enzyme and allows for the conversion of α-

ketoglutarate into L-ascorbate (Pinkas et al., 2011). Using this
strain, the authors demonstrated that the proline residues within
the P-P-G peptide could be converted into hydroxyproline but
less hydroxylation was observed with longer (P-P-G) repeats
(Pinkas et al., 2011). While great strides have been made to
produce recombinant bacterial collagen with hydroxyproline in
E. coli, future work is needed to produce longer recombinant
bacterial collagen segments with incorporated hydroxyproline at
Y position with consistent results.

Heterotrimeric collagens have not been as well researched as
homotrimeric vertebrae collagens. It is difficult to achieve the
correct stoichiometric ratio in solution with both synthetic
peptides and recombinant collagen. Moreover, individual
strands in the heterotrimer must be placed in the correct
stagger (Figure 1). Drs. Boudko and Bachinger generated
heterotrimeric recombinant collagen in E. coli using segments
of α1 and α2 chains of Type 1 collagen by using the second non-
collagenous domain (NC2) from Type IX Collagen to control
trimerization (Boudko and Bächinger 2016; 2012). Stagger of the
recombinant collagen could be controlled by using the 35 residue
long NC2 domain of Type IX Collagen and led to the desired
chains being in the leading, middle and lagging positions (Boudko
and Bächinger 2016).

NOVEL BIOMATERIALS: BIOACTIVE
HYDROGELS BASED ON PROKARYOTIC
COLLAGEN-LIKE PROTEINS
Collagen, themost abundant protein in the body, has been used as
scaffolds for regeneration and repair of a variety of tissues, such as
skin (Carver et al., 1995; Brown et al., 2002; Helary, Zarka, and
Giraud-Guille 2012; Shokrgozar et al., 2012), cartilage (Li et al.,
2020), bone (Salasznyk et al., 2004), vasculature (Stamati et al.,
2014; Copes et al., 2019), and neural tissues (Suri and Schmidt
2010). Despite its broad use, mammalian collagens have
significant limitations as scaffolds. As an animal-derived
product, there is significant batch-to-batch variability due to
harvest techniques, post-processing procedures, and storage
conditions. Mammalian collagen products also suffer from a
short product shelf life, diminishing bioactivity after
processing, and potential immunogenicity (Cao and Xu 2008;
Schmidt et al., 2016; Dhavalikar et al., 2020). Despite the
aforementioned limitations, collagens contain substantial
regenerative potential due to its native cell interactions, cell-
responsive degradation, and tunable properties (Antoine et al.,
2014). As such, there is an urgent need to find a replacement
biomaterial that can provide these cellular cues while
circumventing the limitations of current collagen scaffolds.

Previous sections have introduced the discovery of prokaryotic
collagen-like proteins and the structural and functional
resemblance to collagen that make it a strong candidate for
bioengineering applications. Recombinant expression of
prokaryotic collagen-like proteins provides a manufacturing
process with minimal batch variability and scale-up potential.
In addition, these prokaryotic collagen-like proteins generally
have no inherent binding motifs for integrins and other
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extracellular matrix molecules which provides a unique
opportunity for the engineering of specific cellular responses
(Humtsoe et al., 2005; Kim et al., 2005; Xu et al., 2002).
Selective insertion of multivalent binding sites for integrins
and other molecules into the recombinant bacterial collagen
has been used to generate targeted cell interactions to guide
regeneration. In this section, we discuss strategies to design
hydrogels based on recombinant bacterial collagen in
biomedical applications, namely the Scl2.28 protein and Scl2
proteins derived from it (details included in the
Supplementary Table S1). First, modification of Scl2 proteins
to form hydrogels will be described. Hybrid Scl2 protein
hydrogels will then be reviewed with the discussion of the
effect of different fabrication parameters on the resultant cell-
material interactions. Finally, the fabrication of the hybrid Scl2
hydrogels into different forms of hydrogel products will be
described to demonstrate the versatility of this biomaterial
platform (Figure 3).

Scl2 Protein Hydrogels
Collagen matrices are typically crosslinked to form a functional
gel and tune its physical properties and resorption rate. Given the
similarities in structure and functional residues, prokaryotic
collagen-like proteins like Scl2 proteins have the potential to
form hydrogel network via the same chemical or enzyme-induced
crosslinking methods. However, Peng et al. found that after
freeze-drying and treatment with 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC) for chemical
crosslinking, Scl2 protein-based hydrogel sponges were
unstable in water and resulted in structural disintegration
(Peng et al., 2010). It was hypothesized that the instability of
the EDC-crosslinking hydrogel was attributed to the smaller
molecular weight of Scl2 protein as compared to collagen and
fewer functional residues. A glutaraldehyde vapor was then
applied as an alternative crosslinking mechanism. Although
this generated stable hydrogels, there was limited control over
crosslink density and hydrogel properties (Peng, Glattauer, and
Ramshaw 2017). To resolve this problem, researchers introduced
peptide sequences with functional residues to create additional
crosslinking sites and stabilize the hydrogel network (Stoichevska
et al., 2016; Stoichevska et al., 2017). Stoichevska et al. proposed
introducing chemically functional residues to Scl2 proteins and
forming crosslinks via oxidation (Stoichevska et al., 2016;
Stoichevska et al., 2017). As shown in Figure 3A, cysteine or
tyrosine residues were introduced to either or both C-terminal
and N-terminal of the collagen-like domain. The hydrogel
crosslinking was designed to form when cysteine residues
form disulfide bonds or adjacent tyrosine residues form
dityrosine bonds via photo-initiated oxidation. In this way, the
collagen-like domain was unmodified and the specific binding
sites for cell attachment via integrins and interactions with other
extracellular matrix molecules were preserved. The results
demonstrated that the tyrosine crosslinking resulted in gel
formation while cysteine-based disulfide bonding did not form

FIGURE 3 | Incorporation of Scl2 proteins into hydrogels as alternative materials to animal-derived collagen matrices. (A) Scl2 protein hydrogel network with varied
crosslinking modalities for enhanced gel stability. (B) Hybrid Scl2 hydrogels with the Scl2 protein anchored into a synthetic hydrogel network via a functionalization linker
and the different parameters used to modulate hydrogel properties. (C) Different physcial forms of hybrid Scl2 hydrogels used in biomedical applications.
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a hydrogel, although it significantly increased the number of
intramolecular crosslinks (Winterbourn et al., 2004). This work
also suggested different roles with intramolecular crosslinks
forming small soluble aggregates and intermolecular crosslinks
leading to hydrogel network formation. Similarly, Parmar et al.
modified both the C- and N-termini of Scl2.28 proteins with an
additional sequence, GGPCPPC (Parmar et al., 2016a). The
cysteine residue was then designed to react with two different
types of peptides that contained substrates for either matrix
metalloproteinase 7 (MMP7) or aggrecanase. The linkage
between the Scl2.28 proteins to these peptides was formed via
thiol-acrylate “click” chemistry that required only mild reaction
conditions and preserved protein bioactivity. This gave rise to a
stable Scl2 protein network with MMP7- or aggrecanase-
cleavable bonds, allowing for cell-responsive degradation of
the hydrogel product after implantation.

In summary, typical collagen crosslinking methods are
insufficient to make Scl2 protein hydrogels without additional
modification of the protein to increase crosslinking sites due to its
reduced length as compared to collagen. The incorporation of
enzymatically labile sequences in the crosslinkers provides a well-
defined hydrogel platform of Scl2 protein with high adaptability
and an adjustable degradation profile. Although this provides a
promising biomaterial platform, many of these studies did not
demonstrate the ability of tuning the protein hydrogel mechanical
properties. Furthermore, the use of enzymatically labile peptides
produced by solid-phase synthesis reduces the cost-effectiveness
of these protein hydrogels and creates challenges in large-scale
production.

Hybrid Scl2 Hydrogels
To expand the available physical properties to Scl2-based
hydrogels, researchers created hybrid Scl2 hydrogels by
incorporating Scl2 proteins into a synthetic hydrogel network
(Cosgriff-Hernandez et al., 2010). Cosgriff-Hernandez et al.
reported the first Scl2 protein functionalization method and
incorporation into a hydrogel network to study the effect of
different binding motifs for integrins α1β1 and α2β1 (Cosgriff-
Hernandez et al., 2010). Cell culture studies with native and
modified C2C12 cells demonstrated that an Scl2 protein modified
with a collagen-derived GFPGER binding motif interacted with
both α1β1 and α2β1 integrins; whereas, an Scl2 protein modified
with a unique GFPGEN binding motif interacted only with α1β1
integrins. Endothelial cells adhered to and spread on both Scl2
proteins, but smooth muscle cells did not adhere to Scl2 proteins
without the α2β1 integrin interaction (Cosgriff-Hernandez et al.,
2010). In addition to selective cell interactions, these hybrid Scl2
hydrogels also provide a unique opportunity to decouple the Scl2
ligand presentation from other gel physical properties such as
matrix stiffness and resorption rate. Scl2 proteins are first
functionalized with a polyethylene glycol (PEG)-based linker
that contains an acrylate or acrylamide group that allows it to
be anchored into a PEG-based hydrogel (Figure 3B) (Cosgriff-
Hernandez et al., 2010). PEG-based hydrogels have been widely
used in numerous biomedical applications, such as cell-laden
scaffolds, wound dressings, implant coatings, and interstitial
tissue substitutes. The antifouling function of PEG hydrogels

limits non-specific protein adsorption such that the protein
presentation to cells is limited to the Scl2 protein (Chen et al.,
2019). The insertion of Scl2 protein has minimal effect on the
network formation of the polymeric hydrogel, allowing for the
modulation of ligand presentation independent of substrate bulk
properties. The following sections detail the effect of hydrogel
properties on cell-material interactions.

LIGAND CONCENTRATION AND PROTEIN
FUNCTIONALIZATION DENSITY

To understand the effect of ligand concentration and protein
functionalization density on the cell-material interactions,
Browning et al. compared cell behavior at different Scl2-2
protein (Supplementary Table S1) concentrations (Browning
et al., 2014) and varying PEG linker densities on the Scl2 protein
backbone (Browning et al., 2013). As the protein loading
concentration increased, cell adhesion, proliferation, migration
rate, and spreading increased at differing rates. By controlling the
molar ratio of the linker to lysine residues to 0.1:1, 0.5:1, and 1:1,
Scl2 proteins modified with integrin-binding motif GFPGER with
varied functionalization densities were prepared and then
incorporated into PEG diacrylate hydrogels. There was no
significant difference in concentration of functionalized Scl2
proteins on swelling and mechanical properties of hydrogels.
The initial incorporation and retention of the protein in the
hydrogel was monitored for 6 weeks. The results demonstrated a
decrease in protein content for all the functionalization densities
with the proteins at the lowest functionalization density
displaying the greatest protein loss (Browning et al., 2013).
This was attributed to the hydrolytic degradation of the
acrylate ester bonds and fewer linkages to the hydrogel
network. Notably, reduced functionalization significantly
improved cell adhesion and spreading to the bioactive
hydrogels despite the reduced ligand concentration (Browning
et al., 2013). It was hypothesized that the linker created steric
hindrance around the ligand and reduced integrin binding. To
overcome the steric hindrance caused by protein
functionalization, Cereceres et al. redesigned the Scl2 protein
to reduce steric hindrance to the integrin-binding site, GFPGER,
by moving the reactive residues into the globular region and away
from the integrin-binding sites (Cereceres et al., 2015). This
newly engineered Scl2 protein hydrogel displayed a higher cell
adhesion as compared to the original bioactive hydrogel.

SUBSTRATE MODULUS AND
DEGRADATION KINETICS

Substrate stiffness has been identified as a key factor in directing
cell adhesion, migration, and differentiation (Engler et al., 2006;
Hynes 2009; O’Brien 2011; Lu, Weaver, and Werb 2012). Given
this established mechanoresponsive behavior, cell behavior was
characterized on Scl2 hydrogels of two different substrate moduli
as controlled by PEGmacromer molecular weight (10 vs 3.4 kDa)
(Browning et al., 2014). Endothelial cell adhesion, migration, and
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spreading increased significantly on gels with a higher modulus.
Unlike collagen hydrogels that often couple substrate stiffness
and ligand presentation (e.g., increasing collagen concentration),
the substrate modulus of these hydrogels is tunable independent
of variations in protein functionalization and loading
concentration (Browning et al., 2014). This uniquely permits
the study of individual roles of substrate modulus and ligand
presentation on integrin-mediated focal adhesion complex
formation and the corollary effect on cell behavior.

In addition to substrate stiffness, these hybrid gels also offer a
broader range of degradation kinetics to meet the needs of
different applications. For example, a wound hydrogel scaffold
can be designed to degrade to complement the rate of
regeneration; whereas a hydrogel coating of cardiovascular
devices should preserve the structure and functions over the
life of the device (10–20 years) to provide long-term efficacy.
Browning et al. developed a non-degradable hydrogel network of
PEG-diacrylamide that replaced the hydrolytically labile ester
bonds of PEG diacrylate (Browning et al., 2013). To increase the
Scl2 protein retention in the hydrogel, a new biostable linker was
designed to eliminate hydrolytically labile groups. This biostable
linker markedly increased the retention of the protein in the
hydrogel over 6 weeks while maintaining equivalent bioactivity.
Researchers have also developed a degradable PEG-based
hydrogel network for regenerative applications (Cereceres
et al., 2015). In this work, more labile thio-β ester bonds were
incorporated into the hydrogel network. Compositional control
was used to generate a range of different degradation rates from
days to months without changing the hydrogel bulk properties
such as swelling or modulus. The degradable linkage can also be
utilized to release the incorporated Scl2 protein locally.

HYDROGEL FABRICATION

In addition to the hydrogel chemistry variables described
above, Figure 3C illustrates some commonly utilized
fabrication methods to generate hydrogel slabs, coatings,
microspheres, and foams. Most commonly, PEG-Scl2
hydrogels (PEG-based hydrogels containing Scl2 proteins)
are formed in molds via photopolymerization to generate
bulk hydrogel slabs, tubes, or sheets (Cosgriff-Hernandez
et al., 2010; Becerra-Bayona et al., 2018). Browning et al.
developed a multilayer vascular graft by coating an
electrospun polyurethane mesh with PEG-Scl2 hydrogels via
UV-initiated polymerization with a tubular mold (Browning
et al., 2012). However, difficulty in fabricating thin coatings
and uneven coverage of the hydrogel on the mesh surface
constrained the clinical application of the graft. Wancura et al.
developed a new hydrogel coating fabrication method using
redox-initiated polymerization and diffusion-mediated
crosslinking (Wancura et al., 2020). The authors achieved
the formation of uniform hydrogel coating layers with
controlled thickness. In addition, this fabrication method
allowed for the formation of multilayer hydrogel with
distinct features and coating of the hydrogel on devices of
complex structures and materials. PEG-Scl2 hydrogel

microspheres were fabricated via a co-fluidics method to
generate injectable wound dressings (Cereceres et al., 2015).
Finally, Scl2 protein hydrogel sponges were fabricated and
used to deliver hyaluronic acid and chondroitin sulfate and
temporally control the sponge degradation to induce
chondrogenesis for the articular cartilage repair (Parmar
et al., 2016b).

In summary, Scl2 protein and hybrid PEG-Scl2 hydrogels have
shown great potential to replace animal-derived collagen
matrices. As a new biomaterial platform, Scl2 proteins offer
significant advantages in selective cell interactions and tunable
physical properties and forms. The next section will elaborate on
the specific applications of these Scl2-based hydrogels in the
regeneration and repair of different tissues.

APPLICATION OF SCL2 PROTEINS AS
INTEGRIN-TARGETING MATERIALS

A key goal in biomaterial design for regenerative applications is
directing cellular behavior. Integrin-targeting biomaterials
provide a mechanism to mimic native cell-extracellular matrix
interactions (Dhavalikar et al., 2020). Various extracellular
matrix-derived proteins or peptide sequences have been
utilized to target and bind specific integrins to direct cell
proliferation, migration, and differentiation. The directed cell
responses can facilitate numerous tissue repair processes,
including ECM reorganization, angiogenesis, and tissue
remodeling, to achieve improved and accelerated tissue repair
or regeneration. Insertion of different binding motifs into the Scl2
protein backbone has been used to achieve selective integrin
interactions (Stoichevska et al., 2016; Peng et al., 2014; An et al.,
2016; 2013; 2014). As compared to collagen and other protein-
based biomaterials that have multiple cellular interactions, these
Scl2 proteins can be utilized to target specific cell behavior. In
addition to providing improved medical devices, these new
biomaterials also provide new tools to elucidate complex
regenerative processes.

In this section, we will review recent studies applying these
integrin-targeting materials based on Scl2 proteins to clinical
applications. This includes thromboresistant coatings of
cardiovascular devices, scaffolds for bone regeneration, chronic
wound dressings, and matrices for cartilage repair.

Thromboresistant Coatings for
Cardiovascular Devices
Sustained thromboresistance has been a challenge in the field of
cardiovascular devices that continues to limit clinical outcomes.
The integrin-targeting nature of Scl2 proteins provides an
opportunity to target endothelial cell interactions while
limiting platelet attachment and activation. The hybrid Scl2
hydrogel combines the antifouling nature of PEG hydrogels
for acute thromboresistance with the cell selectivity of the Scl2
proteins to promote endothelialization for sustained
thromboresistance. Browning et al. investigated the ability of
these hybrid Scl2 hydrogels to direct endothelial cell interactions
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(Browning et al., 2012; Browning et al., 2013; Browning et al.,
2014). In these studies, researchers modulated protein-
incorporated hydrogels by tuning the ligand concentration,
adjusting protein functionalization density, changing the
substrate stiffness, and constructing a biostable hydrogel
network and functionalized linkage. Endothelial cell adhesion,
spreading, and migration were then characterized, showing that
the cell-material interaction was significantly affected by the
accessibility and number of binding motifs on the Scl2
proteins and the bioactivity retention of proteins.
Furthermore, PEG-Scl2 hydrogels showed minimal levels of
platelet adhesion and activation indicating its
thromboresistance (Browning et al., 2011).

To further understand the hemostatic regulation by different
integrin-binding interactions, Post et al. fabricated bioactive
hydrogels with different sets of integrin binding sites by
incorporating different proteins, including Scl2GFPGER,
collagen, and gelatin (Post et al., 2019). Combining the results
of the flow cytometry and the human umbilical vein endothelial
cell (HUVEC) attachment quantification after blocking integrins
with antibodies, the researchers were able to demonstrate the
specific integrin-binding sites of different proteins. The platelet
activation study showed that the PEG-Scl2 hydrogel was the least
pro-thrombotic and most anti-thrombotic among varied types of
hydrogels, suggesting that GFPGER-binding integrins α1β1 and
α2β1 supported a more anti-thrombotic HUVEC phenotype (Post
et al., 2019). Platelet adhesion and activation results then verified
that fewer platelets adhered to PEG-Scl2 hydrogel than the other
types of protein-incorporated hydrogels. Additionally, HUVECs
on PEG-Col hydrogel (PEGDA hydrogel incorporating natural
collagen)and PEG-Scl2 hydrogel demonstrated similar PAC-1
expression levels to the PEGDA blank hydrogel that stimulated
the minimal platelet activation (Post et al., 2019). These results
suggest that integrins α1β1 and α2β1-mediated HUVEC responses
can reduce the platelet adhesion and activation, and biomaterials
targeting these integrins can potentially avoid deleterious
coagulation cascade, thrombus formation, and vascular
occlusion as previous studied (Radke et al., 2018). This
highlighted the important roles of integrin-binding interaction
and provided guidelines for biomaterial design, including the
spatial and temporal exposure of specific integrin-binding sites to
orchestrate target cellular processes at different tissue
regenerative stages.

The integrin-binding ligand not only affects the adhesion,
proliferation, andmigration of human aortic endothelial cells, but
also makes a difference in endothelial cell differentiational
markers of VE-cadherin, PECAM-1, NOS3, TM, and
E-selectin (Munoz-Pinto et al., 2015). These markers are
correlated to the endothelization processes, such as the
formation of the tight junction and the establishment of a
confluent monolayer of cells. Both PECAM-1 and VE-
cadherin expression and protein production levels of the
endothelial cells cultured on the PEG-Scl2 hydrogels were not
significantly different from that of PEG-Collagen hydrogels. The
protein production of TM and E-selectin demonstrated no
variance between hydrogels with the Scl2 proteins and
collagens. However, PEG-Scl2 hydrogel did not induce the

same expression level of NOS3 as the PEG-collagen hydrogel,
which is significant for the vascular homeostasis. This was due to
the other various binding sites on the natural collagen molecule
that can promote the NOS3 expression and production. Still, the
versatility of Scl2 proteins allowed for further modification that
can implement the same effect on this specific marker expression,
such as insertion of heparin-binding site. The studies were then
extended to more endothelial cell phenotypes, that were
endothelial progenitor cells (EOCs) and human umbilical vein
endothelial cells (HUVECs) (Munoz-Pinto et al., 2015). Both
gene expression and protein production results demonstrated a
similar or improved endothelial maturation level of EOCs
cultured on PEG-Scl2 hydrogel compared to that cultured on
PEG-Collagen hydrogel. The PEG-Scl2 hydrogel had a similar or
improved EOC homeostatic marker expression to the PEG-
Collagen hydrogel. These results supported further exploration
of PEG-Scl2 hydrogel as an advanced thromboresistant vascular
graft coating. An increase in integrin binding sites of the protein
significantly improved the cell adhesion and retention on the
hydrogel substrate while maintaining a relatively high cell
migration rate (Quiroz et al., 2018). EOCs cultured on PEG-
Scl2 hydrogel with three integrin-binding sites displayed
improved gene expression and protein production levels of
intermediate differentiation markers compared to that of PEG-
Collagen hydrogels. This work indicated that PEG-Scl2 hydrogels
have the potential to improve endothelial cell differentiation with
amplified integrin-mediated interactions when the cell adhesion,
retention, and migration rate were suitable for the formation of a
cellular monolayer.

Overall, these studies demonstrate that the incorporated Scl2
proteins can induce targeted integrin-mediated interactions with
different types of endothelial cells to promote cell adhesion and
migration, as well as hemostatic phenotypes. As shown in
Figure 4A, the well-designed thromboresistant Scl2 protein
hydrogel can be coated on the surface of cardiovascular grafts
and heart valves with customized bioactivity and potential for
sustained thromboresistance.

Scaffolds for Bone Regeneration
Collagen I has been widely shown to support mesenchymal stem
cell (MSC) osteogenic differentiation in both two-dimensional
(2D) and three-dimensional (3D) environments (Donzelli et al.,
2007; Chamieh et al., 2016; Chan et al., 2010; Lund et al., 2008;
Schneider et al., 2010; Chiu et al., 2014; Somaiah et al., 2015). As
such, the application of collagen-mimetic proteins to bone
scaffold design has arisen. In Becerra-Bayona et al., Scl2
proteins were used to elucidate the impact of individual
collagen motifs on associated cellular responses (Becerra-
Bayona et al., 2018). As shown in Figure 4B, human MSCs
(hMSCs) were cultured within PEG hydrogels containing either
Scl2GFPGER or Scl2GFPGEN in the absence of osteogenic
supplements. PEG-Scl2GFPGER gels were associated with
increased hMSC osterix expression, osteopontin production,
and calcium deposition relative to the PEG-Scl2GFPGEN gels
(Becerra-Bayona et al., 2018). Results indicated that integrin α2
signaling may have an increased osteogenic effect relative to
integrin α1. Since integrin α1β1 and α2β1 both trigger the
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MAPK pathway, ERK, JNK, and p38 activation were also assessed
to evaluate potential mechanisms underlying observed responses.
Inhibition results suggested that p38 activity triggered by integrin
α2β1 but not α2β1 plays a key role in collagen-supported hMSC
osteogenesis (Becerra-Bayona et al., 2018). Similarly, Reyes et al.
found that surfaces coated with triple helical GFOGER
(analogous to Scl2GFPGER but without the flexibility afforded
by recombinant expression) induced similar levels of
expression of osteogenic markers runx2, osteocalcin, and bone
sialoprotein by MC3T3-E1 as native collagen I (Reyes and García
2004). These triple helical GFOGER peptide coatings have further
been passively adsorbed onto polymeric scaffolds and have also
been found to significantly accelerate and increase bone
formation in non-healing femoral defects compared to
uncoated scaffolds and empty defects (Wojtowicz et al., 2010).
Further studies with the more versatile Scl2 proteins will allow for
improved design of collagen-based scaffolds.

Chronic Wound Dressings
Natural collagen has been applied to different skin substitute
products or wound dressings due to its compatibility and
bioactive cues (Singer and Clark 1999). As an advantageous
replacement for natural collagen, Scl2 proteins with binding
sites of integrins α1β1 and α2β1 can direct keratinocyte
migration and proliferation, ECM deposition, and wound

contraction in the later stage of wound healing. As
discussed in the previous section, Cereceres et al. redesigned
Scl2 protein to have the integrin-binding motif, GFPGER,
away from functionalization sites (Cereceres et al., 2015).
By characterizing the relative α1 integrin-domain binding,
the authors were able to prove that the relocation of
integrin binding sites significantly reduced the steric
blocking by the protein functionalization. As a result, the
redesigned eColGFPGER hydrogel demonstrated a critical
increase in fibroblast adhesion compared to the original
Scl2GFPGER hydrogel, suggesting increased integrin-mediated
interactions. The well-defined hydrogel platform with the
tunable presentation of integrin binding sites allows for a
comprehensive investigation of the roles of different
integrin-mediated signal pathways in wound healing. This
contains a group of integrins that have been identified to
influence different stages of wound healing, including
formerly mentioned α1β1 and α2β1, as well as α3β1 and
α11β1 (Koivisto et al., 2014; Larjava et al., 1996; Liu et al.,
2010; Longmate and DiPersio 2014; Choma et al., 2007;
Thannickal et al., 2003; Dhavalikar et al., 2020). Also,
wound dressings of different forms (Figure 4C), including
hydrogel microspheres, 3D-printed hydrogel dressing with
hierarchical, and highly porous hydrogel foam, can be
employed to deliver the Scl2 protein to the wound bed

FIGURE 4 | Biomedical applications of Scl2-containing biomaterials with targeted integrin interactions. (A) PEG-Scl2 hydrogel coatings of cardiovascular devices
to enhance thromboresistance; (B) PEG-Scl2 hydrogel that revealed integrin-mediated hMSC osteogenic differentiation via the MAPK signal pathway (C) Different types
of dressings containing Scl2 proteins to enhance chronic wound healing; (D) PEG-Scl2 protein hydrogel with binding sites for chondroitin sulfate and hyaluronic acid to
improve cartilage repair.
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while providing moisture balance for improved healing
potential.

Matrices for Cartilage Regeneration
A series of studies were conducted by Parmar et al. on developing
Scl2 protein sponges with inserted binding sites for hyaluronic acid
(HA), chondroitin sulfate (CS), heparin, or integrin (Figure 4D)
(Parmar et al., 2016a; Parmar et al., 2016b; Parmar et al. 2017).
Specifically, the researchers introduced different cleavage linkages to
the protein hydrogel sponge network to achieve temporal control
over the hydrogel degradation, modulating the chondrogenesis of
hMSCs (Parmar et al., 2016a). The results indicated that groups with
a ratio of MMP7-cleavable and aggrecanase-cleavage linkages at 25:
75 and 50:50 significantly upregulated chondrogenic expression
levels, rendering the highest production levels of sulfated
glycosaminoglycan (sGAG) and collagen. Additionally, the
hMSC-laden protein hydrogel sponges of these two groups
maintained their mechanical integrity and strength after 6 weeks,
which was never seen in other degradable cartilage scaffold work.
Another study from the group investigated the effect of HA and
chondroitin sulfate binding site ratio on cell responses and
chondrogenesis (Parmar et al., 2016b). In vitro characterization
identified that the hydrogel foam groups with HA-Scl2 and HA:
CS (75:25)-Scl2 proteins (Supplementary Table S1) had drastically
upregulated expression levels of chondrogenesis markers COL2A1,
ACAN, and SOX9 with greatest sGAG and collagen production.
Importantly, these works have provided a versatile Scl2 protein
hydrogel platform with tunable binding sites and adjustable
degradation profiles, demonstrating potential applications in a
broader tissue engineering context. However, although the
integrin-binding sites were inserted in the employed Scl2 protein,
the authors had not identified the integrins of interest in
chondrogenic differentiation of hMSCs. Other research indicated
that β1 integrins, including α1β1, α2β1, and α3β1 of collagen receptors,
were activated during chondrogenic differentiation (Takahashi et al.,
2003; Goessler et al., 2008). Thus, a future direction of Scl2 protein
hydrogel application in articular cartilage repair can be the
investigation of different integrin-mediated cell behaviors by Scl2
proteins with specific binding sites.

This section reviewed several applications of Scl2 protein
hydrogels in repairing and regenerating damaged tissues of the
vasculature, bone, skin, and articular cartilage. With highly
tunable mechanical properties and customized bioactivity,
these Scl2-based hydrogels demonstrated the versatility of this
new biomaterial platform. Furthermore, this novel class of
biomaterials is capable of extending our understanding of the
biological processes in cellular behaviors and tissue recovery and
guiding the future biomaterial design for more advanced
solutions in regenerative medicine.

CURRENT CHALLENGES AND FUTURE
PERSPECTIVES

The selective insertions of specific integrin-binding motifs into
Scl2 proteins provided numerous opportunities for advancing the
understanding of integrin-ligand interactions, integrin-mediated

signal pathways, and resultant cellular behaviors. Native collagens
have a collection of integrin binding sites that can be countered,
compounded, or have synergetic effects after interacting with
specific integrins. With no inherent binding motif, Scl2 proteins
can be inserted with one or more types of ligands as designed.
Previous studies have utilized engineered Scl2 proteins to
facilitate the investigation of multiple critical integrin-mediated
cell behaviors in bone regeneration, endothelialization, and
hemostatic regulation with vascular devices (Browning et al.,
2012; Becerra-Bayona et al., 2018; Post et al., 2019; Wancura
et al., 2020). Moreover, isolated fundamental integrin-ligand
interactions in re-epithelialization, ECM redeposition, and
wound contraction demand much attention and further
probing for advanced wound healing modalities. It is also
necessary to identify and isolate fundamental integrin
interactions that play central roles in the chondrogenic
differentiation of hMSCs and the essential glycosaminoglycan
network reconstruction. Researchers have also discovered that
varied types of cells express distinct sets of integrins, and these
cells demonstrate different attachment affinities to other binding
motifs (Cosgriff-Hernandez et al., 2010; Post et al., 2019). Hence,
Scl2 proteins with inserted binding motifs allow for possible
mapping of the relative affinities between different combinations
of integrins and binding motifs in the context of multiple cells
active in a particular circumstance or different cell phenotypes
during differentiation. Substrates coated with recombinant Scl2
proteins can select cells from a co-culture system or target cells at
defined differentiation stages. Regardless, recombinant bacterial
collagens with inserted integrin-binding sites offer the
opportunities to compare different integrin-ligand binding
affinities, revealing the roles of isolated integrin-ligand
interactions in the given tissue engineering field guide the
biomaterial design for enhanced clinical outcomes.

The previous sections show examples of Scl2 proteins to
develop biomaterials that guide integrin-mediated cellular
activities for advanced tissue engineering. Therefore, the ligand
presentation to the target cell population is essential for
biomaterial design. It has been demonstrated that a change in
the integrin ligand number of Scl2 proteins could result in
different cell adhesion, migration rate, and marker expression
levels (Quiroz et al., 2018). Also, the designed incorporation of
recombinant bacterial collagens into highly tunable synthetic
polymer hydrogels enabled the improvement and modulation
of ligand exposure to the integrins (Cosgriff-Hernandez et al.,
2010; Browning et al., 2011; Browning et al., 2013; Browning et al.,
2014). However, cells interact with all the components of their
surrounding environment dynamically, so spatial and temporal
controls of specific integrin interaction play pivotal roles in
understanding cell behaviors and directing tissue engineering.
At the subcellular level, grouping multiple ligands together in
islands can effectively promote integrin clustering and amplify
targeted cell responses. The substrate mechanical properties,
surface topography, distribution, and density of ligands can
also be modulated to render different integrin-ligand binding
modalities, leading to cell adhesion, migration, differentiation,
and ECM production changes. In addition, there is a gap between
2D and 3D cell culture systems as 3D culturing has increased
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surface area for integrin binding and mimics the cell native niche
with a dynamic interface. Integrin clusters are more prominent
with longer lifetimes in 3D environments (Lepzelter et al., 2012).
Cutting-edge nanopatterning techniques allow for a refined
design of the biomaterial surface with a much higher
resolution and versatile geometries and demonstrate a great
promise in controlling the ligand accessibility to targeted cells.
Substrates with temporally controlled degradation profiles
induced by hydrolysis or enzyme cleavage potentiate the
sequential exposure of different integrin-binding sites on the
embedded Scl2 proteins to modulate specific cell behaviors in
different regenerative stages. Biomaterial design and development
have been advanced by the synthetic polymer science of growing
versatility and continuously progressing fabrication techniques.
However, there are remaining critical challenges in translating
in vitro findings to in vivo results and applying the materials or
devices to damaged tissues. For evaluating the effect of a chosen
integrin interaction with its binding site, transgenic mice with
ablation or deletion of targeted integrin genes have been studied
in vivo. However, they are limited by unknown outcomes caused
by mutagenesis. Also, fundamental biological factors must be
considered in the context of a dynamic in vivo environment. Key
players, including multiple other cells, plenty of growth factors,
and remodeling ECM, can engender ambiguous or unreliable
conclusions by compensating or competing with the ligands
presented by the biomaterial. Researchers must make
scrupulous assumptions and analyze the outcomes critically to
avoid false conclusions in elucidating the roles of integrins in the
cell response to designed biomaterials.

Animal-derived collagens have been widely used in
biomedical applications due to their biocompatibility,
biodegradability, and easy accessibility. However, its use has
been hindered by batch-to-batch variability and limited
potential for production scaling-up. The discovery of
prokaryotic collagen-like proteins has provided opportunities
to meet natural collagens’ structural and functional needs in
various applications while improving production rates and
reducing product variability. With selectively inserted binding
sites, prokaryotic collagen-like protein has been shown in
multiple publications to interact with extracellular matrix

molecules and bind to targeted integrins, leading to
appropriate cellular responses. This technology provides a
versatile platform to investigate collagen binding sites,
characterize their interaction with extracellular matrix
proteins, elucidate specific cellular responses to the
prokaryotic collagen-like protein-incorporated material, and
guide the design of advanced biomaterials for tissue
engineering.
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