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Single-cell DNA methylation sequencing technology has brought new perspectives to
investigate epigenetic heterogeneity, supporting a need for computational methods to
cluster cells based on single-cell methylation profiles. Although several methods have been
developed, most of them cluster cells based on single (dis)similarity measures, failing to
capture complete cell heterogeneity and resulting in locally optimal solutions. Here, we
present scMelody, which utilizes an enhanced consensus-based clustering model to
reconstruct cell-to-cell methylation similarity patterns and identifies cell subpopulations
with the leveraged information from multiple basic similarity measures. Besides, benefitted
from the reconstructed cell-to-cell similarity measure, scMelody could conveniently
leverage the clustering validation criteria to determine the optimal number of clusters.
Assessments on distinct real datasets showed that scMelody accurately recapitulated
methylation subpopulations and outperformed existing methods in terms of both cluster
partitions and the number of clusters. Moreover, when benchmarking the clustering
stability of scMelody on a variety of synthetic datasets, it achieved significant clustering
performance gains over existing methods and robustly maintained its clustering accuracy
over a wide range of number of cells, number of clusters and CpG dropout proportions.
Finally, the real case studies demonstrated the capability of scMelody to assess known cell
types and uncover novel cell clusters.

Keywords: single-cell, DNA methylation, epigenetic heterogeneity, consensus-based clustering, cell-to-cell
similarity

1 INTRODUCTION

As a heritable covalent chemical modification, DNA methylation is closely correlated with cell
growth, differentiation, and transformation, which plays decisive roles in diseases and tumorigenesis
(Aran and Hellman, 2013; Oakes et al., 2016; Koch et al., 2018). Technological advances have enabled
DNAmethylation assay at single-nucleotide resolution through high-throughput sequencing (Cokus
et al., 2008; Sandoval et al., 2011; Krueger et al., 2012), thus paving the way for quantifying the
methylation landscapes across different tissues and individuals. However, bulk protocols typically
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require thousands to millions of cells per experiment, making it
difficult to study rare cell populations or explore the intercellular
epigenetic heterogeneity (Schwartzman and Tanay, 2015). With
increasing evidence of epigenetic heterogeneity in phenotypically
similar cells (Angermueller et al., 2016; Hui et al., 2018), the
single-cell methylation sequencing (scME-seq) protocols have
demonstrated their capability for the deconvolution of mixed cell
populations, such as scBS (Smallwood et al., 2014), scRRBS (Guo
et al., 2013), and scWGBS (Farlik et al., 2015). Besides, the parallel
single-cell sequencing protocols, like scM&T-seq (Angermueller
et al., 2016), scTrio-seq (Hou et al., 2016), and scNOMe-seq (Pott,
2017), have brought new sights into understanding the regulatory
mechanisms of epigenetic modifications on transcriptional
variation. Although single-cell RNA sequencing (scRNA-Seq)
has been widely used for investigating cell heterogeneity, it
mainly informs about highly expressed transcripts while
scME-seq enables detecting the methylation status of CpGs
across gene and non-gene regions (Luo et al., 2017).
Moreover, DNA methylation landscapes are not affected by
the environment and can be more stable over the lifespan
(Lister et al., 2013; Mo et al., 2015). Therefore, how to
uncover cellular heterogeneity based on single-cell methylation
data is gaining more attention.

To our knowledge, most existing methods incorporated
different (dis)similarity relationships between cells into the
distance-based clustering algorithms, such as hierarchical
clustering (HC), to generate cell partitions. For instance, Farlik
et al. clustered cells based on the average methylation over
putative regulatory regions using HC with Euclidean distance
and complete linkage (Farlik et al., 2016). Besides, a sliding
window approach (Smallwood et al., 2014) was proposed to
estimate CpG methylation rates and then cells were clustered
based on the estimated methylation levels of most variable CpGs
(Smallwood et al., 2014) or gene bodies (Angermueller et al.,
2016) using Euclidean distance and HC. In addition to the
Euclidean distance, the Pearson correlation coefficient was also
used to measure cell-to-cell methylation distance and has been
combined with the HC algorithm to generate cell partitions based
on the site-level (Hou et al., 2016) or region-level (Pott, 2017)
methylation. Hui et al. developed PDclust to identify cell types
using a pairwise dissimilarity (PD) measure and HC, where the
PD value was defined as the average of the absolute difference in
methylation status at overlapping CpGs between cell pairs (Hui
et al., 2018). Despite the considerable diversity in these clustering
methods, different (dis)similarity measures could have a
significant effect on the quality of the clustering results in
distance-based clustering algorithms and no single measure
was appropriate for all situations (Yona et al., 2006; Khalifa
et al., 2009; Shirkhorshidi et al., 2015). Moreover, only
PDclust was verified across different datasets while the
clustering performances of other distance measures on
different datasets have not been fully evaluated. Recently, a
probabilistic hierarchical mixture model Epiclomal was
proposed to cluster cells through pooling information across
cells and neighboring CpGs (de Souza et al., 2020). But
Epiclomal required several non-probabilistic methods for
clustering initialization and failed to consistently achieve

clustering performance gains than single-distance-based
methods on some real datasets. Additionally, Kapourani et al.
(2021) proposed the Bayesian models for single-cell methylation
data analysis but focused on their evaluation on missing data
imputation (Kapourani and Sanguinetti, 2019) and identifying
variable features. In summary, additional clustering
methodologies that are universal to different kinds of single-
cell methylation datasets are still urgently needed.

Recent advancements in ensemble clustering (Ghaemi et al.,
2009; Vega-Pons and Ruiz-Shulcloper, 2011; Boongoen and Iam-
On, 2018) have demonstrated that integrating various basic cell
partitions in a consensus matrix is effective to generate improved
clustering solutions (Kiselev et al., 2017; Zhu et al., 2020; Cui et al.,
2021; Wang et al., 2021). The rationale for this idea is to construct
a cell-to-cell pairwise similarity matrix based on the diverse basic
clustering results through a cluster-based similarity partitioning
algorithm (CSPA) (Strehl and Ghosh, 2002), with each value in
the matrix representing the probability of the occurrence of cell
pairs in the same cluster. Then the resulting ensemble cell clusters
can be yielded according to the consensus matrix with typical
clustering algorithms, such as HC. Since how to accurately
capture intercellular methylation (dis)similarity relationships is
significant for clustering cells, combining information from
multiple (dis)similarity measures to reconstruct the cell-to-cell
similarity with the consensus-based clustering strategy becomes a
promising alternative. However, the traditional consensus
strategy only integrated the information of basic clustering
assignments (Golalipour et al., 2021; Zhang, 2021), which
might be not sufficiently informative to reconstruct the cell-to-
cell similarity as the inherent distance relationships within the
subpopulation were ignored. Moreover, when calculating the
consensus matrix, the basic clustering partitions could be
highly correlated or differ significantly and their ability to
distinguish cells was different, requiring an extra strategy to
balance the diversity and separability of the basic clustering
partitions. Although many weighting strategies based on
various clustering validation indices have been proposed to
construct a more accurate consensus matrix (Vega-Pons et al.,
2008; Vega-Pons et al., 2011; Ünlü and Xanthopoulos, 2019; Zhu
et al., 2020), they did not take into account the diversity and
separability of basic cluster partitions simultaneously.

Here, we propose scMelody, an enhanced consensus-based
clustering model for single-cell methylation data analysis by
reconstructing cell-to-cell pairwise similarity. By introducing a
regularization process and a dual weighting strategy, scMelody
improves the construction of the consensus matrix which
contributes to a novel cell-to-cell similarity measure for
clustering cells. Compared to the single (dis)similarity
measures, the reconstructed cell-to-cell similarity measure
combines the multiple inherent distance relationships of cells
and the clustering information of basic cell clusters, so as to
improve the accuracy of identifying cell subpopulations. As an
additional benefit, scMelody can conveniently leverage the
internal clustering validation criterion to determine the
optimal number of clusters based on the reconstructed
pairwise similarity patterns. Extensive assessments on both real
datasets and synthetic datasets showed that scMelody achieved
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the most advanced performance over previous methods in
clustering single-cell methylation data.

2 MATERIALS AND METHODS

2.1 Datasets and Pre-Processing
We first retrieved seven real single-cell methylation datasets in
which cell types were known a priori or were validated in the
respective study to benchmark the performance of the clustering
algorithms. These distinct single-cell methylation datasets were
generated by various sequencing techniques and came from
Smallwood et al. (2014), Farlik et al. (2015), Hou et al. (2016),
Pott (2017), Farlik et al. (2016) and Luo et al. (2017). The
Smallwood dataset was made up of mouse embryonic stem
cells (ESCs), where the cells were cultured in a regular serum
medium and 2i medium to introduce differential methylation.
Note that there were two outlier cells from the serum condition
that were demonstrated to be more similar to the 2i ESCs. The
Falik2015 dataset consisted of K562 cells and HL60 cells, which
were either treated with extra drugs or not, leading to 4 different
cell subpopulations. The Hou dataset consisted of the cells were
from a human hepatocellular carcinoma (HCC) tissue sample
and a human hepatoblastoma-derived cell line (HepG2). There
were two subpopulations in HCC cells, where the authors
integrated gene expression, copy number changes and DNA
methylation to support their findings. The Pott dataset
consisted of GM12878 cells and K562 cells, which were grown
in different culture mediums. The Farlik2016 dataset contained
several different types of human hematopoietic cells, including
hematopoietic stem cells (HSC), multipotent progenitors (MPP),
common lymphoid progenitor (CLP), common myeloid
progenitor (CMP), immature multi-lymphoid progenitor
(MLP0), and granulocyte-macrophage progenitor (GMP). The
Luo dataset was relatively large, which consisted of two different
parts, including 2740 human neurons (Luo-human) and 3,377
mouse neurons (Luo-mouse). According to the original
experiment, both the human and mouse neurons were very
heterogeneous, where there were 21 subclusters identified in
human neurons and 16 subclusters identified in mouse
neurons. The overview of these real datasets is summarized in
Table 1, including the number of cells and the number of clusters
for each dataset. Moreover, in addition to the aforementioned
datasets for the standard validation, we also retrieved one of the
largest publicly available datasets, which assayed 28077 inhibitory
neurons from different regions of the mouse brain and presented

strong cellular heterogeneity (Liu et al., 2021). We focused on the
evaluation of the ability of scMelody to identify novel cell clusters
under complex cell composition contexts on this large dataset.

To faithfully simulate methylation data that resemble scME-
seq for evaluating the clustering stability and scalability of
scMelody, we also generated synthetic datasets with various
initial settings using the sub-sampling strategy proposed by
Kapourani and Sanguinetti (2019). To retain the structure of
missing data observed in sequencing experiments, this strategy
generated the pseudo-single cells by sampling the raw FASTQ
files of the bulk data. We collected the bulk RRBS data (GEO
accession: GSE27584) of 10 cell lines (Supplementary Table S1)
from the ENCODE dataset (Wang et al., 2012) and the pseudo-
single cells were produced by randomly keeping 10% of the
mapped reads from the bulk experiment. Then, we generated
the synthetic datasets with different initial settings: (1) the
number of pseudo-single cells
(N � 50, 100, 200, 300, 400, 500, 600, 800, 1000); (2) the number
of predefined clusters (C � 2, 3, 4, 5, 6, 7, 8, 9, 10); (3) the
dropout CpG proportions
(η � 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). Note that the
number of predefined clusters was achieved by combining the
cells sampled from different cell lines and we sampled the equal
numbers of cells in each cell line. The dropout CpG proportion
simulated the data with different sparsity by randomly
eliminating a certain proportion of CpG sites in pseudo-single
cells, where the higher the dropout proportions represented the
higher the degree of data sparsity and the greater difficulty of
clustering. In comparative studies, we varied one parameter and
kept the others fixed. Unless otherwise specified, the fixed
parameters were: number of pseudo-single cells 400, number
of predefined clusters 6 and the CpG dropout proportion 0.5. For
each setting, we generated 50 input datasets to evaluate the
clustering performance.

For the retrieved real single-cell methylation datasets, most of
the CpG loci assayed exhibited binary methylation status
(methylated or unmethylated). Specifically, the CpGs detected
by snmC-seq only hadmethylated or unmethylated status and the
CpGs detected by other sequencing techniques predominantly
presented either hypermethylation or hypomethylation
(Supplementary Figure S1). Considering the bimodal
distribution of methylation levels, the CpGs exhibiting
partially methylated calls (≥.5) were assigned a value of 1
(methylation) or a value of 0 (unmethylation) otherwise (<.5).
Similarly, for the synthetic datasets generated from the RRBS bulk
data, the binary methylation status could be obtained by using a
threshold of .5 (values no less than .5 were binarized to 1
otherwise to 0).

2.2 scMelody Clustering Algorithm
Considering the sparse coverage of scME-seq technology,
scMelody leverages all overlapping CpGs between cell pairs to
evaluate cell-to-cell similarity patterns. Specifically, scMelody
takes files with binary CpG methylation calls across the
genome from individual cells as input. To capture different
methylation similarity patterns between cell pairs, scMelody
utilizes three correlation-based measures, including Cosine,

TABLE 1 | Overview of the seven real single-cell methylation datasets.

Datasets Sequencing # GEO accession # Cells # Clusters

Smallwood ScBS GSE56879 32 2
Farlik2015 scWGBS GSE65196 69 4
Hou scTrio-seq GSE65364 31 3
Pott scNOMe-seq GSE83882 23 2
Farlik2016 scWGBS GSE87197 122 6
Luo-human snmC-seq GSE97179 2740 21
Luo-mouse snmC-seq GSE97179 3377 16
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Hamming and Pearson correlation coefficient, which have been
reported to be effective for quantifying the similarity relationships
of binary data (Haranczyk and Holliday, 2008). Given a series of
single-cell methylation data files Xi (i = 1,2 . . ., n; n denotes the
number of target cells), the Cosine similarity of cell pairs (Xi,Xj)
can be calculated as follows:

S1(Xi, Xj) � ∑m
t�1XitXjt�����������������∑m

t�1(Xit)2∑m
t�1(Xjt)2√

where m represents the number of overlapping CpGs shared by
cell pairs (Xi,Xj) and t denotes t -th overlapping CpG between
each cell pair (Xi,Xj). For any two cells, the more similar the
global methylation landscape is, the larger the Cosine correlation
coefficient is; and S1(Xi,Xj) ranges from 0 to 1. Next, scMelody
calculates the Hamming similarity for each cell pair (Xi,Xj):

S2(Xi, Xj) � ∑m
t�1I(Xit � Xjt)

m

where the indicator function I(.) returns 1 if its argument is true.
This can be described as calculating the proportion of CpGs with
concordant methylation status between cell pairs, which ranges
from 0 to 1. Finally, the Pearson similarity is calculated as follows:

S3(Xi, Xj) � ∑m
t�1(Xit −Xi)(Xjt − �Xj)�������������∑m

t�1(Xit −Xi)2
√ ��������������∑m

t�1(Xjt −Xj)2
√

where Xi , Xj is the mean of Xi, Xj respectively and the Pearson
similarity measures the linear correlation according to the
methylation status between the cell pair (Xi,Xj), varying from
0 to 1. With the three basic similarity measures, the inherent
methylation similarity relationships of cells can be quantified and
the cell-to-cell methylation similarity patterns are captured in the
corresponding similarity matrices {Sμ|μ � 1, 2, 3}.

To reconstruct the cell-to-cell methylation similarity with the
consensus-based clustering strategy, scMelody implements
spectral clustering (von Luxburg, 2007) to generate basic cell
partitions according to the methylation similarity matrices.
Spectral clustering does not make strong assumptions on the
form of the cluster and is effective for clustering sparse data with
only similarity relationships between data points. Given a
similarity matrix S � (sij) ∈ Rn×n, where sij ≥ 0 represents the
linkage weights between cell i and cell j, spectral clustering
partitions the cells into C clusters through solving the
following optimization problem:

min
L ∈ Rn×C < LLT, In − ~S >, s.t. LTL � IC

where ~S � D−1/2SD−1/2 and D � diag(d11, d22, . . . , dnn) is a
diagonal matrix with dii � ∑n

j�1sij. Finally, each row of
obtained L is treated as a data point in RC, and is clustered
into C groups by k-means. Note that In − ~S is called a normalized
graph Laplacian. By implementing spectral clustering on the three
similarity matrices {S1, S2, S3}, we can generate a set of basic cell

partitions Π � {πμ|μ � 1, 2, 3}, which can be used as a clustering
prior for reconstructing cell-to-cell similarity.

To convert the information of each basic cell partition into the
respective cell-to-cell similarity matrix, scMelody constructs a co-
occurrence matrix for each basic cluster. In traditional consensus
clustering strategy, for each basic clustering assignment πμ in Π,
an n × n binary co-occurrence matrix is constructed, which can
be denoted as Iμ:

Iμ(Xi, Xj) � { 1 ifC(Xi) � C(Xj)
0 otherwise

where C(Xi) denotes the clustering label of cell Xi, and if the cell
pairs (Xi,Xj) are assigned into the same cluster in the μ -th
member πμ, the value of Iμ(Xi,Xj) is equal to 1, otherwise is 0.
The general consensus matrix is obtained by averaging the binary
co-occurrence matrices Iμ. However, this may not be sufficiently
informative to reconstruct cell-to-cell similarity as the inherent
similarity relationships of cells are ignored and the resulting
consensus matrix is heavily dependent on the basic cell partitions.

To reconstruct the cell-to-cell similarity patterns that faithfully
reflects themethylation difference between cells, scMelody adopts
a two-stage strategy to improve the construction of the consensus
matrix and the resulting consensus matrix can be used to measure
the cell-to-cell pairwise similarity in higher resolution. In the first
stage, scMelody redefines the construction of the binary co-
occurrence matrix Iμ to produce a more fine-grained co-
occurrence matrix Ipμ. Specifically, scMelody utilizes the basic
similarity matrix to regularize the binary co-occurrence matrix Iμ
and the new co-occurrence matrix Ipμ can be expressed as:

Ipμ � Iμ ⊙ Sμ

where ⊙ denotes the Hadamard product and each value in Ipμ can
be calculated as Ipμ(Xi,Xj) � Iμ(Xi,Xj) × Sμ(Xi,Xj). In this
way, the new matrix Ipμ measures the co-occurrence of cell
pairs belonging to the same cluster in higher resolution.
Compared to Iμ, Ipμ refines the similarity of cells within the
clusters, while preserving the differences between cells
belonging to different clusters. In the second stage, scMelody
adaptively assigns weights to different Ipμ based on the diversity
and separability of the basic cell partitions with a dual weighting
strategy. Firstly, existing studies have underlined the importance
of diversity in basic clustering partitions to enhance the
performance of ensemble solutions (Kuncheva and
Hadjitodorov, 2004; Hadjitodorov et al., 2006; Fern et al.,
2008), thus scMelody proposes a weighting criterion to assess
the diversity of basic cell partitions based on NMI (Vinh et al.,
2010), where NMI utilizes mutual information to measure the
agreement of the two clustering assignments. Suppose each basic
cell partition πμ � {Cμ

1 , C
μ
2 , . . .C

μ
k, . . . , C

μ
Kμ}, Cμ

k is a cluster of πμ

and Kμ denotes the number of the clusters of πμ. To punish the
basic cell partition that contributes little to the diversity, the
weight for basic cell partition πμ can be formularized as follows:

wdiv
μ � exp( − 1

r−1∑r
]�1,] ≠ μNMI(πμ, π]))∑r

μ�1exp( − 1
r−1∑r

]�1,] ≠ μNMI(πμ, π]))
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NMI(πμ, π]) � 2 × ∑k,lpkllog
pkl

pk × pl

−∑kpklogpk − ∑lpllogpl

where r � 3 represents the number of basic cell partitions.
Besides, pk � nk/n, pl � nl/n and pkl � nkl/n, where nk, nl
represents the number of cells in the k -th and l -th cluster of
the basic cell partition πμ, π] respectively, and nkl is the number of
cells shared by cluster k and cluster l. NMI score ranges from 0 to
1, with higher NMI score representing more consistent basic cell
partitions and 1

r−1∑r
]�1,] ≠ μNMI(πμ, π]) measures the overall

consistency between the basic cell partition πμ and others,
with higher values representing less contribution to the
diversity. Note that 0<wdiv

μ < 1 and ∑
μ
wdiv

μ � 1. Then, to assess

the separability of basic cell partitions, scMelody considers the
silhouette coefficient (Rousseeuw, 1987), which combines the
cohesion and separation of clusters to assess the clustering
performance when the ground truth labels are not known.
Given a basic cell clustering assignment
πμ � {Cμ

1 , C
μ
2 , . . .C

μ
k, . . . , C

μ
Kμ}, the weight defined by the

separability can be obtained as follows:

wsep
μ � exp(SI(πμ))∑r

μ�1exp(SI(πμ))
SI(πμ) � 1

Kμ
∑

k

⎧⎪⎨⎪⎩ 1
nk

∑
Xi∈C

μ
k

b(Xi) − a(Xi)
max[b(Xi), a(Xi)]

⎫⎪⎬⎪⎭
a(Xi) � 1

nk − 1
∑

Xj∈C
μ
k
, Xj≠Xi

K(Sμ(Xi, Xj))
b(Xi) � minl,l≠k

⎧⎪⎨⎪⎩ 1
nl

∑
Xj∈C

μ
l

K(Sμ(Xi, Xj))⎫⎪⎬⎪⎭
where a(Xi) denotes the average distance between cell Xi and all
other cells in the same cluster Cμ

k while b(Xi) denotes the average
distance between cell Xi and all other cells in the next nearest
cluster Cμ

l . Here, K(.) is a kernel function that converts the
similarity measure Sμ(Xi,Xj) to the respective distance measure
1 − Sμ(Xi,Xj) as the original value of the basic cell-to-cell
similarity measure varies from 0 to 1. SI(πμ) ranges from -1
to 1, with a higher value indicating that the intra-class distance is
small while the inter-class distance is large thus the cells are well-
clustered. Note that we also have 0<wsep

μ < 1 and∑
μ
wsep

μ � 1, with

higher wsep
μ indicating higher separability for basic cell partition

πμ. In this way, scMelody achieves the assessment of weights
based on the diversity and separability of the basic cell partitions.
Combining with the regularized co-occurrence matrix Ipμ, the
resulting weighted consensus matrix CO can be constructed
through a linear aggregation function, which can be expressed as:

CO(Xi, Xj) � f (w, Ip) � 0.5p⎛⎝∑
μ
wdiv

μ Ipμ +∑
μ
wsep

μ Ipμ⎞⎠
where 0.5 is used as a scaling coefficient, restricting the value of
cell-to-cell pairwise similarity in the weighted consensus matrix
CO varying from 0~1. Each value CO(Xi,Xj) in the resulting

weighted consensus matrix is a reconstructed similarity measure
of each cell pair (Xi,Xj), which measures the methylation
similarity relationships between cells in higher resolution.

Finally, the weighted consensus matrix CO is clustered using
the complete-linkage HC algorithm to yield the resulting cell
partitions. The overall scMelody clustering framework is shown
in Figure 1, and the pseudo code flow is available inAlgorithm 1.

Algorithm 1: scMelody

2.3 Determine the Optimal Number of
Clusters
Both the spectral clustering and HC algorithms need to specify the
number of clusters in advance to generate the cluster assignments.
Here, we integrate basic similarity measures of cells to propose a
robust strategy to determine the optimal number of clusters based
on the silhouette coefficient criterion. Let k � {2, . . . , Kmax}, where
Kmax denotes the possible maximum number of clusters, we first
run the spectral clustering varying k (k denotes the input number
of clusters for spectral clustering) from 2 toKmax. Let πk represents
the corresponding cell partition when the input number of clusters
equaling k. For the three different similarity measures, we can get
three different cell partitions at each value of k. Then, we calculate
the silhouette coefficient for each similarity measure at each k and
select the best ksp as the optimal number of spectral clustering
which is given by:

ksp � argmax∑r

μ�1(SI(πk)|k)

where r � 3 represents the number of spectral clustering
partitions and (SI(πk)|k) represents silhouette coefficient of
the corresponding spectral clustering partition based on
similarity measure μ at each k. ksp is selected as the optimal
number for spectral clustering when the sum of the
corresponding silhouette coefficients generated from the three
basic similarity measures reaches maximum. Then, to generate
the final cell partitions, the reconstructed similarity matrix CO is
clustered using the complete-linkage HC algorithm. We cut the
hierarchical tree at kopt clusters which can be expressed as:

kopt � argmax(SI(πk)|k)
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where kopt is the optimal number of the resulting cell partitions
and can be obtained when the silhouette coefficient generated
from the reconstructed similarity measures reaches maximum.

2.4 Model Comparison
To evaluate the clustering performance of scMelody, we
performed intensive comparative studies with previously
published methods, which were described as follows:

SW + HC (Smallwood et al., 2014): The sliding window (SW)
approach first estimated the sample-specificmethylation rates of the
genome-wide CpGs in a single cell based on a binomial distribution.
To increase the coverage across cells, a sliding window of 3 kb in size
and 600 bp in step size was used to subdivide the genome. Then the
cell-to-cell methylation variances were evaluated using the
estimated sample-specific methylation rates. The cell partitions
were generated by the complete-linkage hierarchical clustering.

PearsonHC (Hou et al., 2016): This approach utilized the
Pearson correlation coefficient to measure cell-to-cell
methylation similarity based on the genome-wide overlapping
CpGs of cell pairs. This measure was identical to the Pearson
similarity metric used in scMelody. The complete-linkage HCwas
implemented to generate the cell clusters.

PDclust (Hui et al., 2018): PDclust depended on a measure of
CpG methylation pairwise dissimilarity (PD), which was defined
as the proportion of the overlapping CpGs with discordant
methylation status between each pair of cells. The cell
partitions were generated by calculating Euclidean distances
between each pair of cells based on their PD values using the
Ward-linkage HC. Note that the PD value used in PDclust is
different from the Hamming similarity measure in scMelody, as
the Hamming similarity measure quantified the methylation
similarity of cell pairs and the basic cell partitions were
obtained based entirely on Hamming similarity without
calculating the Euclidean distances of the measure.

Epiclomal (de Souza et al., 2020): Epiclomal was a probabilistic
clustering method arising from a hierarchical mixture model
which performed better than single-distance-based methods on
several datasets. There were two major variants for Epiclomal,
including EpiclomalBasic (EpiclomalB) and EpiclomalRegion
(EpiclomalR). EpiclomalB considered the methylation status of

all CpGs while EpiclomalR focused on the methylation levels
across genomic functional regions such as CGIs, leading to better
interpretation of the expected cellular heterogeneity on real
datasets. Thus, the author mainly focused on the clustering
performance of EpiclomalR on real datasets. To be fair, we
applied the two versions of Epiclomal on the synthetic
datasets; while on the real datasets, only EpiclomalR was
considered. For EpiclomalR, the clustering assignments were
generated from the filtered inputs of 10,000 CpGs, which
were based on the functional genomic regions from CGI
and TFBS.

2.5 Clustering Performance Metrics
To evaluate the performance of different clustering algorithms,
we utilize two popular clustering validation indices, including the
Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) and
V-measure (Rosenberg and Hirschberg, 2007). Both the two
clustering validation indices measure the agreement between
the inferred cell clusters and the true or predefined ones from
different perspectives. ARI measures clustering performance by
the similarity or matching degree between the prediction target
cluster vector and the real cluster vector. Given a set of m cells, the
quantitative relationship between the clustering results and the
reference labels can be reflected in a contingency table, where
each entry indicates the number of objects in common between
the prediction and the reference.
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Wheremij comes from the contingency table, αi is the sum of the
ith row of the contingency table, βj is the sum of the jth column of
the contingency table and the (.) function denotes a binomial
coefficient. The V-measure captures the homogeneity and
completeness of a clustering result. To satisfy the homogeneity
criterion, each cluster contains only members of a single class.
Completeness is satisfied if all those cells that are members of a
single group are assigned to a single cluster. The V-measure can

FIGURE 1 | Illustrative flowchart of scMelody. scMelody first utilizes three correlation-based measures to capture cell-to-cell methylation similarity patterns,
including Cosine, Hamming and Pearson. The basic cell clusters are generated by spectral clustering according to the similarity patterns. Then, scMelody leverages an
enhanced consensus-based clustering model to reconstruct the cell-to-cell similarity by integrating the basic cell clusters and similarity patterns. The resulting cell cluster
is generated by performing the complete-linkage hierarchical clustering according to the reconstructed cell-to-cell similarity matrix.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org February 2022 | Volume 10 | Article 8420196

Tian et al. Single-Cell Methylome Clustering

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


be calculated as the harmonic mean of homogeneity (h) and
completeness (c):

V � 2hc
h + c

where the homogeneity h � 1 −H(C|K)/H(C), H(C|K) is the
conditional entropy of the classes given the cluster assignments
and is given by H(C|K) � −∑|C|

c�1 ∑|K|
k�1

nc,k
n log(nc,kn ), H(C) is the

entropy of the classes and is given by H(C) � −∑|C|
c�1

nc
n log(ncn ),

with n the number of cells, nc and nk the number of cells
respectively belonging to true class c and cluster k, and nc,k
the number of cells from true class c assigned to cluster k.
The completeness c � 1 −H(K|C)/H(K), which has the
analogous formulation as the homogeneity h.

3 RESULTS

3.1 scMelody Outperforms the Existing
Methods
We first benchmarked scMelody together with the other
published methods on 7 real single-cell methylation datasets,
reflecting a wide spectrum of sequencing techniques, data
sparsity, number and heterogeneity of single cells examined.
Figure 2 showed the clustering performance of these methods
across the datasets, which clearly indicated that scMelody
outperformed other methods by achieving the same or higher
ARI and V-measures scores. Specifically, on the three datasets
with fewer cells or clusters, including Smallwood, Hou and Pott,
scMelody accurately clustered all cells while other methods
misclassified one or several cells. On the Farlik2015 dataset,
the heterogeneity between the different cell subpopulations
(treated or untreated) was subtle, however, scMelody
performed better than the competing methods by achieving
less misclassification for both K562 and HL60 treated cells. On
the Farlik2016 dataset, scMelody achieved significant clustering
performance gains than other methods, where the inferred
assignments of scMelody showed much higher consistency

with the true cell clusters (Supplementary Figure S2). On the
two relatively large datasets, scMelody was superior to the
competing methods by recapitulating the major cell types
more accurately and achieved higher ARI and V-measure
scores. Moreover, EpiclomalR accurately identified the cell
heterogeneity on both Hou and Pott datasets and was slightly
inferior to scMelody on Smallwood and Farlik2015 datasets while
was significantly inferior to scMelody on Farlik 2016, Luo-human
and Luo-mouse datasets. The clustering performances of the three
single-distance-based methods varied a lot across different datasets.
On the simple datasets with fewer numbers of cells or clusters (like
Smallwood and Pott), they could accurately identify the cell
heterogeneity and achieved close ARI or V-measure scores
compared to scMeldoy and EpiclomalR; however, their clustering
performance decayed rapidly on complex datasets with increasing
numbers of cells or clusters (like Farlik2016 and Luo-human).
Additionally, we also observed that even the three single-distance-
based methods achieved different clustering performances on
different datasets and no single measure could always be better
than others. Supplementary Figure S3 summarized the ARI
scores and V-measure scores of the benchmarked methods across
the real datasets and scMelody showed the highest average ARI and
V-measure scores, indicating that our model was universal to
different kinds of single-cell methylation datasets.

We further investigated the performance of the benchmarked
methods in terms of estimating the number of clusters. Since only
EpiclomalR and scMelody provided built-in functions for
predicting the number of clusters, we utilized the silhouette
coefficient criterion to specify the optimal number of clusters
for the three single-distance-based methods. The result showed
that all methods accurately estimated the optimal number of
clusters on the datasets with the fewer true numbers of clusters,
including the Smallwood and Pott datasets (Table 2). While on
the datasets with stronger cellular heterogeneity, scMelody
achieved improved estimations that were closer to the
numbers of true clusters, such as accurately predicting the
number of clusters on the Farlik2016 and Luo-mouse datasets
and achieving smaller prediction errors on the Luo-human

FIGURE 2 | Clustering performance comparison between scMelody and other major published methods on the real datasets. Both ARI and V-measure are
employed to assess the similarity between inferred and true cluster labels.
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dataset. EpiclomalR provided better prediction performance than
the three single-distance-based methods while the three single-
distance-based methods generally underestimated the number of
clusters. Of note, although scMelody and the three single-
distance-based methods all predicted the number of clusters
based on the silhouette coefficient criterion, the better
prediction performance of scMelody suggested that the
reconstructed cell-to-cell similarity enabled a more accurate
reflection of the differences between cell subpopulations.

3.2 scMelody Defines a Better Similarity
Measure With Improved Clustering
Performance
To further illustrate that scMelody could improve the clustering
performance by reconstructing cell-to-cell similarity with the
proposed enhanced consensus clustering strategy, we further
investigated the clustering results generated by different
similarity measures. Using the HC as the benchmarked
clustering algorithm, the cell partitions were generated from
different similarity matrices: 1) The three basic similarity
matrices, including Cosine, Hamming and Pearson. 2)
Consensus-I, the similarity matrix was the traditional
consensus matrix generated by averaging the binary co-
occurrence matrices without the regularization process and the
weighting process. 3) Consensus-II, the similarity matrix was the
consensus matrix generated by averaging the regularized co-
occurrence matrices without the weighting process. 4)
Consensus-III, the similarity matrix was the consensus matrix
generated by weighting the binary co-occurrence matrices
without the regularization process. 5) The similarity matrix
was the resulting consensus matrix of scMelody. The
differences between these similarity measures are summarized
in Table 3.

The results showed that the clustering performance varied
considerably between different similarity measures (Figure 3).
Firstly, we observed that the reconstructed cell-to-cell similarity
by scMelody could dissect cellular heterogeneity more accurately
and robustly, as it achieved better or the same clustering
performance than other similarity measures across all the
datasets. Secondly, we also observed that the clustering
performances of the basic similarity measures varied
considerably on different datasets, indicating that they
captured methylation differences between cells from different
aspects. Thirdly, generally speaking, integrating the information
from basic similarity measures could more accurately reflect the

true methylation heterogeneity between cells, which was reflected
in the improved clustering accuracy of the consensus-based
similarity measures than the basic similarity measures on most
datasets. However, we also observed that Consensus-I did not
consistently improve the clustering performance on all datasets
(like the Smallwood, Farlik2015 and Hou datasets) compared to
the basic similarity measures, indicating the limitation of the
traditional consensus strategy. Moreover, the overall performance
of Consensus-I was not as good as Consensus-II or Consensus-III
and this suggested that both the regularization and weighting
strategy contributed to boosting the clustering performance. In
conclusion, the reconstructed similarity measure by scMelody
could achieve more significant clustering performance gains than
the basic similarity measures across different real datasets.

3.3 Clustering Stability and Scalability of
scMelody
After verifying the clustering performance of scMelody on the
real datasets, we generated a variety of synthetic datasets to
further evaluate its clustering stability, where the clustering
complexity could be controlled with different initialization
settings. Firstly, we compared the clustering performance of
scMelody and other published methods when the number of
cells varied over a wide range. The results showed that when we
fixed the number of clusters (C � 6) and the CpG dropout
proportion (η � 0.5), the clustering performance of all
methods improved with the increase of the cell numbers,
while scMelody performed better than other methods across
all settings of cell numbers (Figure 4A). Compared with
EpclomalB, EpiclomalR had better average clustering
performance when the numbers of cells were small (N≤ 600),
but EpiclomalB outperformed EpiclomalR when the numbers of
cells were relatively large, indicating that using the information

TABLE 2 | The estimated number of clusters on each real dataset.

Datasets True clusters SW + HC PearsonHC PDclust EpiclomalR scMelody

Smallwood 2 2 2 2 2 2
Farlik2015 4 2 2 2 2 2
Hou 3 2 3 3 3 3
Pott 2 2 2 2 2 2
Farlik2016 6 2 3 2 7 6
Luo-human 21 13 14 15 25 18
Luo-mouse 16 10 12 12 15 16

TABLE 3 | The differences between the benchmarked similarity measures.

Similarity Consensus Regularization Weighting

Cosine No — —

Hamming No — —

Pearson No — —

Consensus-I Yes No No
Consensus-II Yes Yes No
Consensus-III Yes No Yes
ScMelody Yes Yes Yes
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from genome-wide CpGs might better capture cellular
heterogeneity than local functional regions when clustering a
large number of cells. We also observed that the two correlation-
based methods (PearsonHC and PDclust) were better than the
method (SW + HC) based on the Euclidean distance. Figure 4B
showed the clustering performance of the benchmarked methods
when varying numbers of clusters (with N � 600 and η � 0.5).
When the predefined numbers of clusters were small, the
differences in clustering performance among the methods were
not significant due to the lower complexity of the clustering task;
however, with the increase of the number of clusters, the
clustering performance of all methods began to drop while
scMelody achieved higher average ARI and V-measure scores

than the competing methods. Epiclomal performed better than
other single-distance-based clustering methods, while PDclust
and PearsonHC were better than SW +HC. Finally, when varying
the sparsity of the synthetic datasets by CpG dropout
proportions, scMelody achieved better clustering performance
under all CpG dropout proportions than the competing methods
and could maintain the clustering accuracy across a wide range of
dropout proportions (η≤ 0.7), demonstrating its capability and
sensitivity in robustly identifying cell subpopulations
(Figure 4C).

Furthermore, considering that current single-cell methylation
sequencing techniques have already assayed tens to thousands of
cells, we also evaluated the runtime of these methods at different

FIGURE 3 | Clustering performance comparison of different similarity measures on the real datasets. These similarity measures include the three basic correlation-
based measures and the consensus-based similarity measures. The complete-linkage hierarchical clustering is used as the benchmarked clustering algorithm.

FIGURE 4 | Benchmarking the clustering stability of scMelody and other major publishedmethods on a variety of synthetic datasets. The clustering performance is
measured by ARI and V-measure when we vary by: (A) number of cells; (B) number of clusters; (C) CpG dropout proportions. Each setting covers 50 input datasets to
evaluate the average clustering performance.
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cell numbers. Note that all calculation was performed on a
Windows server with an Intel Xeon Platinum 8160 CPU
(2.1 GHz) and 32G RAM. Figure 5 summarized the average
time consumption of the benchmarked methods on the synthetic
datasets at different numbers of cells. It was obvious that the three
single-distance-based methods had lower time consumption than
Epiclomal and scMelody, in which SW + HC required more
running time than PearsonHC and PDclust. Moreover, scMelody
was more computationally efficient compared to EpiclomalB and
EpiclomalR while EpiclomalR was more computationally
expensive than EpiclomalB. Of note, we found that
scMelody spent more than 99% of the running time on
calculating the basic cell-to-cell similarity matrices for the
input single-cell methylation profiles (Supplementary Figure
S4) and this was also true for single-distance-based methods,
such as PearsonHC and PDclust. Since scMelody was
demonstrated to be stable over a wide range of CpG
dropout proportions, researchers were recommended to
select CpGs from genomic regions of interest to speed up
the calculation of the basic similarity matrices in real
application scenarios. Besides, considering the varying
number of CpGs assayed in real single-cell methylation
datasets, Supplementary Table S2 also showed the runtime
of the benchmarked methods on the real datasets and the
runtime of scMelody varied within several hours which was
practical. To sum up, scMelody could accurately cluster
thousands of cells within hours, reaching a balance between
the clustering accuracy and the computation efficiency.

3.4 The Reconstructed Similarity Facilitates
to the Interpretation of Cell Heterogeneity
To further demonstrate the ability of scMelody to uncover known
cell types, we presented two real case studies for the Smallwood
and Luo-mouse datasets. Firstly, we investigated whether the cell-
to-cell similarity values could visually assess the structures of cell
subpopulations, including the reconstructed similarity measure
and the three basic similarity measures. Supplementary Figure
S5 showed the heatmaps based on the cell-to-cell pairwise
similarity values for the Smallwood dataset. It could be
observed that cells with the reconstructed similarity values by
scMelody presented a grouping tendency in the diagonal

(Supplementary Figure S5A), indicating two significant
heterogeneous cell populations on this dataset. Combined with
the true cell labels, we found that the two major subpopulations
were precisely representative of 2i ESCs and serum ESCs.
However, even the basic similarity measures also provided
accurate clustering results, like Hamming similarity measure,
they could not provide the same aggregation tendency in the
diagonal as scMelody did (Supplementary Figures S5B–S5D).
This indicated that the reconstructed cell-to-cell similarity could
contribute to the characterization of methylation heterogeneity
between cells, which could help researchers intuitively assess the
potential cell subpopulations. Secondly, we further investigated
the clustering results of the consensus-based similarity measures
and focused on the effects of the regularization process and the
dual weighting strategy on the output cell clusters. Based on the
methylation levels in 100 kb bins across the genome, Figure 6
showed the t-SNE(van der Maaten and Hinton, 2008)
visualization results of the Luo-mouse dataset according to the
original cell types and inferred clusters, where the inferred
clusters were generated by different consensus clustering
strategies, including scMelody, Consensus-II and Consensus-
III (Table 3). The results indicated that scMelody generated
more accurate cell clusters which showed a better agreement
with the original cell types. Compared to Consensus-II and
Consensus-III, scMelody could more accurately identify the
major differences between cell subpopulations and avoid
overestimating cellular heterogeneity within the
subpopulations. This demonstrated the capability of the
enhanced consensus-based clustering model to uncover the
cell subpopulations, which could boost the clustering
performance by integrating the regularization process and the
dual weighting strategy.

3.5 scMelody Uncovers Novel Cell Clusters
To demonstrate the capability of scMelody in identifying novel
cell clusters, we presented two case studies. Firstly, according to
the annotations from the original experiment of the Farlik2016
dataset, the clustering result of scMelody showed that six cells
(denoted as HSC-sub) annotated as HSC were clustered as MPP
(Supplementary Table S3) while the remaining HSCs (denoted
as HSC-raw) were independently grouped together
(Supplementary Figure S6). To explore the cause of the
deviation, we first examined the pairwise methylation
similarity of all cells which were annotated as HSC according
to their genome-wide methylation status (Figure 7A). The result
showed that cells denoted as HSC-sub or HSC-raw showed high
internal correlations and was much higher than assembling them
together (HSC-all), indicating potential heterogeneity among the
two subpopulations (HSC-sub and HSC-raw). Then, to provide a
biologically meaningful basis for analyzing DNA methylation
differences between the HSCs and MPPs, we further aggregated
the DNA methylation profiles at the functional genomic region
level according to the BLUEPRINT version of the Ensembl
Regulatory Build (Zerbino et al., 2015; Adams et al., 2012),
including six types of putative regulatory regions. Figure 7B
showed the t-SNE visualization result of all cells in the Farlik2016
dataset according to their annotated cell labels. We observed that

FIGURE 5 | The average runtime of the benchmarked methods on the
synthetic datasets with different numbers of cells.
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the HSC population was more heterogeneous and a few HSCs
presented a closer distance to MPPs. Moreover, Figure 7C
showed the average methylation levels of the three groups of
cells in the 500 most variable regions (Chi-square, FDR <.05)
for each type of the regulatory region. According to Tukey’s
multiple comparisons test (Dunn, 1961), the average
methylation level of the HSC-sub population was
significantly different from that of the HSC-raw population
in all six functional regions while was significantly different
from that of the MPP population in four of six functional
regions. The specific statistic information of the average
methylation levels of the three groups of cells could be
obtained in Supplementary Tables S4–S9. Moreover, we
utilized the GREAT tool (McLean et al., 2010) to evaluate
the functional significance of the identified variable genomic
regions and the result indicated several enriched biological
process (BP) Gene Ontology (GO) terms that were associated
with HSC-raw and HSC-sub (Figure 7D; Supplementary Table
S10). For instance, the two GO terms mitotic cytokinesis and
positive regulation of mitotic nuclear division that were
associated with hypomethylation in HSC-raw demonstrated
that HSC-raw might have stronger differentiation potency
than HSC-sub as DNA methylation could be associated with
transcriptional repression (Luo et al., 2018). Finally, combined
with the human hematopoietic lineage (Doulatov et al., 2012;
Farlik et al., 2016), we knew that all blood cells originated from

HSCs and the transition from HSC to MPP was always in the
first stage of the differentiation lineage. These findings
suggested that the six cells, which were annotated as HSC
from the original publication, were different from the typical
HSCs and presented an intermediate methylation status of two
kinds of continuously differentiated cells (HSC and MPP) that
warranted further investigation.

As an additional validation, we also evaluated the ability of
scMelody to identify the novel cell clusters on a large dataset
with complex cell composition contexts. This dataset was
generated by Liu et al. (2021), in which there were 28077
inhibitory neurons derived from different regions of the
mouse brain tissue, presenting high intercellular
heterogeneity. We first aggregated the methylation profiles of
100 kb bins and these cells could be divided into 14 major types
according to the annotations of the original experiment
(Figure 8A). Besides, each major type was comprised of
multiple heterogeneous subtypes, which were identified in
the original experiment. When applying scMelody to this
dataset, the clustering results showed that one major type
PAL-Inh (inhibitory neurons derived from mouse pallidum)
with the largest number of cells (4307 cells) among the 14 major
types could be further divided into 11 subtypes, while only 10
subtypes were annotated for the PAL-Inh cells in the original
experiment (Figures 8B,C). After comparison, we found that
the novel subpopulation (PAL-Inh novel) identified by

FIGURE 6 | t-SNE visualization results of the Luo-mouse dataset according to the different cell labels. (A) True cell labels; (B) The inferred clusters of scMeldoy; (C)
The inferred clusters of Consensus-II. (D) The inferred clusters of Consensus-III.
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scMelody mainly came from the subtype PAL-Inh Meis2. Since
the methylation levels on gene bodies negatively correlated with
the gene expression in mouse neurons (Lister et al., 2013; Mo
et al., 2015; Stroud et al., 2017; Liu et al., 2021), we profiled the
methylation levels along the gene bodies with Chi-square (FDR
<0.05) and the GO analysis revealed enriched BP terms for the
differentially methylated genes between the PAL-Inh novel
subpopulation and PAL-Inh Meis2 subpopulation
(Supplementary Figure S7; Supplementary Table S11). For
instance, several most significantly enriched GO terms, such as
nervous system development and neurogenesis, clearly showed

major biological processes of mouse neuron development.
Moreover, we also noticed that the GO term “cell
morphogenesis involved in neuron differentiation” was
associated with hypermethylation in PAL-Inh novel
subpopulation and the GO term “negative regulation of protein
modification process” was associated with hypomethylation in
PAL-Inh novel subpopulation. This result showed that the PAL-
Inh Meis2 subpopulation might have a stronger differentiation
ability than the PAL-Inh novel subpopulation (Menon and
Gupton, 2018; Badimon et al., 2020). Besides, the GREAT
analysis uncovered the term “abnormal neuron morphology” of

FIGURE 7 | Case study of scMelody in identifying novel cell clusters on the Farlik2016 dataset. (A) The concordance of the DNA methylation of the cells annotated
as HSC. The concordance is calculated by averaging the pairwise correlation coefficients between any two single cells within each group, including Cosine, Hamming
and Pearson correlation coefficient. (B) t-SNE projection plot of the Farlik2016 dataset using the averagemethylation levels on the top 500 variable functional regions in all
six types of putative regulatory regions. Each point represents an individual cell, which is colored according to the annotated cell labels from the original experiment.
(C) Average methylation levels of cells denoted as HSC-raw, HSC-sub and MPP on the six functional genomic regions, including CTCF binding site (CTCF), Distal
element, DNase element, Proximal element, Transcription factor binding site (TFBS) and Transcriptional start site (TSS). Tukey’s multiple comparisons test is used to
determine whether there is a significant difference in mean methylation levels between each pair of the three cell groups. By default, the significance level is .05 and the
significance marks are denoted by: ns, not significant; *p < .05; **p < .01, ***p < .001; ****p < .0001. (D) Genomic Regions Enrichment of Annotations Tool (GREAT)
enrichment analysis of the variable genomic regions based on biological process Gene Ontology (GO) terms between the HSC-sub and HSC-raw. The enriched GO
terms are ordered with the binomial test p value.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org February 2022 | Volume 10 | Article 84201912

Tian et al. Single-Cell Methylome Clustering

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Mouse Phenotype, which further confirmed the difference in these
two cell subpopulations.

4 DISCUSSION

The high resolution of single-cell methylation sequencing enables
researchers to explore cell-to-cell epigenetic heterogeneity and
underlines the significance of clustering cells based on the single-
cell methylation profiles. In a biological sense, DNA methylation
is well suited for exploring cell heterogeneity because this crucial
modification is cell-type-specific and preserves an epigenetic
memory of a cell’s developmental history (Farlik et al., 2016).
In this paper, we propose scMelody, an enhanced consensus-
based clustering model for single-cell methylation data analysis
by reconstructing cell-to-cell pairwise similarity. When applying
it on real single-cell methylation datasets generated from various
sequencing techniques, scMeldoy achieved significant clustering
performance gains over the previous methods, including several
single-distance-based methods and one probabilistic method.
Benefiting from the reconstructed cell-to-cell similarity
measure, scMelody also attained accurate estimates for the
number of clusters based on the silhouette coefficient criterion.
Moreover, using the synthetic datasets generated across a variety
of settings, scMelody was demonstrated to be stable which
robustly maintained its clustering accuracy over a wide range
of number of cells, number of clusters and CpG dropout
proportions. The real case studies also indicated the capability
of scMelody to identify known cell types and uncover novel cell
clusters. To sum up, scMeldoy could accurately recapitulate the
cellular epigenetic heterogeneity and was demonstrated to be
universal for different kinds of single-cell methylation datasets.

Generally, the (dis)similarity measure is the core for quantifying
the methylation differences between cells, thus many methods are
designed to incorporate different cell-to-cell methylation (dis)
similarity measures into the distance-based clustering algorithms
to generate cell partitions. However, our results showed that no
single (dis)similarity measure could provide satisfactory clustering
performance on all datasets as different (dis)similarity measures
captures the cellular heterogeneity from different perspectives. For
example, both PearsonHC and PDclust accurately assigned all cells to
their respective clusters on the Pott dataset while they could hardly
identify the cell types on the Farlik2016 dataset (Figure 4). Instead, a
significant advantage of scMelody was that it integrated the clustering
information of multiple basic similarity measures to overcome their
limitation in capturing complete cellular methylation heterogeneity.
Besides, the reconstructed cell-to-cell similarity measure enabled
scMelody to reach better clustering performance across different
datasets. This highlighted the importance of identifying cell
subpopulations by combining the information of different cell-to-
cell methylation (dis)similarity relationships. However, even
scMelody can process thousands of cells within several hours, the
computational efficiency of scMelody is still to be improved especially
when the computational resources are limited. We will continue to
develop optimized versions of scMelody to improve its
computational efficiency, such as the GPU-accelerated scMelody,
which can be more practical for the researchers to use it.

With the development of single-cell methylation sequencing
technologies, the increase of sequencing depth will greatly
alleviate the sparsity problem of single-cell methylation data,
which can significantly boost the performance of clustering cells
based on cell-to-cell similarity patterns. Our scMelody is flexible
and can easily accommodate additional similarity measures to
cluster cells, as the novel and sophisticated distance measures

FIGURE 8 | t-SNE visualization results of the large Liu dataset based on the 100 kb bins methylation profiles. (A) The t-SNE visualization result of all inhibitory
neurons, where a total of 28077 cells are defined as 14major types and are colored according to the annotations from the original experiment. (B) The t-SNE visualization
result of PAL-Inh subpopulation, where a total of 4307 cells are defined as 10 subtypes are colored according to the annotations from the original experiment. (C) The
t-SNE visualization result of PAL-Inh subpopulation, where the cells are clustered into 11 subtypes by scMelody. For comparison, the novel cell cluster identified by
scMelody is circled with a black rectangle.
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continue to be proposed. This has important implications for
fully utilizing single-cell methylation sequencing to study
cell differentiation versus variation, especially for
uncovering novel cell types in complex human diseases,
such as cancers.
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